Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/optical/src/G4OpBoundaryProcess.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/optical/src/G4OpBoundaryProcess.cc (Version 11.3.0) and /processes/optical/src/G4OpBoundaryProcess.cc (Version 8.3)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 //////////////////////////////////////////////     26 ////////////////////////////////////////////////////////////////////////
 27 // Optical Photon Boundary Process Class Imple     27 // Optical Photon Boundary Process Class Implementation
 28 //////////////////////////////////////////////     28 ////////////////////////////////////////////////////////////////////////
 29 //                                                 29 //
 30 // File:        G4OpBoundaryProcess.cc             30 // File:        G4OpBoundaryProcess.cc
 31 // Description: Discrete Process -- reflection     31 // Description: Discrete Process -- reflection/refraction at
 32 //                                  optical in     32 //                                  optical interfaces
 33 // Version:     1.1                                33 // Version:     1.1
 34 // Created:     1997-06-18                         34 // Created:     1997-06-18
 35 // Modified:    1998-05-25 - Correct parallel      35 // Modified:    1998-05-25 - Correct parallel component of polarization
 36 //                           (thanks to: Stefa     36 //                           (thanks to: Stefano Magni + Giovanni Pieri)
 37 //              1998-05-28 - NULL Rindex point     37 //              1998-05-28 - NULL Rindex pointer before reuse
 38 //                           (thanks to: Stefa     38 //                           (thanks to: Stefano Magni)
 39 //              1998-06-11 - delete *sint1 in      39 //              1998-06-11 - delete *sint1 in oblique reflection
 40 //                           (thanks to: Giova     40 //                           (thanks to: Giovanni Pieri)
 41 //              1998-06-19 - move from GetLoca <<  41 //              1998-06-19 - move from GetLocalExitNormal() to the new 
 42 //                           method: GetLocalE     42 //                           method: GetLocalExitNormal(&valid) to get
 43 //                           the surface norma     43 //                           the surface normal in all cases
 44 //              1998-11-07 - NULL OpticalSurfa     44 //              1998-11-07 - NULL OpticalSurface pointer before use
 45 //                           comparison not sh     45 //                           comparison not sharp for: std::abs(cost1) < 1.0
 46 //                           remove sin1, sin2     46 //                           remove sin1, sin2 in lines 556,567
 47 //                           (thanks to Stefan     47 //                           (thanks to Stefano Magni)
 48 //              1999-10-10 - Accommodate chang     48 //              1999-10-10 - Accommodate changes done in DoAbsorption by
 49 //                           changing logic in     49 //                           changing logic in DielectricMetal
 50 //              2001-10-18 - avoid Linux (gcc-     50 //              2001-10-18 - avoid Linux (gcc-2.95.2) warning about variables
 51 //                           might be used uni     51 //                           might be used uninitialized in this function
 52 //                           moved E2_perp, E2     52 //                           moved E2_perp, E2_parl and E2_total out of 'if'
 53 //              2003-11-27 - Modified line 168     53 //              2003-11-27 - Modified line 168-9 to reflect changes made to
 54 //                           G4OpticalSurface      54 //                           G4OpticalSurface class ( by Fan Lei)
 55 //              2004-02-02 - Set theStatus = U     55 //              2004-02-02 - Set theStatus = Undefined at start of DoIt
 56 //              2005-07-28 - add G4ProcessType     56 //              2005-07-28 - add G4ProcessType to constructor
 57 //              2006-11-04 - add capability of << 
 58 //                           off a metal surfa << 
 59 //                           of refraction - T << 
 60 //                           Hauptman (Dept. o << 
 61 //              2009-11-10 - add capability of << 
 62 //                           with Look-Up-Tabl << 
 63 //                           optical reflectan << 
 64 //                           treatments - Than << 
 65 //                           William Moses (La << 
 66 //              2013-06-01 - add the capabilit << 
 67 //                           of a dichronic fi << 
 68 //              2017-02-24 - add capability of << 
 69 //                           with Look-Up-Tabl << 
 70 //                                                 57 //
 71 // Author:      Peter Gumplinger                   58 // Author:      Peter Gumplinger
 72 //    adopted from work by Werner Keil - April     59 //    adopted from work by Werner Keil - April 2/96
