Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 ////////////////////////////////////////////// 26 //////////////////////////////////////////////////////////////////////// 27 // Optical Photon Boundary Process Class Imple 27 // Optical Photon Boundary Process Class Implementation 28 ////////////////////////////////////////////// 28 //////////////////////////////////////////////////////////////////////// 29 // 29 // 30 // File: G4OpBoundaryProcess.cc 30 // File: G4OpBoundaryProcess.cc 31 // Description: Discrete Process -- reflection 31 // Description: Discrete Process -- reflection/refraction at 32 // optical in 32 // optical interfaces 33 // Version: 1.1 33 // Version: 1.1 34 // Created: 1997-06-18 34 // Created: 1997-06-18 35 // Modified: 1998-05-25 - Correct parallel 35 // Modified: 1998-05-25 - Correct parallel component of polarization 36 // (thanks to: Stefa 36 // (thanks to: Stefano Magni + Giovanni Pieri) 37 // 1998-05-28 - NULL Rindex point 37 // 1998-05-28 - NULL Rindex pointer before reuse 38 // (thanks to: Stefa 38 // (thanks to: Stefano Magni) 39 // 1998-06-11 - delete *sint1 in 39 // 1998-06-11 - delete *sint1 in oblique reflection 40 // (thanks to: Giova 40 // (thanks to: Giovanni Pieri) 41 // 1998-06-19 - move from GetLoca << 41 // 1998-06-19 - move from GetLocalExitNormal() to the new 42 // method: GetLocalE 42 // method: GetLocalExitNormal(&valid) to get 43 // the surface norma 43 // the surface normal in all cases 44 // 1998-11-07 - NULL OpticalSurfa 44 // 1998-11-07 - NULL OpticalSurface pointer before use 45 // comparison not sh 45 // comparison not sharp for: std::abs(cost1) < 1.0 46 // remove sin1, sin2 46 // remove sin1, sin2 in lines 556,567 47 // (thanks to Stefan 47 // (thanks to Stefano Magni) 48 // 1999-10-10 - Accommodate chang 48 // 1999-10-10 - Accommodate changes done in DoAbsorption by 49 // changing logic in 49 // changing logic in DielectricMetal 50 // 2001-10-18 - avoid Linux (gcc- 50 // 2001-10-18 - avoid Linux (gcc-2.95.2) warning about variables 51 // might be used uni 51 // might be used uninitialized in this function 52 // moved E2_perp, E2 52 // moved E2_perp, E2_parl and E2_total out of 'if' 53 // 2003-11-27 - Modified line 168 53 // 2003-11-27 - Modified line 168-9 to reflect changes made to 54 // G4OpticalSurface 54 // G4OpticalSurface class ( by Fan Lei) 55 // 2004-02-02 - Set theStatus = U 55 // 2004-02-02 - Set theStatus = Undefined at start of DoIt 56 // 2005-07-28 - add G4ProcessType 56 // 2005-07-28 - add G4ProcessType to constructor 57 // 2006-11-04 - add capability of 57 // 2006-11-04 - add capability of calculating the reflectivity 58 // off a metal surfa << 58 // off a metal surface by way of a complex index 59 // of refraction - T << 59 // of refraction - Thanks to Sehwook Lee and John 60 // Hauptman (Dept. o 60 // Hauptman (Dept. of Physics - Iowa State Univ.) 61 // 2009-11-10 - add capability of 61 // 2009-11-10 - add capability of simulating surface reflections 62 // with Look-Up-Tabl 62 // with Look-Up-Tables (LUT) containing measured 63 // optical reflectan 63 // optical reflectance for a variety of surface 64 // treatments - Than 64 // treatments - Thanks to Martin Janecek and 65 // William Moses (La 65 // William Moses (Lawrence Berkeley National Lab.) 66 // 2013-06-01 - add the capabilit << 67 // of a dichronic fi << 68 // 2017-02-24 - add capability of << 69 // with Look-Up-Tabl << 70 // 66 // 71 // Author: Peter Gumplinger 67 // Author: Peter Gumplinger 72 // adopted from work by Werner Keil - April 68 // adopted from work by Werner Keil - April 2/96 >> 69 // mail: gum@triumf.ca 73 // 70 // 74 ////////////////////////////////////////////// 71 //////////////////////////////////////////////////////////////////////// 75 72 76 #include "G4OpBoundaryProcess.hh" << 77 << 78 #include "G4ios.hh" 73 #include "G4ios.hh" 79 #include "G4GeometryTolerance.hh" << 80 #include "G4LogicalBorderSurface.hh" << 81 #include "G4LogicalSkinSurface.hh" << 82 #include "G4OpProcessSubType.hh" 74 #include "G4OpProcessSubType.hh" 83 #include "G4OpticalParameters.hh" << 84 #include "G4ParallelWorldProcess.hh" << 85 #include "G4PhysicalConstants.hh" << 86 #include "G4SystemOfUnits.hh" << 87 #include "G4TransportationManager.hh" << 88 #include "G4VSensitiveDetector.hh" << 89 75 90 //....oooOO0OOooo........oooOO0OOooo........oo << 76 #include "G4OpBoundaryProcess.hh" >> 77 #include "G4GeometryTolerance.hh" >> 78 >> 79 ///////////////////////// >> 80 // Class Implementation >> 81 ///////////////////////// >> 82 >> 83 ////////////// >> 84 // Operators >> 85 ////////////// >> 86 >> 87 // G4OpBoundaryProcess::operator=(const G4OpBoundaryProcess &right) >> 88 // { >> 89 // } >> 90 >> 91 ///////////////// >> 92 // Constructors >> 93 ///////////////// >> 94 91 G4OpBoundaryProcess::G4OpBoundaryProcess(const 95 G4OpBoundaryProcess::G4OpBoundaryProcess(const G4String& processName, 92 G4Pro << 96 G4ProcessType type) 93 : G4VDiscreteProcess(processName, ptype) << 97 : G4VDiscreteProcess(processName, type) 94 { 98 { 95 Initialise(); << 99 if ( verboseLevel > 0) { >> 100 G4cout << GetProcessName() << " is created " << G4endl; >> 101 } 96 102 97 if(verboseLevel > 0) << 103 SetProcessSubType(fOpBoundary); 98 { << 99 G4cout << GetProcessName() << " is created << 100 } << 101 SetProcessSubType(fOpBoundary); << 102 104 103 fStatus = Undefined; << 105 theStatus = Undefined; 104 fModel = glisur; << 106 theModel = glisur; 105 fFinish = polished; << 107 theFinish = polished; 106 fReflectivity = 1.; << 108 theReflectivity = 1.; 107 fEfficiency = 0.; << 109 theEfficiency = 0.; 108 fTransmittance = 0.; << 109 fSurfaceRoughness = 0.; << 110 fProb_sl = 0.; << 111 fProb_ss = 0.; << 112 fProb_bs = 0.; << 113 << 114 fRealRIndexMPV = nullptr; << 115 fImagRIndexMPV = nullptr; << 116 fMaterial1 = nullptr; << 117 fMaterial2 = nullptr; << 118 fOpticalSurface = nullptr; << 119 fCarTolerance = G4GeometryTolerance::GetIn << 120 << 121 f_iTE = f_iTM = 0; << 122 fPhotonMomentum = 0.; << 123 fRindex1 = fRindex2 = 1.; << 124 fSint1 = 0.; << 125 fDichroicVector = nullptr; << 126 } << 127 110 128 //....oooOO0OOooo........oooOO0OOooo........oo << 111 prob_sl = 0.; 129 G4OpBoundaryProcess::~G4OpBoundaryProcess() = << 112 prob_ss = 0.; >> 113 prob_bs = 0.; 130 114 131 //....oooOO0OOooo........oooOO0OOooo........oo << 115 PropertyPointer = NULL; 132 void G4OpBoundaryProcess::PreparePhysicsTable( << 116 PropertyPointer1 = NULL; 133 { << 117 PropertyPointer2 = NULL; 134 Initialise(); << 118 135 } << 119 kCarTolerance = G4GeometryTolerance::GetInstance() >> 120 ->GetSurfaceTolerance(); 136 121 137 //....oooOO0OOooo........oooOO0OOooo........oo << 138 void G4OpBoundaryProcess::Initialise() << 139 { << 140 G4OpticalParameters* params = G4OpticalParam << 141 SetInvokeSD(params->GetBoundaryInvokeSD()); << 142 SetVerboseLevel(params->GetBoundaryVerboseLe << 143 } 122 } 144 123 145 //....oooOO0OOooo........oooOO0OOooo........oo << 124 // G4OpBoundaryProcess::G4OpBoundaryProcess(const G4OpBoundaryProcess &right) 146 G4VParticleChange* G4OpBoundaryProcess::PostSt << 125 // { 147 << 126 // } >> 127 >> 128 //////////////// >> 129 // Destructors >> 130 //////////////// >> 131 >> 132 G4OpBoundaryProcess::~G4OpBoundaryProcess(){} >> 133 >> 134 //////////// >> 135 // Methods >> 136 //////////// >> 137 >> 138 // PostStepDoIt >> 139 // ------------ >> 140 // >> 141 G4VParticleChange* >> 142 G4OpBoundaryProcess::PostStepDoIt(const G4Track& aTrack, const G4Step& aStep) 148 { 143 { 149 fStatus = Undefined; << 144 theStatus = Undefined; 150 aParticleChange.Initialize(aTrack); << 151 aParticleChange.ProposeVelocity(aTrack.GetVe << 152 << 153 // Get hyperStep from G4ParallelWorldProces << 154 // NOTE: PostSetpDoIt of this process to be << 155 // G4ParallelWorldProcess! << 156 const G4Step* pStep = &aStep; << 157 const G4Step* hStep = G4ParallelWorldProcess << 158 if(hStep != nullptr) << 159 pStep = hStep; << 160 << 161 if(pStep->GetPostStepPoint()->GetStepStatus( << 162 { << 163 fMaterial1 = pStep->GetPreStepPoint()->Get << 164 fMaterial2 = pStep->GetPostStepPoint()->Ge << 165 } << 166 else << 167 { << 168 fStatus = NotAtBoundary; << 169 if(verboseLevel > 1) << 170 BoundaryProcessVerbose(); << 171 return G4VDiscreteProcess::PostStepDoIt(aT << 172 } << 173 145 174 G4VPhysicalVolume* thePrePV = pStep->GetPre << 146 aParticleChange.Initialize(aTrack); 175 G4VPhysicalVolume* thePostPV = pStep->GetPos << 176 147 177 if(verboseLevel > 1) << 148 G4StepPoint* pPreStepPoint = aStep.GetPreStepPoint(); 178 { << 149 G4StepPoint* pPostStepPoint = aStep.GetPostStepPoint(); 179 G4cout << " Photon at Boundary! " << G4end << 180 if(thePrePV != nullptr) << 181 G4cout << " thePrePV: " << thePrePV->Ge << 182 if(thePostPV != nullptr) << 183 G4cout << " thePostPV: " << thePostPV->G << 184 } << 185 150 186 G4double stepLength = aTrack.GetStepLength() << 151 if ( verboseLevel > 0 ) { 187 if(stepLength <= fCarTolerance) << 152 G4cout << " Photon at Boundary! " << G4endl; 188 { << 153 G4VPhysicalVolume* thePrePV = pPreStepPoint->GetPhysicalVolume(); 189 fStatus = StepTooSmall; << 154 G4VPhysicalVolume* thePostPV = pPostStepPoint->GetPhysicalVolume(); 190 if(verboseLevel > 1) << 155 if (thePrePV) G4cout << " thePrePV: " << thePrePV->GetName() << G4endl; 191 BoundaryProcessVerbose(); << 156 if (thePostPV) G4cout << " thePostPV: " << thePostPV->GetName() << G4endl; 192 << 157 } 193 G4MaterialPropertyVector* groupvel = nullp << 194 G4MaterialPropertiesTable* aMPT = fMateria << 195 if(aMPT != nullptr) << 196 { << 197 groupvel = aMPT->GetProperty(kGROUPVEL); << 198 } << 199 << 200 if(groupvel != nullptr) << 201 { << 202 aParticleChange.ProposeVelocity( << 203 groupvel->Value(fPhotonMomentum, idx_g << 204 } << 205 return G4VDiscreteProcess::PostStepDoIt(aT << 206 } << 207 else if (stepLength <= 10.