                                                   >>  60 // mail:        gum@triumf.ca
 73 //                                                 61 //
 74 //////////////////////////////////////////////     62 ////////////////////////////////////////////////////////////////////////
 75                                                    63 
                                                   >>  64 #include "G4ios.hh"
 76 #include "G4OpBoundaryProcess.hh"                  65 #include "G4OpBoundaryProcess.hh"
 77                                                    66 
 78 #include "G4ios.hh"                            <<  67 /////////////////////////
 79 #include "G4GeometryTolerance.hh"              <<  68 // Class Implementation
 80 #include "G4LogicalBorderSurface.hh"           <<  69 /////////////////////////
 81 #include "G4LogicalSkinSurface.hh"             <<  70 
 82 #include "G4OpProcessSubType.hh"               <<  71         //////////////
 83 #include "G4OpticalParameters.hh"              <<  72         // Operators
 84 #include "G4ParallelWorldProcess.hh"           <<  73         //////////////
 85 #include "G4PhysicalConstants.hh"              <<  74 
 86 #include "G4SystemOfUnits.hh"                  <<  75 // G4OpBoundaryProcess::operator=(const G4OpBoundaryProcess &right)
 87 #include "G4TransportationManager.hh"          <<  76 // {
 88 #include "G4VSensitiveDetector.hh"             <<  77 // }
                                                   >>  78 
                                                   >>  79         /////////////////
                                                   >>  80         // Constructors
                                                   >>  81         /////////////////
 89                                                    82 
 90 //....oooOO0OOooo........oooOO0OOooo........oo << 
 91 G4OpBoundaryProcess::G4OpBoundaryProcess(const     83 G4OpBoundaryProcess::G4OpBoundaryProcess(const G4String& processName,
 92                                          G4Pro <<  84                                                G4ProcessType type)
 93   : G4VDiscreteProcess(processName, ptype)     <<  85              : G4VDiscreteProcess(processName, type)
 94 {                                                  86 {
 95   Initialise();                                <<  87         if ( verboseLevel > 0) {
                                                   >>  88            G4cout << GetProcessName() << " is created " << G4endl;
                                                   >>  89         }
                                                   >>  90 
                                                   >>  91   theStatus = Undefined;
                                                   >>  92   theModel = glisur;
                                                   >>  93   theFinish = polished;
                                                   >>  94         theReflectivity = 1.;
                                                   >>  95         theEfficiency   = 0.;
                                                   >>  96                                                                                 
                                                   >>  97         prob_sl = 0.;
                                                   >>  98         prob_ss = 0.;
                                                   >>  99         prob_bs = 0.;
 96                                                   100 
 97   if(verboseLevel > 0)                         << 
 98   {                                            << 
 99     G4cout << GetProcessName() << " is created << 
100   }                                            << 
101   SetProcessSubType(fOpBoundary);              << 
102                                                << 
103   fStatus           = Undefined;               << 
104   fModel            = glisur;                  << 
105   fFinish           = polished;                << 
106   fReflectivity     = 1.;                      << 
107   fEfficiency       = 0.;                      << 
108   fTransmittance    = 0.;                      << 
109   fSurfaceRoughness = 0.;                      << 
110   fProb_sl          = 0.;                      << 
111   fProb_ss          = 0.;                      << 
112   fProb_bs          = 0.;                      << 
113                                                << 
114   fRealRIndexMPV  = nullptr;                   << 
115   fImagRIndexMPV  = nullptr;                   << 
116   fMaterial1      = nullptr;                   << 
117   fMaterial2      = nullptr;                   << 
118   fOpticalSurface = nullptr;                   << 
119   fCarTolerance   = G4GeometryTolerance::GetIn << 
120                                                << 
121   f_iTE = f_iTM   = 0;                         << 
122   fPhotonMomentum = 0.;                        << 
123   fRindex1 = fRindex2 = 1.;                    << 
124   fSint1              = 0.;                    << 