*fCarTolerance && << 208 { // see bug 2510 << 209 ++fNumSmallStepWarnings; << 210 if(verboseLevel > 0) << 211 { << 212 G4ExceptionDescription ed; << 213 ed << "G4OpBoundaryProcess: " << 214 << "Opticalphoton step length: " << s << 215 << "This is larger than the threshold << 216 "to set status StepTooSmall." << G << 217 << "Boundary scattering may be incorr << 218 if(fNumSmallStepWarnings == 10) << 219 { << 220 ed << G4endl << "*** Step size warning << 221 } << 222 G4Exception("G4OpBoundaryProcess", "OpBo << 223 } << 224 } << 225 158 226 const G4DynamicParticle* aParticle = aTrack. << 159 if (pPostStepPoint->GetStepStatus() != fGeomBoundary){ >> 160 theStatus = NotAtBoundary; >> 161 if ( verboseLevel > 0) BoundaryProcessVerbose(); >> 162 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); >> 163 } >> 164 if (aTrack.GetStepLength()<=kCarTolerance/2){ >> 165 theStatus = StepTooSmall; >> 166 if ( verboseLevel > 0) BoundaryProcessVerbose(); >> 167 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); >> 168 } 227 169 228 fPhotonMomentum = aParticle->GetTotalMoment << 170 Material1 = pPreStepPoint -> GetMaterial(); 229 fOldMomentum = aParticle->GetMomentumDir << 171 Material2 = pPostStepPoint -> GetMaterial(); 230 fOldPolarization = aParticle->GetPolarizatio << 231 << 232 if(verboseLevel > 1) << 233 { << 234 G4cout << " Old Momentum Direction: " << f << 235 << " Old Polarization: " << f << 236 } << 237 172 238 G4ThreeVector theGlobalPoint = pStep->GetPos << 173 const G4DynamicParticle* aParticle = aTrack.GetDynamicParticle(); 239 G4bool valid; << 240 174 241 // ID of Navigator which limits step << 175 thePhotonMomentum = aParticle->GetTotalMomentum(); 242 G4int hNavId = G4ParallelWorldProcess::GetHy << 176 OldMomentum = aParticle->GetMomentumDirection(); 243 auto iNav = G4TransportationManager::GetT << 177 OldPolarization = aParticle->GetPolarization(); 244 ->GetActiveNavigatorsIterator( << 245 fGlobalNormal = (iNav[hNavId])->GetGlobalExi << 246 << 247 if(valid) << 248 { << 249 fGlobalNormal = -fGlobalNormal; << 250 } << 251 else << 252 { << 253 G4ExceptionDescription ed; << 254 ed << " G4OpBoundaryProcess/PostStepDoIt() << 255 << " The Navigator reports that it retu << 256 G4Exception( << 257 "G4OpBoundaryProcess::PostStepDoIt", "Op << 258 "Invalid Surface Normal - Geometry must << 259 } << 260 178 261 if(fOldMomentum * fGlobalNormal > 0.0) << 179 if ( verboseLevel > 0 ) { 262 { << 180 G4cout << " Old Momentum Direction: " << OldMomentum << G4endl; 263 #ifdef G4OPTICAL_DEBUG << 181 G4cout << " Old Polarization: " << OldPolarization << G4endl; 264 G4ExceptionDescription ed; << 182 } 265 ed << " G4OpBoundaryProcess/PostStepDoIt() << 266 "wrong direction. " << 267 << G4endl << 268 << " The momentum of the photon arriv << 269 << " must exit the volume cross in th << 270 << " So it MUST have dot < 0 with the << 271 "volume (globalNormal)." << 272 << G4endl << " >> The dot product of << 273 << fOldMomentum * fGlobalNormal << G4en << 274 << " Old Momentum (during step) << 275 << " Global Normal (Exiting New Vol << 276 << G4endl; << 277 G4Exception("G4OpBoundaryProcess::PostStep << 278 EventMustBeAborted, // Or Jus << 279 // repeat << 280 ed, << 281 "Invalid Surface Normal - Geom << 282 "normal pointing in the right << 283 #else << 284 fGlobalNormal = -fGlobalNormal; << 285 #endif << 286 } << 287 183 288 G4MaterialPropertyVector* rIndexMPV = nullpt << 184 G4ThreeVector theGlobalPoint = pPostStepPoint->GetPosition(); 289 G4MaterialPropertiesTable* MPT = fMaterial1- << 290 if(MPT != nullptr) << 291 { << 292 rIndexMPV = MPT->GetProperty(kRINDEX); << 293 } << 294 if(rIndexMPV != nullptr) << 295 { << 296 fRindex1 = rIndexMPV->Value(fPhotonMomentu << 297 } << 298 else << 299 { << 300 fStatus = NoRINDEX; << 301 if(verboseLevel > 1) << 302 BoundaryProcessVerbose(); << 303 aParticleChange.ProposeLocalEnergyDeposit( << 304 aParticleChange.ProposeTrackStatus(fStopAn << 305 return G4VDiscreteProcess::PostStepDoIt(aT << 306 } << 307 185 308 fReflectivity = 1.; << 186 G4Navigator* theNavigator = 309 fEfficiency = 0.; << 187 G4TransportationManager::GetTransportationManager()-> 310 fTransmittance = 0.; << 188 GetNavigatorForTracking(); 311 fSurfaceRoughness = 0.; << 312 fModel = glisur; << 313 fFinish = polished; << 314 G4SurfaceType type = dielectric_dielectric; << 315 << 316 rIndexMPV = nullptr; << 317 fOpticalSurface = nullptr; << 318 << 319 G4LogicalSurface* surface = << 320 G4LogicalBorderSurface::GetSurface(thePreP << 321 if(surface == nullptr) << 322 { << 323 if(thePostPV->GetMotherLogical() == thePre << 324 { << 325 surface = G4LogicalSkinSurface::GetSurfa << 326 if(surface == nullptr) << 327 { << 328 surface = << 329 G4LogicalSkinSurface::GetSurface(the << 330 } << 331 } << 332 else << 333 { << 334 surface = G4LogicalSkinSurface::GetSurfa << 335 if(surface == nullptr) << 336 { << 337 surface = << 338 G4LogicalSkinSurface::GetSurface(the << 339 } << 340 } << 341 } << 342 189 343 if(surface != nullptr) << 190 G4ThreeVector theLocalPoint = theNavigator-> 344 { << 191 GetGlobalToLocalTransform(). 345 fOpticalSurface = << 192 TransformPoint(theGlobalPoint); 346 dynamic_cast<G4OpticalSurface*>(surface- << 347 } << 348 if(fOpticalSurface != nullptr) << 349 { << 350 type = fOpticalSurface->GetType(); << 351 fModel = fOpticalSurface->GetModel(); << 352 fFinish = fOpticalSurface->GetFinish(); << 353 << 354 G4MaterialPropertiesTable* sMPT = << 355 fOpticalSurface->GetMaterialPropertiesTa << 356 if(sMPT != nullptr) << 357 { << 358 if(fFinish == polishedbackpainted || fFi << 359 { << 360 rIndexMPV = sMPT->GetProperty(kRINDEX) << 361 if(rIndexMPV != nullptr) << 362 { << 363 fRindex2 = rIndexMPV->Value(fPhotonM << 364 } << 365 else << 366 { << 367 fStatus = NoRINDEX; << 368 if(verboseLevel > 1) << 369 BoundaryProcessVerbose(); << 370 aParticleChange.ProposeLocalEnergyDe << 371 aParticleChange.ProposeTrackStatus(f << 372 return G4VDiscreteProcess::PostStepD << 373 } << 374 } << 375 193 376 fRealRIndexMPV = sMPT->GetProperty(kREAL << 194 G4ThreeVector theLocalNormal; // Normal points back into volume 377 fImagRIndexMPV = sMPT->GetProperty(kIMAG << 195 378 f_iTE = f_iTM = 1; << 196 G4bool valid; 379 << 197 theLocalNormal = theNavigator->GetLocalExitNormal(&valid); 380 G4MaterialPropertyVector* pp; << 198 381 if((pp = sMPT->GetProperty(kREFLECTIVITY << 199 if (valid) { 382 { << 200 theLocalNormal = -theLocalNormal; 383 fReflectivity = pp->Value(fPhotonMomen << 384 } << 385 else if(fRealRIndexMPV && fImagRIndexMPV << 386 { << 387 CalculateReflectivity(); << 388 } << 389 << 390 if((pp = sMPT->GetProperty(kEFFICIENCY)) << 391 { << 392 fEfficiency = pp->Value(fPhotonMomentu << 393 } << 394 if((pp = sMPT->GetProperty(kTRANSMITTANC << 395 { << 396 fTransmittance = pp->Value(fPhotonMome << 397 } << 398 if(sMPT->ConstPropertyExists(kSURFACEROU << 399 { << 400 fSurfaceRoughness = sMPT->GetConstProp << 401 } << 402 << 403 if(fModel == unified) << 404 { << 405 fProb_sl = (pp = sMPT->GetProperty(kSP << 406 ? pp->Value(fPhotonMoment << 407 : 0.; << 408 fProb_ss = (pp = sMPT->GetProperty(kSP << 409 ? pp->Value(fPhotonMoment << 410 : 0.; << 411 fProb_bs = (pp = sMPT->GetProperty(kBA << 412 ? pp->Value(fPhotonMoment << 413 : 0.; << 414 } << 415 } // end of if(sMPT) << 416 else if(fFinish == polishedbackpainted || << 417 { << 418 aParticleChange.ProposeLocalEnergyDeposi << 419 aParticleChange.ProposeTrackStatus(fStop << 420 return G4VDiscreteProcess::PostStepDoIt( << 421 } << 422 } // end of if(fOpticalSurface) << 423 << 424 // DIELECTRIC-DIELECTRIC << 425 if(type == dielectric_dielectric) << 426 { << 427 if(fFinish == polished || fFinish == groun << 428 { << 429 if(fMaterial1 == fMaterial2) << 430 { << 431 fStatus = SameMaterial; << 432 if(verboseLevel > 1) << 433 BoundaryProcessVerbose(); << 434 return G4VDiscreteProcess::PostStepDoI << 435 } << 436 MPT = fMaterial2->GetMaterialPrope << 437 rIndexMPV = nullptr; << 438 if(MPT != nullptr) << 439 { << 440 rIndexMPV = MPT->GetProperty(kRINDEX); << 441 } << 442 if(rIndexMPV != nullptr) << 443 { << 444 fRindex2 = rIndexMPV->Value(fPhotonMom << 445 } << 446 else << 447 { << 448 fStatus = NoRINDEX; << 449 if(verboseLevel > 1) << 450 BoundaryProcessVerbose(); << 451 aParticleChange.ProposeLocalEnergyDepo << 452 aParticleChange.ProposeTrackStatus(fSt << 453 return G4VDiscreteProcess::PostStepDoI << 454 } << 455 } << 456 if(fFinish == polishedbackpainted || fFini << 457 { << 458 DielectricDielectric(); << 459 } << 460 else << 461 { << 462 G4double rand = G4UniformRand(); << 463 if(rand > fReflectivity + fTransmittance << 464 { << 465 DoAbsorption(); << 466 } << 467 else if(rand > fReflectivity) << 468 { << 469 fStatus = Transmission; << 470 fNewMomentum = fOldMomentum; << 471 fNewPolarization = fOldPolarization; << 472 } << 473 else << 474 { << 475 if(fFinish == polishedfrontpainted) << 476 { << 477 DoReflection(); << 478 } << 479 else if(fFinish == groundfrontpainted) << 480 { << 481 fStatus = LambertianReflection; << 482 DoReflection(); << 483 } 201 } 484 else << 202 else { 485 { << 203 G4cerr << " G4OpBoundaryProcess/PostStepDoIt(): " 486 DielectricDielectric(); << 204 << " The Navigator reports that it returned an invalid normal" >> 205 << G4endl; >> 206 G4Exception("G4OpBoundaryProcess::PostStepDoIt", >> 207 "Invalid Surface Normal", >> 208 EventMustBeAborted, >> 209 "Geometry must return valid surface normal"); 487 } 210 } 488 } << 489 } << 490 } << 491 else if(type == dielectric_metal) << 492 { << 493 DielectricMetal(); << 494 } << 495 else if(type == dielectric_LUT) << 496 { << 497 DielectricLUT(); << 498 } << 499 else if(type == dielectric_LUTDAVIS) << 500 { << 501 DielectricLUTDAVIS(); << 502 } << 503 else if(type == dielectric_dichroic) << 504 { << 505 DielectricDichroic(); << 506 } << 507 else if(type == coated) << 508 { << 509 CoatedDielectricDielectric(); << 510 } << 511 else << 512 { << 513 if(fNumBdryTypeWarnings <= 10) << 514 { << 515 ++fNumBdryTypeWarnings; << 516 if(verboseLevel > 0) << 517 { << 518 G4ExceptionDescription ed; << 519 ed << " PostStepDoIt(): Illegal bounda << 520 if(fNumBdryTypeWarnings == 10) << 521 { << 522 ed << "** Boundary type warnings sto << 523 } << 524 G4Exception("G4OpBoundaryProcess", "Op << 525 } << 526 } << 527 return G4VDiscreteProcess::PostStepDoIt(aT << 528 } << 529 211 530 fNewMomentum = fNewMomentum.unit(); << 212 theGlobalNormal = theNavigator->GetLocalToGlobalTransform(). 531 fNewPolarization = fNewPolarization.unit(); << 213 TransformAxis(theLocalNormal); 532 214 533 if(verboseLevel > 1) << 215 if (OldMomentum * theGlobalNormal > 0.0) { 534 { << 216 #ifdef G4DEBUG_OPTICAL 535 G4cout << " New Momentum Direction: " << f << 217 G4cerr << " G4OpBoundaryProcess/PostStepDoIt(): " 536 << " New Polarization: " << f << 218 << " theGlobalNormal points the wrong direction " 537 BoundaryProcessVerbose(); << 219 << G4endl; 538 } << 220 #endif >> 221 theGlobalNormal = -theGlobalNormal; >> 222 } 539 223 540 aParticleChange.ProposeMomentumDirection(fNe << 224 G4MaterialPropertiesTable* aMaterialPropertiesTable; 541 aParticleChange.ProposePolarization(fNewPola << 225 G4MaterialPropertyVector* Rindex; 542 226 543 if(fStatus == FresnelRefraction || fStatus = << 227 aMaterialPropertiesTable = Material1->GetMaterialPropertiesTable(); 544 { << 228 if (aMaterialPropertiesTable) { 545 // not all surface types check that fMater << 229 Rindex = aMaterialPropertiesTable->GetProperty("RINDEX"); 546 G4MaterialPropertiesTable* aMPT = fMateria << 230 } 547 G4MaterialPropertyVector* groupvel = nullp << 231 else { 548 if(aMPT != nullptr) << 232 theStatus = NoRINDEX; 549 { << 233 if ( verboseLevel > 0) BoundaryProcessVerbose(); 550 groupvel = aMPT->GetProperty(kGROUPVEL); << 234 aParticleChange.ProposeTrackStatus(fStopAndKill); 551 } << 235 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); 552 if(groupvel != nullptr) << 236 } 553 { << 237 554 aParticleChange.ProposeVelocity( << 238 if (Rindex) { 555 groupvel->Value(fPhotonMomentum, idx_g << 239 Rindex1 = Rindex->GetProperty(thePhotonMomentum); 556 } << 240 } 557 } << 241 else { >> 242 theStatus = NoRINDEX; >> 243 if ( verboseLevel > 0) BoundaryProcessVerbose(); >> 244 aParticleChange.ProposeTrackStatus(fStopAndKill); >> 245 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); >> 246 } >> 247 >> 248 theReflectivity = 1.; >> 249 theEfficiency = 0.; >> 250 >> 251 theModel = glisur; >> 252 theFinish = polished; >> 253 >> 254 G4SurfaceType type = dielectric_dielectric; >> 255 >> 256 Rindex = NULL; >> 257 OpticalSurface = NULL; >> 258 >> 259 G4LogicalSurface* Surface = NULL; >> 260 >> 261 Surface = G4LogicalBorderSurface::GetSurface >> 262 (pPreStepPoint ->GetPhysicalVolume(), >> 263 pPostStepPoint->GetPhysicalVolume()); >> 264 >> 265 if (Surface == NULL){ >> 266 G4bool enteredDaughter=(pPostStepPoint->GetPhysicalVolume() >> 267 ->GetMotherLogical() == >> 268 pPreStepPoint->GetPhysicalVolume() >> 269 ->GetLogicalVolume()); >> 270 if(enteredDaughter){ >> 271 Surface = G4LogicalSkinSurface::GetSurface >> 272 (pPostStepPoint->GetPhysicalVolume()-> >> 273 GetLogicalVolume()); >> 274 if(Surface == NULL) >> 275 Surface = G4LogicalSkinSurface::GetSurface >> 276 (pPreStepPoint->GetPhysicalVolume()-> >> 277 GetLogicalVolume()); >> 278 } >> 279 else { >> 280 Surface = G4LogicalSkinSurface::GetSurface >> 281 (pPreStepPoint->GetPhysicalVolume()-> >> 282 GetLogicalVolume()); >> 283 if(Surface == NULL) >> 284 Surface = G4LogicalSkinSurface::GetSurface >> 285 (pPostStepPoint->GetPhysicalVolume()-> >> 286 GetLogicalVolume()); >> 287 } >> 288 } >> 289 >> 290 if (Surface) OpticalSurface = >> 291 dynamic_cast <G4OpticalSurface*> (Surface->GetSurfaceProperty()); >> 292 >> 293 if (OpticalSurface) { >> 294 >> 295 type = OpticalSurface->GetType(); >> 296 theModel = OpticalSurface->GetModel(); >> 297 theFinish = OpticalSurface->GetFinish(); >> 298 >> 299 aMaterialPropertiesTable = OpticalSurface-> >> 300 GetMaterialPropertiesTable(); >> 301 >> 302 if (aMaterialPropertiesTable) { >> 303 >> 304 if (theFinish == polishedbackpainted || >> 305 theFinish == groundbackpainted ) { >> 306 Rindex = aMaterialPropertiesTable->GetProperty("RINDEX"); >> 307 if (Rindex) { >> 308 Rindex2 = Rindex->GetProperty(thePhotonMomentum); >> 309 } >> 310 else { >> 311 theStatus = NoRINDEX; >> 312 if ( verboseLevel > 0) BoundaryProcessVerbose(); >> 313 aParticleChange.ProposeTrackStatus(fStopAndKill); >> 314 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); >> 315 } >> 316 } >> 317 >> 318 PropertyPointer = >> 319 aMaterialPropertiesTable->GetProperty("REFLECTIVITY"); >> 320 PropertyPointer1 = >> 321 aMaterialPropertiesTable->GetProperty("REALRINDEX"); >> 322 PropertyPointer2 = >> 323 aMaterialPropertiesTable->GetProperty("IMAGINARYRINDEX"); >> 324 >> 325 iTE = 1; >> 326 iTM = 1; >> 327 >> 328 if (PropertyPointer) { >> 329 >> 330 theReflectivity = >> 331 PropertyPointer->GetProperty(thePhotonMomentum); >> 332 >> 333 } else if (PropertyPointer1 && PropertyPointer2) { >> 334 >> 335 CalculateReflectivity(); >> 336 >> 337 } >> 338 >> 339 PropertyPointer = >> 340 aMaterialPropertiesTable->GetProperty("EFFICIENCY"); >> 341 if (PropertyPointer) { >> 342 theEfficiency = >> 343 PropertyPointer->GetProperty(thePhotonMomentum); >> 344 } >> 345 >> 346 if ( theModel == unified ) { >> 347 PropertyPointer = >> 348 aMaterialPropertiesTable->GetProperty("SPECULARLOBECONSTANT"); >> 349 if (PropertyPointer) { >> 350 prob_sl = >> 351 PropertyPointer->GetProperty(thePhotonMomentum); >> 352 } else { >> 353 prob_sl = 0.0; >> 354 } >> 355 >> 356 PropertyPointer = >> 357 aMaterialPropertiesTable->GetProperty("SPECULARSPIKECONSTANT"); >> 358 if (PropertyPointer) { >> 359 prob_ss = >> 360 PropertyPointer->GetProperty(thePhotonMomentum); >> 361 } else { >> 362 prob_ss = 0.0; >> 363 } >> 364 >> 365 PropertyPointer = >> 366 aMaterialPropertiesTable->GetProperty("BACKSCATTERCONSTANT"); >> 367 if (PropertyPointer) { >> 368 prob_bs = >> 369 PropertyPointer->GetProperty(thePhotonMomentum); >> 370 } else { >> 371 prob_bs = 0.0; >> 372 } >> 373 } >> 374 } >> 375 else if (theFinish == polishedbackpainted || >> 376 theFinish == groundbackpainted ) { >> 377 aParticleChange.ProposeTrackStatus(fStopAndKill); >> 378 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); >> 379 } >> 380 } >> 381 >> 382 if (type == dielectric_dielectric ) { >> 383 if (theFinish == polished || theFinish == ground ) { >> 384 >> 385 if (Material1 == Material2){ >> 386 theStatus = SameMaterial; >> 387 if ( verboseLevel > 0) BoundaryProcessVerbose(); >> 388 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); >> 389 } >> 390 aMaterialPropertiesTable = >> 391 Material2->GetMaterialPropertiesTable(); >> 392 if (aMaterialPropertiesTable) >> 393 Rindex = aMaterialPropertiesTable->GetProperty("RINDEX"); >> 394 if (Rindex) { >> 395 Rindex2 = Rindex->GetProperty(thePhotonMomentum); >> 396 } >> 397 else { >> 398 theStatus = NoRINDEX; >> 399 if ( verboseLevel > 0) BoundaryProcessVerbose(); >> 400 aParticleChange.ProposeTrackStatus(fStopAndKill); >> 401 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); >> 402 } >> 403 } >> 404 } >> 405 >> 406 if (type == dielectric_metal) { >> 407 >> 408 DielectricMetal(); >> 409 >> 410 // Uncomment the following lines if you wish to have >> 411 // Transmission instead of Absorption >> 412 // if (theStatus == Absorption) { >> 413 // return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); >> 414 // } >> 415 >> 416 } >> 417 else if (type == dielectric_LUT) { >> 418 >> 419 DielectricLUT(); >> 420 >> 421 } >> 422 else if (type == dielectric_dielectric) { >> 423 >> 424 if ( theFinish == polishedfrontpainted || >> 425 theFinish == groundfrontpainted ) { >> 426 if( !G4BooleanRand(theReflectivity) ) { >> 427 DoAbsorption(); >> 428 } >> 429 else { >> 430 if ( theFinish == groundfrontpainted ) >> 431 theStatus = LambertianReflection; >> 432 DoReflection(); >> 433 } >> 434 } >> 435 else { >> 436 if( !G4BooleanRand(theReflectivity) ) { >> 437 DoAbsorption(); >> 438 } >> 439 else { >> 440 DielectricDielectric(); >> 441 } >> 442 } >> 443 } >> 444 else { >> 445 >> 446 G4cerr << " Error: G4BoundaryProcess: illegal boundary type " << G4endl; >> 447 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); >> 448 >> 449 } >> 450 >> 451 NewMomentum = NewMomentum.unit(); >> 452 NewPolarization = NewPolarization.unit(); >> 453 >> 454 if ( verboseLevel > 0) { >> 455 G4cout << " New Momentum Direction: " << NewMomentum << G4endl; >> 456 G4cout << " New Polarization: " << NewPolarization << G4endl; >> 457 BoundaryProcessVerbose(); >> 458 } 558 459 559 if(fStatus == Detection && fInvokeSD) << 460 aParticleChange.ProposeMomentumDirection(NewMomentum); 560 InvokeSD(pStep); << 461 aParticleChange.ProposePolarization(NewPolarization); 561 return G4VDiscreteProcess::PostStepDoIt(aTra << 462 >> 463 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); 562 } 464 } 563 465 564 //....oooOO0OOooo........oooOO0OOooo........oo << 565 void G4OpBoundaryProcess::BoundaryProcessVerbo 466 void G4OpBoundaryProcess::BoundaryProcessVerbose() const 566 { 467 { 567 G4cout << " *** "; << 468 if ( theStatus == Undefined ) 568 if(fStatus == Undefined) << 469 G4cout << " *** Undefined *** " << G4endl; 569 G4cout << "Undefined"; << 470 if ( theStatus == FresnelRefraction ) 570 else if(fStatus == Transmission) << 471 G4cout << " *** FresnelRefraction *** " << G4endl; 571 G4cout << "Transmission"; << 472 if ( theStatus == FresnelReflection ) 572 else if(fStatus == FresnelRefraction) << 473 G4cout << " *** FresnelReflection *** " << G4endl; 573 G4cout << "FresnelRefraction"; << 474 if ( theStatus == TotalInternalReflection ) 574 else if(fStatus == FresnelReflection) << 475 G4cout << " *** TotalInternalReflection *** " << G4endl; 575 G4cout << "FresnelReflection"; << 476 if ( theStatus == LambertianReflection ) 576 else if(fStatus == TotalInternalReflection) << 477 G4cout << " *** LambertianReflection *** " << G4endl; 577 G4cout << "TotalInternalReflection"; << 478 if ( theStatus == LobeReflection ) 578 else if(fStatus == LambertianReflection) << 479 G4cout << " *** LobeReflection *** " << G4endl; 579 G4cout << "LambertianReflection"; << 480 if ( theStatus == SpikeReflection ) 580 else if(fStatus == LobeReflection) << 481 G4cout << " *** SpikeReflection *** " << G4endl; 581 G4cout << "LobeReflection"; << 482 if ( theStatus == BackScattering ) 582 else if(fStatus == SpikeReflection) << 483 G4cout << " *** BackScattering *** " << G4endl; 583 G4cout << "SpikeReflection"; << 484 if ( theStatus == PolishedLumirrorAirReflection ) 584 else if(fStatus == BackScattering) << 485 G4cout << " *** PolishedLumirrorAirReflection *** " << G4endl; 585 G4cout << "BackScattering"; << 486 if ( theStatus == PolishedLumirrorGlueReflection ) 586 else if(fStatus == PolishedLumirrorAirReflec << 487 G4cout << " *** PolishedLumirrorGlueReflection *** " << G4endl; 587 G4cout << "PolishedLumirrorAirReflection"; << 488 if ( theStatus == PolishedAirReflection ) 588 else if(fStatus == PolishedLumirrorGlueRefle << 489 G4cout << " *** PolishedAirReflection *** " << G4endl; 589 G4cout << "PolishedLumirrorGlueReflection" << 490 if ( theStatus == PolishedTeflonAirReflection ) 590 else if(fStatus == PolishedAirReflection) << 491 G4cout << " *** PolishedTeflonAirReflection *** " << G4endl; 591 G4cout << "PolishedAirReflection"; << 492 if ( theStatus == PolishedTiOAirReflection ) 592 else if(fStatus == PolishedTeflonAirReflecti << 493 G4cout << " *** PolishedTiOAirReflection *** " << G4endl; 593 G4cout << "PolishedTeflonAirReflection"; << 494 if ( theStatus == PolishedTyvekAirReflection ) 594 else if(fStatus == PolishedTiOAirReflection) << 495 G4cout << " *** PolishedTyvekAirReflection *** " << G4endl; 595 G4cout << "PolishedTiOAirReflection"; << 496 if ( theStatus == PolishedVM2000AirReflection ) 596 else if(fStatus == PolishedTyvekAirReflectio << 497 G4cout << " *** PolishedVM2000AirReflection *** " << G4endl; 597 G4cout << "PolishedTyvekAirReflection"; << 498 if ( theStatus == PolishedVM2000GlueReflection ) 598 else if(fStatus == PolishedVM2000AirReflecti << 499 G4cout << " *** PolishedVM2000GlueReflection *** " << G4endl; 599 G4cout << "PolishedVM2000AirReflection"; << 500 if ( theStatus == EtchedLumirrorAirReflection ) 600 else if(fStatus == PolishedVM2000GlueReflect << 501 G4cout << " *** EtchedLumirrorAirReflection *** " << G4endl; 601 G4cout << "PolishedVM2000GlueReflection"; << 502 if ( theStatus == EtchedLumirrorGlueReflection ) 602 else if(fStatus == EtchedLumirrorAirReflecti << 503 G4cout << " *** EtchedLumirrorGlueReflection *** " << G4endl; 603 G4cout << "EtchedLumirrorAirReflection"; << 504 if ( theStatus == EtchedAirReflection ) 604 else if(fStatus == EtchedLumirrorGlueReflect << 505 G4cout << " *** EtchedAirReflection *** " << G4endl; 605 G4cout << "EtchedLumirrorGlueReflection"; << 506 if ( theStatus == EtchedTeflonAirReflection ) 606 else if(fStatus == EtchedAirReflection) << 507 G4cout << " *** EtchedTeflonAirReflection *** " << G4endl; 607 G4cout << "EtchedAirReflection"; << 508 if ( theStatus == EtchedTiOAirReflection ) 608 else if(fStatus == EtchedTeflonAirReflection << 509 G4cout << " *** EtchedTiOAirReflection *** " << G4endl; 609 G4cout << "EtchedTeflonAirReflection"; << 510 if ( theStatus == EtchedTyvekAirReflection ) 610 else if(fStatus == EtchedTiOAirReflection) << 511 G4cout << " *** EtchedTyvekAirReflection *** " << G4endl; 611 G4cout << "EtchedTiOAirReflection"; << 512 if ( theStatus == EtchedVM2000AirReflection ) 612 else if(fStatus == EtchedTyvekAirReflection) << 513 G4cout << " *** EtchedVM2000AirReflection *** " << G4endl; 613 G4cout << "EtchedTyvekAirReflection"; << 514 if ( theStatus == EtchedVM2000GlueReflection ) 614 else if(fStatus == EtchedVM2000AirReflection << 515 G4cout << " *** EtchedVM2000GlueReflection *** " << G4endl; 615 G4cout << "EtchedVM2000AirReflection"; << 516 if ( theStatus == GroundLumirrorAirReflection ) 616 else if(fStatus == EtchedVM2000GlueReflectio << 517 G4cout << " *** GroundLumirrorAirReflection *** " << G4endl; 617 G4cout << "EtchedVM2000GlueReflection"; << 518 if ( theStatus == GroundLumirrorGlueReflection ) 618 else if(fStatus == GroundLumirrorAirReflecti << 519 G4cout << " *** GroundLumirrorGlueReflection *** " << G4endl; 619 G4cout << "GroundLumirrorAirReflection"; << 520 if ( theStatus == GroundAirReflection ) 620 else if(fStatus == GroundLumirrorGlueReflect << 521 G4cout << " *** GroundAirReflection *** " << G4endl; 621 G4cout << "GroundLumirrorGlueReflection"; << 522 if ( theStatus == GroundTeflonAirReflection ) 622 else if(fStatus == GroundAirReflection) << 523 G4cout << " *** GroundTeflonAirReflection *** " << G4endl; 623 G4cout << "GroundAirReflection"; << 524 if ( theStatus == GroundTiOAirReflection ) 624 else if(fStatus == GroundTeflonAirReflection << 525 G4cout << " *** GroundTiOAirReflection *** " << G4endl; 625 G4cout << "GroundTeflonAirReflection"; << 526 if ( theStatus == GroundTyvekAirReflection ) 626 else if(fStatus == GroundTiOAirReflection) << 527 G4cout << " *** GroundTyvekAirReflection *** " << G4endl; 627 G4cout << "GroundTiOAirReflection"; << 528 if ( theStatus == GroundVM2000AirReflection ) 628 else if(fStatus == GroundTyvekAirReflection) << 529 G4cout << " *** GroundVM2000AirReflection *** " << G4endl; 629 G4cout << "GroundTyvekAirReflection"; << 530 if ( theStatus == GroundVM2000GlueReflection ) 630 else if(fStatus == GroundVM2000AirReflection << 531 G4cout << " *** GroundVM2000GlueReflection *** " << G4endl; 631 G4cout << "GroundVM2000AirReflection"; << 532 if ( theStatus == Absorption ) 632 else if(fStatus == GroundVM2000GlueReflectio << 533 G4cout << " *** Absorption *** " << G4endl; 633 G4cout << "GroundVM2000GlueReflection"; << 534 if ( theStatus == Detection ) 634 else if(fStatus == Absorption) << 535 G4cout << " *** Detection *** " << G4endl; 635 G4cout << "Absorption"; << 536 if ( theStatus == NotAtBoundary ) 636 else if(fStatus == Detection) << 537 G4cout << " *** NotAtBoundary *** " << G4endl; 637 G4cout << "Detection"; << 538 if ( theStatus == SameMaterial ) 638 else if(fStatus == NotAtBoundary) << 539 G4cout << " *** SameMaterial *** " << G4endl; 639 G4cout << "NotAtBoundary"; << 540 if ( theStatus == StepTooSmall ) 640 else if(fStatus == SameMaterial) << 541 G4cout << " *** StepTooSmall *** " << G4endl; 641 G4cout << "SameMaterial"; << 542 if ( theStatus == NoRINDEX ) 642 else if(fStatus == StepTooSmall) << 543 G4cout << " *** NoRINDEX *** " << G4endl; 643 G4cout << "StepTooSmall"; << 644 else if(fStatus == NoRINDEX) << 645 G4cout << "NoRINDEX"; << 646 else if(fStatus == Dichroic) << 647 G4cout << "Dichroic Transmission"; << 648 else if(fStatus == CoatedDielectricReflectio << 649 G4cout << "Coated Dielectric Reflection"; << 650 else if(fStatus == CoatedDielectricRefractio << 651 G4cout << "Coated Dielectric Refraction"; << 652 else if(fStatus == CoatedDielectricFrustrate << 653 G4cout << "Coated Dielectric Frustrated Tr << 654 << 655 G4cout << " ***" << G4endl; << 656 } 544 } 657 545 658 //....oooOO0OOooo........oooOO0OOooo........oo << 546 G4ThreeVector 659 G4ThreeVector G4OpBoundaryProcess::GetFacetNor << 547 G4OpBoundaryProcess::GetFacetNormal(const G4ThreeVector& Momentum, 660 const G4ThreeVector& momentum, const G4Three << 548 const G4ThreeVector& Normal ) const 661 { 549 { 662 G4ThreeVector facetNormal; << 550 G4ThreeVector FacetNormal; 663 if(fModel == unified || fModel == LUT || fMo << 551 664 { << 552 if (theModel == unified || theModel == LUT) { 665 /* This function codes alpha to a random v << 553 666 distribution p(alpha) = g(alpha; 0, sigma_ << 554 /* This function code alpha to a random value taken from the 667 for alpha > 0 and alpha < 90, where g(alph << 555 distribution p(alpha) = g(alpha; 0, sigma_alpha)*std::sin(alpha), 668 gaussian distribution with mean 0 and stan << 556 for alpha > 0 and alpha < 90, where g(alpha; 0, sigma_alpha) 669 << 557 is a gaussian distribution with mean 0 and standard deviation 670 G4double sigma_alpha = 0.0; << 558 sigma_alpha. */ 671 if(fOpticalSurface) << 559 672 sigma_alpha = fOpticalSurface->GetSigmaA << 560 G4double alpha; 673 if(sigma_alpha == 0.0) << 561 674 { << 562 G4double sigma_alpha = 0.0; 675 return normal; << 563 if (OpticalSurface) sigma_alpha = OpticalSurface->GetSigmaAlpha(); 676 } << 564 677 << 565 G4double f_max = std::min(1.0,4.*sigma_alpha); 678 G4double f_max = std::min(1.0, 4. * sigma_ << 566 679 G4double alpha, phi, sinAlpha; << 567 do { 680 << 568 do { 681 do << 569 alpha = G4RandGauss::shoot(0.0,sigma_alpha); 682 { // Loop checking, 13-Aug-2015, Peter Gu << 570 } while (G4UniformRand()*f_max > std::sin(alpha) || alpha >= halfpi ); 683 do << 571 684 { // Loop checking, 13-Aug-2015, Peter << 572 G4double phi = G4UniformRand()*twopi; 685 alpha = G4RandGauss::shoot(0.0, sig << 573 686 sinAlpha = std::sin(alpha); << 574 G4double SinAlpha = std::sin(alpha); 687 } while(G4UniformRand() * f_max > sinAlp << 575 G4double CosAlpha = std::cos(alpha); 688 << 576 G4double SinPhi = std::sin(phi); 689 phi = G4UniformRand() * twopi; << 577 G4double CosPhi = std::cos(phi); 690 facetNormal.set(sinAlpha * std::cos(phi) << 578 691 std::cos(alpha)); << 579 G4double unit_x = SinAlpha * CosPhi; 692 facetNormal.rotateUz(normal); << 580 G4double unit_y = SinAlpha * SinPhi; 693 } while(momentum * facetNormal >= 0.0); << 581 G4double unit_z = CosAlpha; 694 } << 582 695 else << 583 FacetNormal.setX(unit_x); 696 { << 584 FacetNormal.setY(unit_y); 697 G4double polish = 1.0; << 585 FacetNormal.setZ(unit_z); 698 if(fOpticalSurface) << 586 699 polish = fOpticalSurface->GetPolish(); << 587 G4ThreeVector tmpNormal = Normal; 700 if(polish < 1.0) << 588 701 { << 589 FacetNormal.rotateUz(tmpNormal); 702 do << 590 } while (Momentum * FacetNormal >= 0.0); 703 { // Loop checking, 13-Aug-2015, Peter << 591 } 704 G4ThreeVector smear; << 592 else { 705 do << 593 706 { // Loop checking, 13-Aug-2015, Pete << 594 G4double polish = 1.0; 707 smear.setX(2. * G4UniformRand() - 1. << 595 if (OpticalSurface) polish = OpticalSurface->GetPolish(); 708 smear.setY(2. * G4UniformRand() - 1. << 596 709 smear.setZ(2. * G4UniformRand() - 1. << 597 if (polish < 1.0) { 710 } while(smear.mag2() > 1.0); << 598 do { 711 facetNormal = normal + (1. - polish) * << 599 G4ThreeVector smear; 712 } while(momentum * facetNormal >= 0.0); << 600 do { 713 facetNormal = facetNormal.unit(); << 601 smear.setX(2.*G4UniformRand()-1.0); 714 } << 602 smear.setY(2.*G4UniformRand()-1.0); 715 else << 603 smear.setZ(2.*G4UniformRand()-1.0); 716 { << 604 } while (smear.mag()>1.0); 717 facetNormal = normal; << 605 smear = (1.-polish) * smear; 718 } << 606 FacetNormal = Normal + smear; 719 } << 607 } while (Momentum * FacetNormal >= 0.0); 720 return facetNormal; << 608 FacetNormal = FacetNormal.unit(); >> 609 } >> 610 else { >> 611 FacetNormal = Normal; >> 612 } >> 613 } >> 614 return FacetNormal; 721 } 615 } 722 616 723 //....oooOO0OOooo........oooOO0OOooo........oo << 724 void G4OpBoundaryProcess::DielectricMetal() 617 void G4OpBoundaryProcess::DielectricMetal() 725 { 618 { 726 G4int n = 0; << 619 G4int n = 0; 727 G4double rand; << 728 G4ThreeVector A_trans; << 729 << 730 do << 731 { << 732 ++n; << 733 rand = G4UniformRand(); << 734 if(rand > fReflectivity && n == 1) << 735 { << 736 if(rand > fReflectivity + fTransmittance << 737 { << 738 DoAbsorption(); << 739 } << 740 else << 741 { << 742 fStatus = Transmission; << 743 fNewMomentum = fOldMomentum; << 744 fNewPolarization = fOldPolarization; << 745 } << 746 break; << 747 } << 748 else << 749 { << 750 if(fRealRIndexMPV && fImagRIndexMPV) << 751 { << 752 if(n > 1) << 753 { << 754 CalculateReflectivity(); << 755 if(!G4BooleanRand(fReflectivity)) << 756 { << 757 DoAbsorption(); << 758 break; << 759 } << 760 } << 761 } << 762 if(fModel == glisur || fFinish == polish << 763 { << 764 DoReflection(); << 765 } << 766 else << 767 { << 768 if(n == 1) << 769 ChooseReflection(); << 770 if(fStatus == LambertianReflection) << 771 { << 772 DoReflection(); << 773 } << 774 else if(fStatus == BackScattering) << 775 { << 776 fNewMomentum = -fOldMomentum; << 777 fNewPolarization = -fOldPolarization << 778 } << 779 else << 780 { << 781 if(fStatus == LobeReflection) << 782 { << 783 if(!fRealRIndexMPV || !fImagRIndex << 784 { << 785 fFacetNormal = GetFacetNormal(fO << 786 } << 787 // else << 788 // case of complex rindex needs t << 789 } << 790 fNewMomentum = << 791 fOldMomentum - 2. * fOldMomentum * << 792 << 793 if(f_iTE > 0 && f_iTM > 0) << 794 { << 795 fNewPolarization = << 796 -fOldPolarization + << 797 (2. * fOldPolarization * fFacetN << 798 } << 799 else if(f_iTE > 0) << 800 { << 801 