125   fDichroicVector     = nullptr;               << 
126 }                                                 101 }
127                                                   102 
128 //....oooOO0OOooo........oooOO0OOooo........oo << 103 // G4OpBoundaryProcess::G4OpBoundaryProcess(const G4OpBoundaryProcess &right)
129 G4OpBoundaryProcess::~G4OpBoundaryProcess() =  << 104 // {
                                                   >> 105 // }
130                                                   106 
131 //....oooOO0OOooo........oooOO0OOooo........oo << 107         ////////////////
132 void G4OpBoundaryProcess::PreparePhysicsTable( << 108         // Destructors
133 {                                              << 109         ////////////////
134   Initialise();                                << 
135 }                                              << 
136                                                   110 
137 //....oooOO0OOooo........oooOO0OOooo........oo << 111 G4OpBoundaryProcess::~G4OpBoundaryProcess(){}
138 void G4OpBoundaryProcess::Initialise()         << 
139 {                                              << 
140   G4OpticalParameters* params = G4OpticalParam << 
141   SetInvokeSD(params->GetBoundaryInvokeSD());  << 
142   SetVerboseLevel(params->GetBoundaryVerboseLe << 
143 }                                              << 
144                                                   112 
145 //....oooOO0OOooo........oooOO0OOooo........oo << 113         ////////////
146 G4VParticleChange* G4OpBoundaryProcess::PostSt << 114         // Methods
147                                                << 115         ////////////
                                                   >> 116 
                                                   >> 117 // PostStepDoIt
                                                   >> 118 // ------------
                                                   >> 119 //
                                                   >> 120 G4VParticleChange*
                                                   >> 121 G4OpBoundaryProcess::PostStepDoIt(const G4Track& aTrack, const G4Step& aStep)
148 {                                                 122 {
149   fStatus = Undefined;                         << 123         theStatus = Undefined;
150   aParticleChange.Initialize(aTrack);          << 
151   aParticleChange.ProposeVelocity(aTrack.GetVe << 
152                                                << 
153   // Get hyperStep from  G4ParallelWorldProces << 
154   //  NOTE: PostSetpDoIt of this process to be << 
155   //  G4ParallelWorldProcess!                  << 
156   const G4Step* pStep = &aStep;                << 
157   const G4Step* hStep = G4ParallelWorldProcess << 
158   if(hStep != nullptr)                         << 
159     pStep = hStep;                             << 
160                                                << 
161   if(pStep->GetPostStepPoint()->GetStepStatus( << 
162   {                                            << 
163     fMaterial1 = pStep->GetPreStepPoint()->Get << 
164     fMaterial2 = pStep->GetPostStepPoint()->Ge << 
165   }                                            << 
166   else                                         << 
167   {                                            << 
168     fStatus = NotAtBoundary;                   << 
169     if(verboseLevel > 1)                       << 
170       BoundaryProcessVerbose();                << 
171     return G4VDiscreteProcess::PostStepDoIt(aT << 
172   }                                            << 
173                                                << 
174   G4VPhysicalVolume* thePrePV  = pStep->GetPre << 
175   G4VPhysicalVolume* thePostPV = pStep->GetPos << 
176                                                << 
177   if(verboseLevel > 1)                         << 
178   {                                            << 
179     G4cout << " Photon at Boundary! " << G4end << 
180     if(thePrePV != nullptr)                    << 
181       G4cout << " thePrePV:  " << thePrePV->Ge << 
182     if(thePostPV != nullptr)                   << 
183       G4cout << " thePostPV: " << thePostPV->G << 
184   }                                            << 
185                                                << 
186   G4double stepLength = aTrack.GetStepLength() << 
187   if(stepLength <= fCarTolerance)              << 
188   {                                            << 
189     fStatus = StepTooSmall;                    << 
190     if(verboseLevel > 1)                       << 
191       BoundaryProcessVerbose();                << 
192                                                << 
193     G4MaterialPropertyVector* groupvel = nullp << 
194     G4MaterialPropertiesTable* aMPT = fMateria << 
195     if(aMPT != nullptr)                        << 
196     {                                          << 
197       groupvel = aMPT->GetProperty(kGROUPVEL); << 
198     }                                          << 
199                                                << 