A_trans = (fSint1 > 0.0) ? fOldMom << 802 : fOldPol << 803 fNewPolarization = -A_trans; << 804 } << 805 else if(f_iTM > 0) << 806 { << 807 fNewPolarization = << 808 -fNewMomentum.cross(A_trans).uni << 809 } << 810 } << 811 } << 812 fOldMomentum = fNewMomentum; << 813 fOldPolarization = fNewPolarization; << 814 } << 815 // Loop checking, 13-Aug-2015, Peter Gumpl << 816 } while(fNewMomentum * fGlobalNormal < 0.0); << 817 } << 818 620 819 //....oooOO0OOooo........oooOO0OOooo........oo << 621 do { 820 void G4OpBoundaryProcess::DielectricLUT() << 821 { << 822 G4int thetaIndex, phiIndex; << 823 G4double angularDistVal, thetaRad, phiRad; << 824 G4ThreeVector perpVectorTheta, perpVectorPhi << 825 << 826 fStatus = G4OpBoundaryProcessStatus( << 827 G4int(fFinish) + (G4int(NoRINDEX) - G4int( << 828 << 829 G4int thetaIndexMax = fOpticalSurface->GetTh << 830 G4int phiIndexMax = fOpticalSurface->GetPh << 831 << 832 G4double rand; << 833 << 834 do << 835 { << 836 rand = G4UniformRand(); << 837 if(rand > fReflectivity) << 838 { << 839 if(rand > fReflectivity + fTransmittance << 840 { << 841 DoAbsorption(); << 842 } << 843 else << 844 { << 845 fStatus = Transmission; << 846 fNewMomentum = fOldMomentum; << 847 fNewPolarization = fOldPolarization; << 848 } << 849 break; << 850 } << 851 else << 852 { << 853 // Calculate Angle between Normal and Ph << 854 G4double anglePhotonToNormal = fOldMomen << 855 // Round to closest integer: LBNL model << 856 G4int angleIncident = (G4int)std::lrint( << 857 << 858 // Take random angles THETA and PHI, << 859 // and see if below Probability - if not << 860 do << 861 { << 862 thetaIndex = (G4int)G4RandFlat::shootI << 863 phiIndex = (G4int)G4RandFlat::shootI << 864 // Find probability with the new indec << 865 angularDistVal = fOpticalSurface->GetA << 866 angleIncident, thetaIndex, phiIndex) << 867 // Loop checking, 13-Aug-2015, Peter G << 868 } while(!G4BooleanRand(angularDistVal)); << 869 << 870 thetaRad = G4double(-90 + 4 * thetaIndex << 871 phiRad = G4double(-90 + 5 * phiIndex) << 872 // Rotate Photon Momentum in Theta, then << 873 fNewMomentum = -fOldMomentum; << 874 << 875 perpVectorTheta = fNewMomentum.cross(fGl << 876 if(perpVectorTheta.mag() < fCarTolerance << 877 { << 878 perpVectorTheta = fNewMomentum.orthogo << 879 } << 880 fNewMomentum = << 881 fNewMomentum.rotate(anglePhotonToNorma << 882 perpVectorPhi = perpVectorTheta.cross(fN << 883 fNewMomentum = fNewMomentum.rotate(-phi << 884 << 885 // Rotate Polarization too: << 886 fFacetNormal = (fNewMomentum - fOldM << 887 fNewPolarization = -fOldPolarization + << 888 (2. * fOldPolarizatio << 889 } << 890 // Loop checking, 13-Aug-2015, Peter Gumpl << 891 } while(fNewMomentum * fGlobalNormal <= 0.0) << 892 } << 893 622 894 //....oooOO0OOooo........oooOO0OOooo........oo << 623 n++; 895 void G4OpBoundaryProcess::DielectricLUTDAVIS() << 896 { << 897 G4int angindex, random, angleIncident; << 898 G4double reflectivityValue, elevation, azimu << 899 G4double anglePhotonToNormal; << 900 << 901 G4int lutbin = fOpticalSurface->GetLUTbins( << 902 G4double rand = G4UniformRand(); << 903 << 904 G4double sinEl; << 905 G4ThreeVector u, vNorm, w; << 906 << 907 do << 908 { << 909 anglePhotonToNormal = fOldMomentum.angle(- << 910 << 911 // Davis model has 90 reflection bins: rou << 912 // don't allow angleIncident to be 90 for << 913 angleIncident = std::min( << 914 static_cast<G4int>(std::floor(anglePhoto << 915 reflectivityValue = fOpticalSurface->GetRe << 916 << 917 if(rand > reflectivityValue) << 918 { << 919 if(fEfficiency > 0.) << 920 { << 921 DoAbsorption(); << 922 break; << 923 } << 924 else << 925 { << 926 fStatus = Transmission; << 927 << 928 if(angleIncident <= 0.01) << 929 { << 930 fNewMomentum = fOldMomentum; << 931 break; << 932 } << 933 624 934 do << 625 if( !G4BooleanRand(theReflectivity) && n == 1 ) { 935 { << 936 random = (G4int)G4RandFlat::shootInt << 937 angindex = << 938 (((random * 2) - 1)) + angleIncide << 939 << 940 azimuth = << 941 fOpticalSurface->GetAngularDistrib << 942 elevation = fOpticalSurface->GetAngu << 943 } while(elevation == 0. && azimuth == << 944 << 945 sinEl = std::sin(elevation); << 946 vNorm = (fGlobalNormal.cross(fOldMomen << 947 u = vNorm.cross(fGlobalNormal) * ( << 948 vNorm *= (sinEl * std::sin(azimuth)); << 949 // fGlobalNormal shouldn't be modified << 950 w = (fGlobalNormal *= std:: << 951 fNewMomentum = u + vNorm + w; << 952 << 953 // Rotate Polarization too: << 954 fFacetNormal = (fNewMomentum - fOl << 955 fNewPolarization = -fOldPolarization + << 956 << 957 } << 958 } << 959 else << 960 { << 961 fStatus = LobeReflection; << 962 << 963 if(angleIncident == 0) << 964 { << 965 fNewMomentum = -fOldMomentum; << 966 break; << 967 } << 968 << 969 do << 970 { << 971 random = (G4int)G4RandFlat::shootInt << 972 angindex = (((random * 2) - 1)) + (ang << 973 << 974 azimuth = fOpticalSurface->GetAngularD << 975 elevation = fOpticalSurface->GetAngula << 976 } while(elevation == 0. && azimuth == 0. << 977 << 978 sinEl = std::sin(elevation); << 979 vNorm = (fGlobalNormal.cross(fOldMomentu << 980 u = vNorm.cross(fGlobalNormal) * (si << 981 vNorm *= (sinEl * std::sin(azimuth)); << 982 // fGlobalNormal shouldn't be modified h << 983 w = (fGlobalNormal *= std::cos(elevation << 984 << 985 fNewMomentum = u + vNorm + w; << 986 << 987 // Rotate Polarization too: (needs revis << 988 fNewPolarization = fOldPolarization; << 989 } << 990 } while(fNewMomentum * fGlobalNormal <= 0.0) << 991 } << 992 626 993 //....oooOO0OOooo........oooOO0OOooo........oo << 627 // Comment out DoAbsorption and uncomment theStatus = Absorption; 994 void G4OpBoundaryProcess::DielectricDichroic() << 628 // if you wish to have Transmission instead of Absorption 995 { << 629 996 // Calculate Angle between Normal and Photon << 630 DoAbsorption(); 997 G4double anglePhotonToNormal = fOldMomentum. << 631 // theStatus = Absorption; >> 632 break; >> 633 >> 634 } >> 635 else { >> 636 >> 637 if (PropertyPointer1 && PropertyPointer2) { >> 638 if ( n > 1 ) { >> 639 CalculateReflectivity(); >> 640 if ( !G4BooleanRand(theReflectivity) ) { >> 641 DoAbsorption(); >> 642 break; >> 643 } >> 644 } >> 645 } >> 646 >> 647 if ( theModel == glisur || theFinish == polished ) { >> 648 >> 649 DoReflection(); >> 650 >> 651 } else { >> 652 >> 653 if ( n == 1 ) ChooseReflection(); >> 654 >> 655 if ( theStatus == LambertianReflection ) { >> 656 DoReflection(); >> 657 } >> 658 else if ( theStatus == BackScattering ) { >> 659 NewMomentum = -OldMomentum; >> 660 NewPolarization = -OldPolarization; >> 661 } >> 662 else { >> 663 >> 664 if(theStatus==LobeReflection){ >> 665 if ( PropertyPointer1 && PropertyPointer2 ){ >> 666 } else { >> 667 theFacetNormal = >> 668 GetFacetNormal(OldMomentum,theGlobalNormal); >> 669 } >> 670 } >> 671 >> 672 G4double PdotN = OldMomentum * theFacetNormal; >> 673 NewMomentum = OldMomentum - (2.*PdotN)*theFacetNormal; >> 674 G4double EdotN = OldPolarization * theFacetNormal; >> 675 >> 676 G4ThreeVector A_trans, A_paral; >> 677 >> 678 if (sint1 > 0.0 ) { >> 679 A_trans = OldMomentum.cross(theFacetNormal); >> 680 A_trans = A_trans.unit(); >> 681 } else { >> 682 A_trans = OldPolarization; >> 683 } >> 684 A_paral = NewMomentum.cross(A_trans); >> 685 A_paral = A_paral.unit(); >> 686 >> 687 if(iTE>0&&iTM>0) { >> 688 NewPolarization = >> 689 -OldPolarization + (2.*EdotN)*theFacetNormal; >> 690 } else if (iTE>0) { >> 691 NewPolarization = -A_trans; >> 692 } else if (iTM>0) { >> 693 NewPolarization = -A_paral; >> 694 } >> 695 >> 696 } 998 697 999 // Round it to closest integer << 698 } 1000 G4double angleIncident = std::floor(180. / << 1001 699 1002 if(!fDichroicVector) << 700 OldMomentum = NewMomentum; 1003 { << 701 OldPolarization = NewPolarization; 1004 if(fOpticalSurface) << 1005 fDichroicVector = fOpticalSurface->GetD << 1006 } << 1007 702 1008 if(fDichroicVector) << 703 } 1009 { << 1010 G4double wavelength = h_Planck * c_light << 1011 fTransmittance = fDichroicVector->Va << 1012 i << 1013 perCent; << 1014 // G4cout << "wavelength: " << std::flo << 1015 // << "nm" << << 1016 // G4cout << "Incident angle: " << angl << 1017 // G4cout << "Transmittance: " << 1018 // << std::floor(fTransmittance/ << 1019 } << 1020 else << 1021 { << 1022 G4ExceptionDescription ed; << 1023 ed << " G4OpBoundaryProcess/DielectricDic << 1024 << " The dichroic surface has no G4Phy << 1025 G4Exception("G4OpBoundaryProcess::Dielect << 1026 FatalException, ed, << 1027 "A dichroic surface must have << 1028 } << 1029 704 1030 if(!G4BooleanRand(fTransmittance)) << 705 } while (NewMomentum * theGlobalNormal < 0.0); 1031 { // Not transmitted, so reflect << 1032 if(fModel == glisur || fFinish == polishe << 1033 { << 1034 DoReflection(); << 1035 } << 1036 else << 1037 { << 1038 ChooseReflection(); << 1039 if(fStatus == LambertianReflection) << 1040 { << 1041 DoReflection(); << 1042 } << 1043 else if(fStatus == BackScattering) << 1044 { << 1045 fNewMomentum = -fOldMomentum; << 1046 fNewPolarization = -fOldPolarization; << 1047 } << 1048 else << 1049 { << 1050 G4double PdotN, EdotN; << 1051 do << 1052 { << 1053 if(fStatus == LobeReflection) << 1054 { << 1055 fFacetNormal = GetFacetNormal(fOl << 1056 } << 1057 PdotN = fOldMomentum * fFace << 1058 fNewMomentum = fOldMomentum - (2. * << 1059 // Loop checking, 13-Aug-2015, Pete << 1060 } while(fNewMomentum * fGlobalNormal << 1061 << 1062 EdotN = fOldPolarization * << 1063 fNewPolarization = -fOldPolarization << 1064 } << 1065 } << 1066 } << 1067 else << 1068 { << 1069 fStatus = Dichroic; << 1070 fNewMomentum = fOldMomentum; << 1071 fNewPolarization = fOldPolarization; << 1072 } << 1073 } 706 } 1074 707 1075 //....oooOO0OOooo........oooOO0OOooo........o << 708 void G4OpBoundaryProcess::DielectricLUT() 1076 void G4OpBoundaryProcess::DielectricDielectri << 1077 { 709 { 1078 G4bool inside = false; << 710 G4int thetaIndex, phiIndex; 1079 G4bool swap = false; << 711 G4double AngularDistributionValue, thetaRad, phiRad, EdotN; 1080 << 712 G4ThreeVector PerpendicularVectorTheta, PerpendicularVectorPhi; 1081 if(fFinish == polished) << 713 1082 { << 714 theStatus = G4OpBoundaryProcessStatus(G4int(theFinish) + 1083 fFacetNormal = fGlobalNormal; << 715 (G4int(NoRINDEX)-G4int(groundbackpainted))); 1084 } << 716 1085 else << 717 G4int thetaIndexMax = OpticalSurface->GetThetaIndexMax(); 1086 { << 718 G4int phiIndexMax = OpticalSurface->GetPhiIndexMax(); 1087 fFacetNormal = GetFacetNormal(fOldMomentu << 719 1088 } << 720 do { 1089 G4double cost1 = -fOldMomentum * fFacetNorm << 721 if ( !G4BooleanRand(theReflectivity) ) // Not reflected, so Absorbed 1090 G4double cost2 = 0.; << 722 DoAbsorption(); 1091 G4double sint2 = 0.; << 723 else { 1092 << 724 // Calculate Angle between Normal and Photon Momentum 1093 G4bool surfaceRoughnessCriterionPass = true << 725 G4double anglePhotonToNormal = 1094 if(fSurfaceRoughness != 0. && fRindex1 > fR << 726 OldMomentum.angle(-theGlobalNormal); 1095 { << 727 // Round it to closest integer 1096 G4double wavelength = h_Pl << 728 G4int angleIncident = G4int(std::floor(180/pi*anglePhotonToNormal+0.5)); 1097 G4double surfaceRoughnessCriterion = std: << 729 1098 (4. * pi * fSurfaceRoughness * fRindex1 << 730 // Take random angles THETA and PHI, 1099 surfaceRoughnessCriterionPass = G4Boolean << 731 // and see if below Probability - if not - Redo 1100 } << 732 do { 1101 << 733 thetaIndex = CLHEP::RandFlat::shootInt(thetaIndexMax-1); 1102 leap: << 734 phiIndex = CLHEP::RandFlat::shootInt(phiIndexMax-1); 1103 << 735 // Find probability with the new indeces from LUT 1104 G4bool through = false; << 736 AngularDistributionValue = OpticalSurface -> 1105 G4bool done = false; << 737 GetAngularDistributionValue(angleIncident, 1106 << 738 thetaIndex, 1107 G4ThreeVector A_trans, A_paral, E1pp, E1pl; << 739 phiIndex); 1108 G4double E1_perp, E1_parl; << 740 } while ( !G4BooleanRand(AngularDistributionValue) ); 1109 G4double s1, s2, E2_perp, E2_parl, E2_total << 741 1110 G4double E2_abs, C_parl, C_perp; << 742 thetaRad = (-90 + 4*thetaIndex)*pi/180; 1111 G4double alpha; << 743 phiRad = (-90 + 5*phiIndex)*pi/180; 1112 << 744 // Rotate Photon Momentum in Theta, then in Phi 1113 do << 745 NewMomentum = -OldMomentum; 1114 { << 746 PerpendicularVectorTheta = NewMomentum.cross(theGlobalNormal); 1115 if(through) << 747 if (PerpendicularVectorTheta.mag() > kCarTolerance ) { 1116 { << 748 PerpendicularVectorPhi = 1117 swap = !swap; << 749 PerpendicularVectorTheta.cross(NewMomentum); 1118 through = false; << 750 } 1119 fGlobalNormal = -fGlobalNormal; << 751 else { 1120 G4SwapPtr(fMaterial1, fMaterial2); << 752 PerpendicularVectorTheta = NewMomentum.orthogonal(); 1121 G4SwapObj(&fRindex1, &fRindex2); << 753 PerpendicularVectorPhi = 1122 } << 754 PerpendicularVectorTheta.cross(NewMomentum); 1123 << 755 } 1124 if(fFinish == polished) << 756 NewMomentum = 1125 { << 757 NewMomentum.rotate(anglePhotonToNormal-thetaRad, 1126 fFacetNormal = fGlobalNormal; << 758 PerpendicularVectorTheta); 1127 } << 759 NewMomentum = NewMomentum.rotate(-phiRad,PerpendicularVectorPhi); 1128 else << 760 // Rotate Polarization too: 1129 { << 761 theFacetNormal = (NewMomentum - OldMomentum).unit(); 1130 fFacetNormal = GetFacetNormal(fOldMomen << 762 EdotN = OldPolarization * theFacetNormal; 1131 } << 763 NewPolarization = -OldPolarization + (2.*EdotN)*theFacetNormal; 1132 << 764 } 1133 cost1 = -fOldMomentum * fFacetNormal; << 765 } while (NewMomentum * theGlobalNormal <= 0.0); 1134 if(std::abs(cost1) < 1.0 - fCarTolerance) << 766 } 1135 { << 1136 fSint1 = std::sqrt(1. - cost1 * cost1); << 1137 sint2 = fSint1 * fRindex1 / fRindex2; << 1138 // this isn't a sine as we might expect << 1139 } << 1140 else << 1141 { << 1142 fSint1 = 0.0; << 1143 sint2 = 0.0; << 1144 } << 1145 << 1146 // TOTAL INTERNAL REFLECTION << 1147 if(sint2 >= 1.0) << 1148 { << 1149 swap = false; << 1150 << 1151 fStatus = TotalInternalReflection; << 1152 if(!surfaceRoughnessCriterionPass) << 1153 fStatus = LambertianReflection; << 1154 if(fModel == unified && fFinish != poli << 1155 ChooseReflection(); << 1156 if(fStatus == LambertianReflection) << 1157 { << 1158 DoReflection(); << 1159 } << 1160 else if(fStatus == BackScattering) << 1161 { << 1162 fNewMomentum = -fOldMomentum; << 1163 fNewPolarization = -fOldPolarization; << 1164 } << 1165 else << 1166 { << 1167 fNewMomentum = << 1168 fOldMomentum - 2. * fOldMomentum * << 1169 fNewPolarization = -fOldPolarization << 1170 << 1171 } << 1172 } << 1173 // NOT TIR << 1174 else if(sint2 < 1.0) << 1175 { << 1176 // Calculate amplitude for transmission << 1177 if(cost1 > 0.0) << 1178 { << 1179 cost2 = std::sqrt(1. - sint2 * sint2) << 1180 } << 1181 else << 1182 { << 1183 cost2 = -std::sqrt(1. - sint2 * sint2 << 1184 } << 1185 << 1186 if(fSint1 > 0.0) << 1187 { << 1188 A_trans = (fOldMomentum.cross(fFacetN << 1189 E1_perp = fOldPolarization * A_trans; << 1190 E1pp = E1_perp * A_trans; << 1191 E1pl = fOldPolarization - E1pp; << 1192 E1_parl = E1pl.mag(); << 1193 } << 1194 else << 1195 { << 1196 A_trans = fOldPolarization; << 1197 // Here we Follow Jackson's conventio << 1198 // component = 1 in case of a ray per << 1199 E1_perp = 0.0; << 1200 E1_parl = 1.0; << 1201 } << 1202 << 1203 s1 = fRindex1 * cost1; << 1204 E2_perp = 2. * s1 * E1_perp / (fRindex << 1205 E2_parl = 2. * s1 * E1_parl / (fRindex << 1206 E2_total = E2_perp * E2_perp + E2_parl << 1207 s2 = fRindex2 * cost2 * E2_total; << 1208 << 1209 // D.Sawkey, 24 May 24 << 1210 // Transmittance has already been taken << 1211 // For e.g. specular surfaces, the rati << 1212 // reflection should be given by the ma << 1213 // TRANSMITTANCE << 1214 //if(fTransmittance > 0.) << 1215 // transCoeff = fTransmittance; << 1216 //else if(cost1 != 0.0) << 1217 if(cost1 != 0.0) << 1218 transCoeff = s2 / s1; << 1219 else << 1220 transCoeff = 0.0; << 1221 << 1222 // NOT TIR: REFLECTION << 1223 if(!G4BooleanRand(transCoeff)) << 1224 { << 1225 swap = false; << 1226 fStatus = FresnelReflection; << 1227 << 1228 if(!surfaceRoughnessCriterionPass) << 1229 fStatus = LambertianReflection; << 1230 if(fModel == unified && fFinish != po << 1231 ChooseReflection(); << 1232 if(fStatus == LambertianReflection) << 1233 { << 1234 DoReflection(); << 1235 } << 1236 else if(fStatus == BackScattering) << 1237 { << 1238 fNewMomentum = -fOldMomentum; << 1239 fNewPolarization = -fOldPolarizatio << 1240 } << 1241 else << 1242 { << 1243 fNewMomentum = << 1244 fOldMomentum - 2. * fOldMomentum << 1245 if(fSint1 > 0.0) << 1246 { // incident ray oblique << 1247 E2_parl = fRindex2 * E2_parl / f << 1248 E2_perp = E2_perp - E1_perp; << 1249 E2_total = E2_perp * E2_perp + E2 << 1250 A_paral = (fNewMomentum.cross(A_ << 1251 E2_abs = std::sqrt(E2_total); << 1252 C_parl = E2_parl / E2_abs; << 1253 C_perp = E2_perp / E2_abs; << 1254 << 1255 fNewPolarization = C_parl * A_par << 1256 } << 1257 else << 1258 { // incident ray perpendicular << 1259 if(fRindex2 > fRindex1) << 1260 { << 1261 fNewPolarization = -fOldPolariz << 1262 } << 1263 else << 1264 { << 1265 fNewPolarization = fOldPolariza << 1266 } << 1267 } << 1268 } << 1269 } << 1270 // NOT TIR: TRANSMISSION << 1271 else << 1272 { << 1273 inside = !inside; << 1274 through = true; << 1275 fStatus = FresnelRefraction; << 1276 << 1277 if(fSint1 > 0.0) << 1278 { // incident ray oblique << 1279 alpha = cost1 - cost2 * (fRi << 1280 fNewMomentum = (fOldMomentum + alph << 1281 A_paral = (fNewMomentum.cross( << 1282 E2_abs = std::sqrt(E2_total); << 1283 C_parl = E2_parl / E2_abs; << 1284 C_perp = E2_perp / E2_abs; << 1285 << 1286 fNewPolarization = C_parl * A_paral << 1287 } << 1288 else << 1289 { // incident ray perpendicular << 1290 fNewMomentum = fOldMomentum; << 1291 fNewPolarization = fOldPolarization << 1292 } << 1293 } << 1294 } << 1295 << 1296 fOldMomentum = fNewMomentum.unit(); << 1297 fOldPolarization = fNewPolarization.unit( << 1298 767 1299 if(fStatus == FresnelRefraction) << 768 void G4OpBoundaryProcess::DielectricDielectric() 1300 { << 769 { 1301 done = (fNewMomentum * fGlobalNormal <= << 770 G4bool Inside = false; 1302 } << 771 G4bool Swap = false; 1303 else << 1304 { << 1305 done = (fNewMomentum * fGlobalNormal >= << 1306 } << 1307 // Loop checking, 13-Aug-2015, Peter Gump << 1308 } while(!done); << 1309 << 1310 if(inside && !swap) << 1311 { << 1312 if(fFinish == polishedbackpainted || fFin << 1313 { << 1314 G4double rand = G4UniformRand(); << 1315 if(rand > fReflectivity + fTransmittanc << 1316 { << 1317 DoAbsorption(); << 1318 } << 1319 else if(rand > fReflectivity) << 1320 { << 1321 fStatus = Transmission; << 1322 fNewMomentum = fOldMomentum; << 1323 fNewPolarization = fOldPolarization; << 1324 } << 1325 else << 1326 { << 1327 if(fStatus != FresnelRefraction) << 1328 { << 1329 fGlobalNormal = -fGlobalNormal; << 1330 } << 1331 else << 1332 { << 1333 swap = !swap; << 1334 G4SwapPtr(fMaterial1, fMaterial2); << 1335 G4SwapObj(&fRindex1, &fRindex2); << 1336 } << 1337 if(fFinish == groundbackpainted) << 1338 fStatus = LambertianReflection; << 1339 772 1340 DoReflection(); << 773 leap: 1341 774 1342 fGlobalNormal = -fGlobalNormal; << 775 G4bool Through = false; 1343 fOldMomentum = fNewMomentum; << 776 G4bool Done = false; 1344 777 1345 goto leap; << 778 do { 1346 } << 779 1347 } << 780 if (Through) { 1348 } << 781 Swap = !Swap; >> 782 Through = false; >> 783 theGlobalNormal = -theGlobalNormal; >> 784 G4SwapPtr(Material1,Material2); >> 785 G4SwapObj(&Rindex1,&Rindex2); >> 786 } >> 787 >> 788 if ( theFinish == ground || theFinish == groundbackpainted ) { >> 789 theFacetNormal = >> 790 GetFacetNormal(OldMomentum,theGlobalNormal); >> 791 } >> 792 else { >> 793 theFacetNormal = theGlobalNormal; >> 794 } >> 795 >> 796 G4double PdotN = OldMomentum * theFacetNormal; >> 797 G4double EdotN = OldPolarization * theFacetNormal; >> 798 >> 799 cost1 = - PdotN; >> 800 if (std::abs(cost1) < 1.0-kCarTolerance){ >> 801 sint1 = std::sqrt(1.-cost1*cost1); >> 802 sint2 = sint1*Rindex1/Rindex2; // *** Snell's Law *** >> 803 } >> 804 else { >> 805 sint1 = 0.0; >> 806 sint2 = 0.0; >> 807 } >> 808 >> 809 if (sint2 >= 1.0) { >> 810 >> 811 // Simulate total internal reflection >> 812 >> 813 if (Swap) Swap = !Swap; >> 814 >> 815 theStatus = TotalInternalReflection; >> 816 >> 817 if ( theModel == unified && theFinish != polished ) >> 818 ChooseReflection(); >> 819 >> 820 if ( theStatus == LambertianReflection ) { >> 821 DoReflection(); >> 822 } >> 823 else if ( theStatus == BackScattering ) { >> 824 NewMomentum = -OldMomentum; >> 825 NewPolarization = -OldPolarization; >> 826 } >> 827 else { >> 828 >> 829 PdotN = OldMomentum * theFacetNormal; >> 830 NewMomentum = OldMomentum - (2.*PdotN)*theFacetNormal; >> 831 EdotN = OldPolarization * theFacetNormal; >> 832 NewPolarization = -OldPolarization + (2.*EdotN)*theFacetNormal; >> 833 >> 834 } >> 835 } >> 836 else if (sint2 < 1.0) { >> 837 >> 838 // Calculate amplitude for transmission (Q = P x N) >> 839 >> 840 if (cost1 > 0.0) { >> 841 cost2 = std::sqrt(1.-sint2*sint2); >> 842 } >> 843 else { >> 844 cost2 = -std::sqrt(1.