200     if(groupvel != nullptr)                    << 
201     {                                          << 
202       aParticleChange.ProposeVelocity(         << 
203         groupvel->Value(fPhotonMomentum, idx_g << 
204     }                                          << 
205     return G4VDiscreteProcess::PostStepDoIt(aT << 
206   }                                            << 
207   else if (stepLength <= 10.*fCarTolerance &&  << 
208   {  // see bug 2510                           << 
209     ++fNumSmallStepWarnings;                   << 
210     if(verboseLevel > 0)                       << 
211     {                                          << 
212       G4ExceptionDescription ed;               << 
213       ed << "G4OpBoundaryProcess: "            << 
214          << "Opticalphoton step length: " << s << 
215          << "This is larger than the threshold << 
216             "to set status StepTooSmall." << G << 
217          << "Boundary scattering may be incorr << 
218       if(fNumSmallStepWarnings == 10)          << 
219       {                                        << 
220         ed << G4endl << "*** Step size warning << 
221       }                                        << 
222       G4Exception("G4OpBoundaryProcess", "OpBo << 
223     }                                          << 
224   }                                            << 
225                                                << 
226   const G4DynamicParticle* aParticle = aTrack. << 
227                                                << 
228   fPhotonMomentum  = aParticle->GetTotalMoment << 
229   fOldMomentum     = aParticle->GetMomentumDir << 
230   fOldPolarization = aParticle->GetPolarizatio << 
231                                                << 
232   if(verboseLevel > 1)                         << 
233   {                                            << 
234     G4cout << " Old Momentum Direction: " << f << 
235            << " Old Polarization:       " << f << 
236   }                                            << 
237                                                << 
238   G4ThreeVector theGlobalPoint = pStep->GetPos << 
239   G4bool valid;                                << 
240                                                << 
241   // ID of Navigator which limits step         << 
242   G4int hNavId = G4ParallelWorldProcess::GetHy << 
243   auto iNav    = G4TransportationManager::GetT << 
244                 ->GetActiveNavigatorsIterator( << 
245   fGlobalNormal = (iNav[hNavId])->GetGlobalExi << 
246                                                << 
247   if(valid)                                    << 
248   {                                            << 
249     fGlobalNormal = -fGlobalNormal;            << 
250   }                                            << 
251   else                                         << 
252   {                                            << 
253     G4ExceptionDescription ed;                 << 
254     ed << " G4OpBoundaryProcess/PostStepDoIt() << 
255        << " The Navigator reports that it retu << 
256     G4Exception(                               << 
257       "G4OpBoundaryProcess::PostStepDoIt", "Op << 
258       "Invalid Surface Normal - Geometry must  << 
259   }                                            << 
260                                                << 
261   if(fOldMomentum * fGlobalNormal > 0.0)       << 
262   {                                            << 
263 #ifdef G4OPTICAL_DEBUG                         << 
264     G4ExceptionDescription ed;                 << 
265     ed << " G4OpBoundaryProcess/PostStepDoIt() << 
266           "wrong direction. "                  << 
267        << G4endl                               << 
268        << "   The momentum of the photon arriv << 
269        << "   must exit the volume cross in th << 
270        << "   So it MUST have dot < 0 with the << 
271           "volume (globalNormal)."             << 
272        << G4endl << "   >> The dot product of  << 
273        << fOldMomentum * fGlobalNormal << G4en << 
274        << "     Old Momentum  (during step)    << 
275        << "     Global Normal (Exiting New Vol << 
276        << G4endl;                              << 
277     G4Exception("G4OpBoundaryProcess::PostStep << 
278                 EventMustBeAborted,  // Or Jus << 
279                                      // repeat << 
280                 ed,                            << 
281                 "Invalid Surface Normal - Geom << 
282                 "normal pointing in the right  << 
283 #else                                          << 
284     fGlobalNormal = -fGlobalNormal;            << 
285 #endif                                         << 
286   }                                            << 
287                                                   124 
288   G4MaterialPropertyVector* rIndexMPV = nullpt << 125         aParticleChange.Initialize(aTrack);
289   G4MaterialPropertiesTable* MPT = fMaterial1- << 
290   if(MPT != nullptr)                           << 
291   {                                            << 
292     rIndexMPV = MPT->GetProperty(kRINDEX);     << 
293   }                                            << 
294   if(rIndexMPV != nullptr)                     << 
295   {                                            << 
296     fRindex1 = rIndexMPV->Value(fPhotonMomentu << 
297   }                                            << 
298   else                                         << 
299   {                                            << 
300     fStatus = NoRINDEX;                        << 
301     if(verboseLevel > 1)                       << 
302       BoundaryProcessVerbose();                << 
303     aParticleChange.ProposeLocalEnergyDeposit( << 
304     aParticleChange.ProposeTrackStatus(fStopAn << 
305     return G4VDiscreteProcess::PostStepDoIt(aT << 
306   }                                            << 
307                                                << 
308   fReflectivity      = 1.;                     << 
309   fEfficiency        = 0.;                     << 
310   fTransmittance     = 0.;                     << 
311   fSurfaceRoughness  = 0.;                     << 
312   fModel             = glisur;                 << 
313   fFinish            = polished;               << 
314   G4SurfaceType type = dielectric_dielectric;  << 
315                                                << 
316   rIndexMPV       = nullptr;                   << 
317   fOpticalSurface = nullptr;                   << 
318                                                << 
319   G4LogicalSurface* surface =                  << 
320     G4LogicalBorderSurface::GetSurface(thePreP << 
321   if(surface == nullptr)                       << 
322   {                                            << 
323     if(thePostPV->GetMotherLogical() == thePre << 
324     {                                          << 
325       surface = G4LogicalSkinSurface::GetSurfa << 
326       if(surface == nullptr)                   << 
327       {                                        << 
328         surface =                              << 
329           G4LogicalSkinSurface::GetSurface(the << 
330       }                                        << 
331     }                                          << 
332     else                                       << 
333     {                                          << 
334       surface = G4LogicalSkinSurface::GetSurfa << 
335       if(surface == nullptr)                   << 
336       {                                        << 
337         surface =                              << 
338           G4LogicalSkinSurface::GetSurface(the << 
339       }                                        << 
340     }                                          << 
341   }                                            << 
342                                                << 
343   if(surface != nullptr)                       << 
344   {                                            << 
345     fOpticalSurface =                          << 
346       dynamic_cast<G4OpticalSurface*>(surface- << 
347   }                                            << 
348   if(fOpticalSurface != nullptr)               << 
349   {                                            << 
350     type    = fOpticalSurface->GetType();      << 
351     fModel  = fOpticalSurface->GetModel();     << 
352     fFinish = fOpticalSurface->GetFinish();    << 
353                                                << 
354     G4MaterialPropertiesTable* sMPT =          << 
355       fOpticalSurface->GetMaterialPropertiesTa << 
356     if(sMPT != nullptr)                        << 
357     {                                          << 
358       if(fFinish == polishedbackpainted || fFi << 
359       {                                        << 
360         rIndexMPV = sMPT->GetProperty(kRINDEX) << 
361         if(rIndexMPV != nullptr)               << 
362         {                                      << 
363           fRindex2 = rIndexMPV->Value(fPhotonM << 
364         }                                      << 
365         else                                   << 
366         {                                      << 
367           fStatus = NoRINDEX;                  << 
368           if(verboseLevel > 1)                 << 
369             BoundaryProcessVerbose();          << 
370           aParticleChange.ProposeLocalEnergyDe << 
371           aParticleChange.ProposeTrackStatus(f << 
372           return G4VDiscreteProcess::PostStepD << 
373         }                                      << 
374       }                                        << 
375                                                   126 
376       fRealRIndexMPV = sMPT->GetProperty(kREAL << 127         G4StepPoint* pPreStepPoint  = aStep.GetPreStepPoint();
377       fImagRIndexMPV = sMPT->GetProperty(kIMAG << 128         G4StepPoint* pPostStepPoint = aStep.GetPostStepPoint();