-sint2*sint2); >> 845 } >> 846 >> 847 G4ThreeVector A_trans, A_paral, E1pp, E1pl; >> 848 G4double E1_perp, E1_parl; >> 849 >> 850 if (sint1 > 0.0) { >> 851 A_trans = OldMomentum.cross(theFacetNormal); >> 852 A_trans = A_trans.unit(); >> 853 E1_perp = OldPolarization * A_trans; >> 854 E1pp = E1_perp * A_trans; >> 855 E1pl = OldPolarization - E1pp; >> 856 E1_parl = E1pl.mag(); >> 857 } >> 858 else { >> 859 A_trans = OldPolarization; >> 860 // Here we Follow Jackson's conventions and we set the >> 861 // parallel component = 1 in case of a ray perpendicular >> 862 // to the surface >> 863 E1_perp = 0.0; >> 864 E1_parl = 1.0; >> 865 } >> 866 >> 867 G4double s1 = Rindex1*cost1; >> 868 G4double E2_perp = 2.*s1*E1_perp/(Rindex1*cost1+Rindex2*cost2); >> 869 G4double E2_parl = 2.*s1*E1_parl/(Rindex2*cost1+Rindex1*cost2); >> 870 G4double E2_total = E2_perp*E2_perp + E2_parl*E2_parl; >> 871 G4double s2 = Rindex2*cost2*E2_total; >> 872 >> 873 G4double TransCoeff; >> 874 >> 875 if (cost1 != 0.0) { >> 876 TransCoeff = s2/s1; >> 877 } >> 878 else { >> 879 TransCoeff = 0.0; >> 880 } >> 881 >> 882 G4double E2_abs, C_parl, C_perp; >> 883 >> 884 if ( !G4BooleanRand(TransCoeff) ) { >> 885 >> 886 // Simulate reflection >> 887 >> 888 if (Swap) Swap = !Swap; >> 889 >> 890 theStatus = FresnelReflection; >> 891 >> 892 if ( theModel == unified && theFinish != polished ) >> 893 ChooseReflection(); >> 894 >> 895 if ( theStatus == LambertianReflection ) { >> 896 DoReflection(); >> 897 } >> 898 else if ( theStatus == BackScattering ) { >> 899 NewMomentum = -OldMomentum; >> 900 NewPolarization = -OldPolarization; >> 901 } >> 902 else { >> 903 >> 904 PdotN = OldMomentum * theFacetNormal; >> 905 NewMomentum = OldMomentum - (2.*PdotN)*theFacetNormal; >> 906 >> 907 if (sint1 > 0.0) { // incident ray oblique >> 908 >> 909 E2_parl = Rindex2*E2_parl/Rindex1 - E1_parl; >> 910 E2_perp = E2_perp - E1_perp; >> 911 E2_total = E2_perp*E2_perp + E2_parl*E2_parl; >> 912 A_paral = NewMomentum.cross(A_trans); >> 913 A_paral = A_paral.unit(); >> 914 E2_abs = std::sqrt(E2_total); >> 915 C_parl = E2_parl/E2_abs; >> 916 C_perp = E2_perp/E2_abs; >> 917 >> 918 NewPolarization = C_parl*A_paral + C_perp*A_trans; >> 919 >> 920 } >> 921 >> 922 else { // incident ray perpendicular >> 923 >> 924 if (Rindex2 > Rindex1) { >> 925 NewPolarization = - OldPolarization; >> 926 } >> 927 else { >> 928 NewPolarization = OldPolarization; >> 929 } >> 930 >> 931 } >> 932 } >> 933 } >> 934 else { // photon gets transmitted >> 935 >> 936 // Simulate transmission/refraction >> 937 >> 938 Inside = !Inside; >> 939 Through = true; >> 940 theStatus = FresnelRefraction; >> 941 >> 942 if (sint1 > 0.0) { // incident ray oblique >> 943 >> 944 G4double alpha = cost1 - cost2*(Rindex2/Rindex1); >> 945 NewMomentum = OldMomentum + alpha*theFacetNormal; >> 946 NewMomentum = NewMomentum.unit(); >> 947 PdotN = -cost2; >> 948 A_paral = NewMomentum.cross(A_trans); >> 949 A_paral = A_paral.unit(); >> 950 E2_abs = std::sqrt(E2_total); >> 951 C_parl = E2_parl/E2_abs; >> 952 C_perp = E2_perp/E2_abs; >> 953 >> 954 NewPolarization = C_parl*A_paral + C_perp*A_trans; >> 955 >> 956 } >> 957 else { // incident ray perpendicular >> 958 >> 959 NewMomentum = OldMomentum; >> 960 NewPolarization = OldPolarization; >> 961 >> 962 } >> 963 } >> 964 } >> 965 >> 966 OldMomentum = NewMomentum.unit(); >> 967 OldPolarization = NewPolarization.unit(); >> 968 >> 969 if (theStatus == FresnelRefraction) { >> 970 Done = (NewMomentum * theGlobalNormal <= 0.0); >> 971 } >> 972 else { >> 973 Done = (NewMomentum * theGlobalNormal >= 0.0); >> 974 } >> 975 >> 976 } while (!Done); >> 977 >> 978 if (Inside && !Swap) { >> 979 if( theFinish == polishedbackpainted || >> 980 theFinish == groundbackpainted ) { >> 981 >> 982 if( !G4BooleanRand(theReflectivity) ) { >> 983 DoAbsorption(); >> 984 } >> 985 else { >> 986 if (theStatus != FresnelRefraction ) { >> 987 theGlobalNormal = -theGlobalNormal; >> 988 } >> 989 else { >> 990 Swap = !Swap; >> 991 G4SwapPtr(Material1,Material2); >> 992 G4SwapObj(&Rindex1,&Rindex2); >> 993 } >> 994 if ( theFinish == groundbackpainted ) >> 995 theStatus = LambertianReflection; >> 996 >> 997 DoReflection(); >> 998 >> 999 theGlobalNormal = -theGlobalNormal; >> 1000 OldMomentum = NewMomentum; >> 1001 >> 1002 goto leap; >> 1003 } >> 1004 } >> 1005 } 1349 } 1006 } 1350 1007 1351 //....oooOO0OOooo........oooOO0OOooo........o << 1008 // GetMeanFreePath 1352 G4double G4OpBoundaryProcess::GetMeanFreePath << 1009 // --------------- >> 1010 // >> 1011 G4double G4OpBoundaryProcess::GetMeanFreePath(const G4Track& , >> 1012 G4double , 1353 1013 G4ForceCondition* condition) 1354 { 1014 { 1355 *condition = Forced; << 1015 *condition = Forced; 1356 return DBL_MAX; << 1016 >> 1017 return DBL_MAX; 1357 } 1018 } 1358 1019 1359 //....oooOO0OOooo........oooOO0OOooo........o << 1020 G4double G4OpBoundaryProcess::GetIncidentAngle() 1360 G4double G4OpBoundaryProcess::GetIncidentAngl << 1361 { 1021 { 1362 return pi - std::acos(fOldMomentum * fFacet << 1022 G4double PdotN = OldMomentum * theFacetNormal; 1363 (fOldMomentum.mag() * << 1023 G4double magP= OldMomentum.mag(); >> 1024 G4double magN= theFacetNormal.mag(); >> 1025 G4double incidentangle = pi - std::acos(PdotN/(magP*magN)); >> 1026 >> 1027 return incidentangle; 1364 } 1028 } 1365 1029 1366 //....oooOO0OOooo........oooOO0OOooo........o << 1367 G4double G4OpBoundaryProcess::GetReflectivity 1030 G4double G4OpBoundaryProcess::GetReflectivity(G4double E1_perp, 1368 1031 G4double E1_parl, 1369 1032 G4double incidentangle, 1370 << 1033 G4double RealRindex, 1371 << 1034 G4double ImaginaryRindex) 1372 { 1035 { 1373 G4complex reflectivity, reflectivity_TE, re << 1374 G4complex N1(fRindex1, 0.), N2(realRindex, << 1375 G4complex cosPhi; << 1376 1036 1377 G4complex u(1., 0.); // unit number 1 << 1037 G4complex Reflectivity, Reflectivity_TE, Reflectivity_TM; >> 1038 G4complex N(RealRindex, ImaginaryRindex); >> 1039 G4complex CosPhi; >> 1040 >> 1041 G4complex u(1,0); //unit number 1 1378 1042 1379 G4complex numeratorTE; // E1_perp=1 E1_par << 1043 G4complex numeratorTE; // E1_perp=1 E1_parl=0 -> TE polarization 1380 G4complex numeratorTM; // E1_parl=1 E1_per << 1044 G4complex numeratorTM; // E1_parl=1 E1_perp=0 -> TM polarization 1381 G4complex denominatorTE, denominatorTM; 1045 G4complex denominatorTE, denominatorTM; 1382 G4complex rTM, rTE; 1046 G4complex rTM, rTE; 1383 1047 1384 G4MaterialPropertiesTable* MPT = fMaterial1 << 1385 G4MaterialPropertyVector* ppR = MPT->GetPr << 1386 G4MaterialPropertyVector* ppI = MPT->GetPr << 1387 if(ppR && ppI) << 1388 { << 1389 G4double rRindex = ppR->Value(fPhotonMome << 1390 G4double iRindex = ppI->Value(fPhotonMome << 1391 N1 = G4complex(rRindex, iRi << 1392 } << 1393 << 1394 // Following two equations, rTM and rTE, ar 1048 // Following two equations, rTM and rTE, are from: "Introduction To Modern 1395 // Optics" written by Fowles 1049 // Optics" written by Fowles 1396 cosPhi = std::sqrt(u - ((std::sin(incidenta << 1397 (N1 * N1) / (N2 * N << 1398 1050 1399 numeratorTE = N1 * std::cos(incidentangle << 1051 CosPhi=std::sqrt(u-((std::sin(incidentangle)*std::sin(incidentangle))/(N*N))); 1400 denominatorTE = N1 * std::cos(incidentangle << 1052 1401 rTE = numeratorTE / denominatorTE << 1053 numeratorTE = std::cos(incidentangle) - N*CosPhi; 1402 << 1054 denominatorTE = std::cos(incidentangle) + N*CosPhi; 1403 numeratorTM = N2 * std::cos(incidentangle << 1055 rTE = numeratorTE/denominatorTE; 1404 denominatorTM = N2 * std::cos(incidentangle << 1405 rTM = numeratorTM / denominatorTM << 1406 1056 1407 // This is my (PG) calculaton for reflectiv << 1057 numeratorTM = N*std::cos(incidentangle) - CosPhi; >> 1058 denominatorTM = N*std::cos(incidentangle) + CosPhi; >> 1059 rTM = numeratorTM/denominatorTM; >> 1060 >> 1061 // This is my calculaton for reflectivity on a metalic surface 1408 // depending on the fraction of TE and TM p 1062 // depending on the fraction of TE and TM polarization 1409 // when TE polarization, E1_parl=0 and E1_p 1063 // when TE polarization, E1_parl=0 and E1_perp=1, R=abs(rTE)^2 and 1410 // when TM polarization, E1_parl=1 and E1_p 1064 // when TM polarization, E1_parl=1 and E1_perp=0, R=abs(rTM)^2 1411 1065 1412 reflectivity_TE = (rTE * conj(rTE)) * (E1_p << 1066 Reflectivity_TE = (rTE*conj(rTE))*(E1_perp*E1_perp) 1413 (E1_perp * E1_perp + E1_p << 1067 / (E1_perp*E1_perp + E1_parl*E1_parl); 1414 reflectivity_TM = (rTM * conj(rTM)) * (E1_p << 1068 Reflectivity_TM = (rTM*conj(rTM))*(E1_parl*E1_parl) 1415 (E1_perp * E1_perp + E1_p << 1069 / (E1_perp*E1_perp + E1_parl*E1_parl); 1416 reflectivity = reflectivity_TE + reflectivi << 1070 Reflectivity = Reflectivity_TE + Reflectivity_TM; 1417 << 1071 1418 do << 1072 do { 1419 { << 1073 if(G4UniformRand()*real(Reflectivity) > real(Reflectivity_TE)) 1420 if(G4UniformRand() * real(reflectivity) > << 1074 {iTE = -1;}else{iTE = 1;} 1421 { << 1075 if(G4UniformRand()*real(Reflectivity) > real(Reflectivity_TM)) 1422 f_iTE = -1; << 1076 {iTM = -1;}else{iTM = 1;} 1423 } << 1077 } while(iTE<0&&iTM<0); 1424 else << 1078 1425 { << 1079 return real(Reflectivity); 1426 f_iTE = 1; << 1427 } << 1428 if(G4UniformRand() * real(reflectivity) > << 1429 { << 1430 f_iTM = -1; << 1431 } << 1432 else << 1433 { << 1434 f_iTM = 1; << 1435 } << 1436 // Loop checking, 13-Aug-2015, Peter Gump << 1437 } while(f_iTE < 0 && f_iTM < 0); << 1438 1080 1439 return real(reflectivity); << 1440 } 1081 } 1441 1082 1442 //....oooOO0OOooo........oooOO0OOooo........o << 1443 void G4OpBoundaryProcess::CalculateReflectivi 1083 void G4OpBoundaryProcess::CalculateReflectivity() 1444 { 1084 { 1445 G4double realRindex = fRealRIndexMPV->Value << 1085 G4double RealRindex = 1446 G4double imaginaryRindex = << 1086 PropertyPointer1->GetProperty(thePhotonMomentum); 1447 fImagRIndexMPV->Value(fPhotonMomentum, id << 1087 G4double ImaginaryRindex = >> 1088 PropertyPointer2->GetProperty(thePhotonMomentum); 1448 1089 1449 // calculate FacetNormal 1090 // calculate FacetNormal 1450 if(fFinish == ground) << 1091 if ( theFinish == ground ) { 1451 { << 1092 theFacetNormal = 1452 fFacetNormal = GetFacetNormal(fOldMomentu << 1093 GetFacetNormal(OldMomentum, theGlobalNormal); 1453 } << 1094 } else { 1454 else << 1095 theFacetNormal = theGlobalNormal; 1455 { << 1456 fFacetNormal = fGlobalNormal; << 1457 } 1096 } 1458 1097 1459 G4double cost1 = -fOldMomentum * fFacetNorm << 1098 G4double PdotN = OldMomentum * theFacetNormal; 1460 if(std::abs(cost1) < 1.0 - fCarTolerance) << 1099 cost1 = -PdotN; 1461 { << 1100 1462 fSint1 = std::sqrt(1. - cost1 * cost1); << 1101 if (std::abs(cost1) < 1.0 - kCarTolerance) { 1463 } << 1102 sint1 = std::sqrt(1. - cost1*cost1); 1464 else << 1103 } else { 1465 { << 1104 sint1 = 0.0; 1466 fSint1 = 0.0; << 1467 } 1105 } 1468 1106 1469 G4ThreeVector A_trans, A_paral, E1pp, E1pl; 