378       f_iTE = f_iTM = 1;                       << 129 
379                                                << 130         if (pPostStepPoint->GetStepStatus() != fGeomBoundary){
380       G4MaterialPropertyVector* pp;            << 131           theStatus = NotAtBoundary;
381       if((pp = sMPT->GetProperty(kREFLECTIVITY << 132           return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
382       {                                        << 133   }
383         fReflectivity = pp->Value(fPhotonMomen << 134 
384       }                                        << 135   if (aTrack.GetStepLength()<=kCarTolerance/2){
385       else if(fRealRIndexMPV && fImagRIndexMPV << 136           theStatus = StepTooSmall;
386       {                                        << 137           return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
387         CalculateReflectivity();               << 138   }
388       }                                        << 139 
389                                                << 140   Material1 = pPreStepPoint  -> GetMaterial();
390       if((pp = sMPT->GetProperty(kEFFICIENCY)) << 141   Material2 = pPostStepPoint -> GetMaterial();
391       {                                        << 142 
392         fEfficiency = pp->Value(fPhotonMomentu << 143         const G4DynamicParticle* aParticle = aTrack.GetDynamicParticle();
393       }                                        << 144 
394       if((pp = sMPT->GetProperty(kTRANSMITTANC << 145   thePhotonMomentum = aParticle->GetTotalMomentum();
395       {                                        << 146         OldMomentum       = aParticle->GetMomentumDirection();
396         fTransmittance = pp->Value(fPhotonMome << 147   OldPolarization   = aParticle->GetPolarization();
397       }                                        << 148 
398       if(sMPT->ConstPropertyExists(kSURFACEROU << 149   G4MaterialPropertiesTable* aMaterialPropertiesTable;
399       {                                        << 150         G4MaterialPropertyVector* Rindex;
400         fSurfaceRoughness = sMPT->GetConstProp << 151 
401       }                                        << 152   aMaterialPropertiesTable = Material1->GetMaterialPropertiesTable();
402                                                << 153         if (aMaterialPropertiesTable) {
403       if(fModel == unified)                    << 154     Rindex = aMaterialPropertiesTable->GetProperty("RINDEX");
404       {                                        << 155   }
405         fProb_sl = (pp = sMPT->GetProperty(kSP << 156   else {
406                      ? pp->Value(fPhotonMoment << 157           theStatus = NoRINDEX;
407                      : 0.;                     << 158     aParticleChange.ProposeTrackStatus(fStopAndKill);
408         fProb_ss = (pp = sMPT->GetProperty(kSP << 159     return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
409                      ? pp->Value(fPhotonMoment << 160   }
410                      : 0.;                     << 161 
411         fProb_bs = (pp = sMPT->GetProperty(kBA << 162         if (Rindex) {
412                      ? pp->Value(fPhotonMoment << 163     Rindex1 = Rindex->GetProperty(thePhotonMomentum);
413                      : 0.;                     << 164   }
414       }                                        << 165   else {
415     }  // end of if(sMPT)                      << 166           theStatus = NoRINDEX;
416     else if(fFinish == polishedbackpainted ||  << 167     aParticleChange.ProposeTrackStatus(fStopAndKill);
417     {                                          << 168     return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
418       aParticleChange.ProposeLocalEnergyDeposi << 169   }
419       aParticleChange.ProposeTrackStatus(fStop << 170 
420       return G4VDiscreteProcess::PostStepDoIt( << 171         theModel = glisur;
421     }                                          << 172         theFinish = polished;
422   }  // end of if(fOpticalSurface)             << 173 
423                                                << 174         G4SurfaceType type = dielectric_dielectric;
424   //  DIELECTRIC-DIELECTRIC                    << 175 
425   if(type == dielectric_dielectric)            << 176         Rindex = NULL;
426   {                                            << 177         OpticalSurface = NULL;
427     if(fFinish == polished || fFinish == groun << 178 
428     {                                          << 179         G4LogicalSurface* Surface = G4LogicalBorderSurface::GetSurface
429       if(fMaterial1 == fMaterial2)             << 180             (pPreStepPoint ->GetPhysicalVolume(),
430       {                                        << 181              pPostStepPoint->GetPhysicalVolume());
431         fStatus = SameMaterial;                << 182 
432         if(verboseLevel > 1)                   << 183         if (Surface == NULL){
433           BoundaryProcessVerbose();            << 184     G4bool enteredDaughter=(pPostStepPoint->GetPhysicalVolume()