1107 G4ThreeVector A_trans, A_paral, E1pp, E1pl; 1470 G4double E1_perp, E1_parl; 1108 G4double E1_perp, E1_parl; 1471 1109 1472 if(fSint1 > 0.0) << 1110 if (sint1 > 0.0 ) { 1473 { << 1111 A_trans = OldMomentum.cross(theFacetNormal); 1474 A_trans = (fOldMomentum.cross(fFacetNorma << 1112 A_trans = A_trans.unit(); 1475 E1_perp = fOldPolarization * A_trans; << 1113 E1_perp = OldPolarization * A_trans; 1476 E1pp = E1_perp * A_trans; << 1114 E1pp = E1_perp * A_trans; 1477 E1pl = fOldPolarization - E1pp; << 1115 E1pl = OldPolarization - E1pp; 1478 E1_parl = E1pl.mag(); << 1116 E1_parl = E1pl.mag(); 1479 } << 1117 } 1480 else << 1118 else { 1481 { << 1119 A_trans = OldPolarization; 1482 A_trans = fOldPolarization; << 1120 // Here we Follow Jackson's conventions and we set the 1483 // Here we Follow Jackson's conventions a << 1121 // parallel component = 1 in case of a ray perpendicular 1484 // component = 1 in case of a ray perpend << 1122 // to the surface 1485 E1_perp = 0.0; << 1123 E1_perp = 0.0; 1486 E1_parl = 1.0; << 1124 E1_parl = 1.0; 1487 } 1125 } 1488 1126 >> 1127 //calculate incident angle 1489 G4double incidentangle = GetIncidentAngle() 1128 G4double incidentangle = GetIncidentAngle(); 1490 1129 1491 // calculate the reflectivity depending on << 1130 //calculate the reflectivity depending on incident angle, 1492 // polarization and complex refractive << 1131 //polarization and complex refractive 1493 fReflectivity = GetReflectivity(E1_perp, E1 << 1494 imaginaryRi << 1495 } << 1496 << 1497 //....oooOO0OOooo........oooOO0OOooo........o << 1498 G4bool G4OpBoundaryProcess::InvokeSD(const G4 << 1499 { << 1500 G4Step aStep = *pStep; << 1501 aStep.AddTotalEnergyDeposit(fPhotonMomentum << 1502 << 1503 G4VSensitiveDetector* sd = aStep.GetPostSte << 1504 if(sd != nullptr) << 1505 return sd->Hit(&aStep); << 1506 else << 1507 return false; << 1508 } << 1509 << 1510 //....oooOO0OOooo........oooOO0OOooo........o << 1511 inline void G4OpBoundaryProcess::SetInvokeSD( << 1512 { << 1513 fInvokeSD = flag; << 1514 G4OpticalParameters::Instance()->SetBoundar << 1515 } << 1516 << 1517 //....oooOO0OOooo........oooOO0OOooo........o << 1518 void G4OpBoundaryProcess::SetVerboseLevel(G4i << 1519 { << 1520 verboseLevel = verbose; << 1521 G4OpticalParameters::Instance()->SetBoundar << 1522 } << 1523 << 1524 //....oooOO0OOooo........oooOO0OOooo........o << 1525 void G4OpBoundaryProcess::CoatedDielectricDie << 1526 { << 1527 G4MaterialPropertyVector* pp = nullptr; << 1528 1132 1529 G4MaterialPropertiesTable* MPT = fMaterial2 << 1133 theReflectivity = 1530 if((pp = MPT->GetProperty(kRINDEX))) << 1134 GetReflectivity(E1_perp, E1_parl, incidentangle, 1531 { << 1135 RealRindex, ImaginaryRindex); 1532 fRindex2 = pp->Value(fPhotonMomentum, idx << 1533 } << 1534 << 1535 MPT = fOpticalSurface->GetMaterialPropertie << 1536 if((pp = MPT->GetProperty(kCOATEDRINDEX))) << 1537 { << 1538 fCoatedRindex = pp->Value(fPhotonMomentum << 1539 } << 1540 if(MPT->ConstPropertyExists(kCOATEDTHICKNES << 1541 { << 1542 fCoatedThickness = MPT->GetConstProperty( << 1543 } << 1544 if(MPT->ConstPropertyExists(kCOATEDFRUSTRAT << 1545 { << 1546 fCoatedFrustratedTransmission = << 1547 (G4bool)MPT->GetConstProperty(kCOATEDFR << 1548 } << 1549 << 1550 G4double sintTL; << 1551 G4double wavelength = h_Planck * c_light / << 1552 G4double PdotN; << 1553 G4double E1_perp, E1_parl; << 1554 G4double s1, E2_perp, E2_parl, E2_total, tr << 1555 G4double E2_abs, C_parl, C_perp; << 1556 G4double alpha; << 1557 G4ThreeVector A_trans, A_paral, E1pp, E1pl; << 1558 //G4bool Inside = false; << 1559 //G4bool Swap = false; << 1560 G4bool through = false; << 1561 G4bool done = false; << 1562 << 1563 do { << 1564 if (through) << 1565 { << 1566 //Swap = !Swap; << 1567 through = false; << 1568 fGlobalNormal = -fGlobalNormal; << 1569 G4SwapPtr(fMaterial1, fMaterial2); << 1570 G4SwapObj(&fRindex1, &fRindex2); << 1571 } << 1572 << 1573 if(fFinish == polished) << 1574 { << 1575 fFacetNormal = fGlobalNormal; << 1576 } << 1577 else << 1578 { << 1579 fFacetNormal = GetFacetNormal(fOldMomen << 1580 } << 1581 << 1582 PdotN = fOldMomentum * fFacetNormal; << 1583 G4double cost1 = -PdotN; << 1584 G4double sint2, cost2 = 0.; << 1585 << 1586 if (std::abs(cost1) < 1.0 - fCarTolerance << 1587 { << 1588 fSint1 = std::sqrt(1. - cost1 * cost1); << 1589 sint2 = fSint1 * fRindex1 / fRindex2; << 1590 sintTL = fSint1 * fRindex1 / fCoatedRin << 1591 } else << 1592 { << 1593 fSint1 = 0.0; << 1594 sint2 = 0.0; << 1595 sintTL = 0.0; << 1596 } << 1597 << 1598 if (fSint1 > 0.0) << 1599 { << 1600 A_trans = fOldMomentum.cross(fFacetNorm << 1601 A_trans = A_trans.unit(); << 1602 E1_perp = fOldPolarization * A_trans; << 1603 E1pp = E1_perp * A_trans; << 1604 E1pl = fOldPolarization - E1pp; << 1605 E1_parl = E1pl.mag(); << 1606 } << 1607 else << 1608 { << 1609 A_trans = fOldPolarization; << 1610 E1_perp = 0.0; << 1611 E1_parl = 1.0; << 1612 } << 1613 << 1614 s1 = fRindex1 * cost1; << 1615 << 1616 if (cost1 > 0.0) << 1617 { << 1618 cost2 = std::sqrt(1. - sint2 * sint2); << 1619 } << 1620 else << 1621 { << 1622 cost2 = -std::sqrt(1. - sint2 * sint2); << 1623 } << 1624 << 1625 transCoeff = 0.0; << 1626 << 1627 if (sintTL >= 1.0) << 1628 { // --> Angle > Angle Limit << 1629 //Swap = false; << 1630 } << 1631 E2_perp = 2. * s1 * E1_perp / (fRindex1 * << 1632 E2_parl = 2. * s1 * E1_parl / (fRindex2 * << 1633 E2_total = E2_perp * E2_perp + E2_parl * << 1634 << 1635 transCoeff = 1. - GetReflectivityThroughT << 1636 sintTL, E1_perp, E1_p << 1637 if (!G4BooleanRand(transCoeff)) << 1638 { << 1639 if(verboseLevel > 2) << 1640 G4cout << "Reflection from " << fMate << 1641 << fMaterial2->GetName() << G4 << 1642 << 1643 //Swap = false; << 1644 << 1645 if (sintTL >= 1.0) << 1646 { << 1647 fStatus = TotalInternalReflection; << 1648 } << 1649 else << 1650 { << 1651 fStatus = CoatedDielectricReflection; << 1652 } << 1653 << 1654 PdotN = fOldMomentum * fFacetNormal; << 1655 fNewMomentum = fOldMomentum - (2. * Pdo << 1656 << 1657 if (fSint1 > 0.0) { // incident ray o << 1658 << 1659 E2_parl = fRindex2 * E2_parl / fRinde << 1660 E2_perp = E2_perp - E1_perp; << 1661 E2_total = E2_perp * E2_perp + E2_par << 1662 A_paral = fNewMomentum.cross(A_trans) << 1663 A_paral = A_paral.unit(); << 1664 E2_abs = std::sqrt(E2_total); << 1665 C_parl = E2_parl / E2_abs; << 1666 C_perp = E2_perp / E2_abs; << 1667 << 1668 fNewPolarization = C_parl * A_paral + << 1669 << 1670 } << 1671 else << 1672 { // incident ray perpend << 1673 if (fRindex2 > fRindex1) << 1674 { << 1675 fNewPolarization = -fOldPolarizatio << 1676 } << 1677 else << 1678 { << 1679 fNewPolarization = fOldPolarization << 1680 } << 1681 } << 1682 << 1683 } else { // photon gets transmitted << 1684 if (verboseLevel > 2) << 1685 G4cout << "Transmission from " << fMa << 1686 << fMaterial2->GetName() << G4 << 1687 << 1688 //Inside = !Inside; << 1689 through = true; << 1690 << 1691 if (fEfficiency > 0.) << 1692 { << 1693 DoAbsorption(); << 1694 return; << 1695 } << 1696 else << 1697 { << 1698 if (sintTL >= 1.0) << 1699 { << 1700 fStatus = CoatedDielectricFrustrate << 1701 } << 1702 else << 1703 { << 1704 fStatus = CoatedDielectricRefractio << 1705 } << 1706 << 1707 if (fSint1 > 0.0) { // incident << 1708 << 1709 alpha = cost1 - cost2 * (fRindex2 / << 1710 fNewMomentum = fOldMomentum + alpha << 1711 fNewMomentum = fNewMomentum.unit(); << 1712 A_paral = fNewMomentum.cross(A_tran << 1713 A_paral = A_paral.unit(); << 1714 E2_abs = std::sqrt(E2_total); << 1715 C_parl = E2_parl / E2_abs; << 1716 C_perp = E2_perp / E2_abs; << 1717 << 1718 fNewPolarization = C_parl * A_paral << 1719 << 1720 } << 1721 else << 1722 { // incident ray pe << 1723 fNewMomentum = fOldMomentum; << 1724 fNewPolarization = fOldPolarization << 1725 } << 1726 } << 1727 } << 1728 << 1729 fOldMomentum = fNewMomentum.unit(); << 1730 fOldPolarization = fNewPolarization.unit( << 1731 if ((fStatus == CoatedDielectricFrustrate << 1732 (fStatus == CoatedDielectricRefractio << 1733 { << 1734 done = (fNewMomentum * fGlobalNormal <= << 1735 } << 1736 else << 1737 { << 1738 done = (fNewMomentum * fGlobalNormal >= << 1739 } << 1740 << 1741 } while (!done); << 1742 } << 1743 << 1744 //....oooOO0OOooo........oooOO0OOooo........o << 1745 G4double G4OpBoundaryProcess::GetReflectivity << 1746 G4double E1_perp, << 1747 G4double E1_parl, << 1748 G4double wavelength, G4dou << 1749 G4complex Reflectivity, Reflectivity_TE, Re << 1750 G4double gammaTL, costTL; << 1751 << 1752 G4complex i(0, 1); << 1753 G4complex rTM, rTE; << 1754 G4complex r1toTL, rTLto2; << 1755 G4double k0 = 2 * pi / wavelength; << 1756 << 1757 // Angle > Angle limit << 1758 if (sinTL >= 1.0) { << 1759 if (fCoatedFrustratedTransmission) { //Fr << 1760 << 1761 if (cost1 > 0.0) << 1762 { << 1763 gammaTL = std::sqrt(fRindex1 * fRinde << 1764 fCoatedRindex * fCoatedRin << 1765 } << 1766 else << 1767 { << 1768 gammaTL = -std::sqrt(fRindex1 * fRind << 1769 fCoatedRindex * fCoatedRin << 1770 } << 1771 << 1772 // TE << 1773 r1toTL = (fRindex1 * cost1 - i * gammaT << 1774 rTLto2 = (i * gammaTL - fRindex2 * cost << 1775 if (cost1 != 0.0) << 1776 { << 1777 rTE = (r1toTL + rTLto2 * std::exp(-2 << 1778 (1.0 + r1toTL * rTLto2 * std << 1779 } << 1780 // TM << 1781 r1toTL = (fRindex1 * i * gammaTL - fCoa << 1782 (fRindex1 * i * gammaTL + f << 1783 rTLto2 = (fCoatedRindex * fCoatedRindex << 1784 (fCoatedRindex * fCoatedRin << 1785 if (cost1 != 0.0) << 1786 { << 1787 rTM = (r1toTL + rTLto2 * std::exp(-2 << 1788 (1.0 + r1toTL * rTLto2 * std << 1789 } << 1790 } << 1791 else << 1792 { //Total reflection << 1793 return(1.); << 1794 } << 1795 } << 1796 << 1797 // Angle <= Angle limit << 1798 else //if (sinTL < 1.0) << 1799 { << 1800 if (cost1 > 0.0) << 1801 { << 1802 costTL = std::sqrt(1. - sinTL * sinTL); << 1803 } << 1804 else << 1805 { << 1806 costTL = -std::sqrt(1. - sinTL * sinTL) << 1807 } << 1808 // TE << 1809 r1toTL = (fRindex1 * cost1 - fCoatedRinde << 1810 rTLto2 = (fCoatedRindex * costTL - fRinde << 1811 if (cost1 != 0.0) << 1812 { << 1813 rTE = (r1toTL + rTLto2 * std::exp(2.0 * << 1814 (1.0 + r1toTL * rTLto2 * std::exp << 1815 } << 1816 // TM << 1817 r1toTL = (fRindex1 * costTL - fCoatedRind << 1818 rTLto2 = (fCoatedRindex * cost2 - fRindex << 1819 if (cost1 != 0.0) << 1820 { << 1821 rTM = (r1toTL + rTLto2 * std::exp(2.0 * << 1822 (1.0 + r1toTL * rTLto2 * std::exp << 1823 } << 1824 } << 1825 << 1826 Reflectivity_TE = (rTE * conj(rTE)) * (E1_p << 1827 Reflectivity_TM = (rTM * conj(rTM)) * (E1_p << 1828 Reflectivity = Reflectivity_TE + Reflectivi << 1829 << 1830 return real(Reflectivity); << 1831 } 1136 } 1832 1137