434         return G4VDiscreteProcess::PostStepDoI << 185           ->GetMotherLogical() == 
435       }                                        << 186           pPreStepPoint->GetPhysicalVolume()
436       MPT       = fMaterial2->GetMaterialPrope << 187           ->GetLogicalVolume());
437       rIndexMPV = nullptr;                     << 188     if(enteredDaughter){
438       if(MPT != nullptr)                       << 189       Surface = G4LogicalSkinSurface::GetSurface
439       {                                        << 190         (pPostStepPoint->GetPhysicalVolume()->
440         rIndexMPV = MPT->GetProperty(kRINDEX); << 191          GetLogicalVolume());
441       }                                        << 192       if(Surface == NULL)
442       if(rIndexMPV != nullptr)                 << 193         Surface = G4LogicalSkinSurface::GetSurface
443       {                                        << 194         (pPreStepPoint->GetPhysicalVolume()->
444         fRindex2 = rIndexMPV->Value(fPhotonMom << 195          GetLogicalVolume());
445       }                                        << 196     }
446       else                                     << 197     else{
447       {                                        << 198       Surface = G4LogicalSkinSurface::GetSurface
448         fStatus = NoRINDEX;                    << 199         (pPreStepPoint->GetPhysicalVolume()->
449         if(verboseLevel > 1)                   << 200          GetLogicalVolume());
450           BoundaryProcessVerbose();            << 201       if(Surface == NULL)
451         aParticleChange.ProposeLocalEnergyDepo << 202         Surface = G4LogicalSkinSurface::GetSurface
452         aParticleChange.ProposeTrackStatus(fSt << 203         (pPostStepPoint->GetPhysicalVolume()->
453         return G4VDiscreteProcess::PostStepDoI << 204          GetLogicalVolume());
454       }                                        << 205     }
455     }                                          << 206   }
456     if(fFinish == polishedbackpainted || fFini << 207 
457     {                                          << 208   //  if (Surface) OpticalSurface = dynamic_cast <G4OpticalSurface*> (Surface->GetSurfaceProperty());
458       DielectricDielectric();                  << 209   if (Surface) OpticalSurface = (G4OpticalSurface*) Surface->GetSurfaceProperty();
459     }                                          << 210 
460     else                                       << 211   if (OpticalSurface) {
461     {                                          << 212 
462       G4double rand = G4UniformRand();         << 213            type      = OpticalSurface->GetType();
463       if(rand > fReflectivity + fTransmittance << 214      theModel  = OpticalSurface->GetModel();
464       {                                        << 215      theFinish = OpticalSurface->GetFinish();
465         DoAbsorption();                        << 216 
466       }                                        << 217      aMaterialPropertiesTable = OpticalSurface->
467       else if(rand > fReflectivity)            << 218           GetMaterialPropertiesTable();
468       {                                        << 219 
469         fStatus          = Transmission;       << 220            if (aMaterialPropertiesTable) {
470         fNewMomentum     = fOldMomentum;       << 221 
471         fNewPolarization = fOldPolarization;   << 222               if (theFinish == polishedbackpainted ||
472       }                                        << 223                   theFinish == groundbackpainted ) {
473       else                                     << 224                   Rindex = aMaterialPropertiesTable->GetProperty("RINDEX");
474       {                                        << 225             if (Rindex) {
475         if(fFinish == polishedfrontpainted)    << 226                      Rindex2 = Rindex->GetProperty(thePhotonMomentum);
476         {                                      << 227                   }
477           DoReflection();                      << 228                   else {
478         }                                      << 229          theStatus = NoRINDEX;
479         else if(fFinish == groundfrontpainted) << 230                      aParticleChange.ProposeTrackStatus(fStopAndKill);
480         {                                      << 231                      return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
481           fStatus = LambertianReflection;      << 232                   }
482           DoReflection();                      << 233               }
483         }                                      << 234 
484         else                                   << 235               G4MaterialPropertyVector* PropertyPointer;
485         {                                      << 236 
486           DielectricDielectric();              << 237         PropertyPointer = 
487         }                                      << 238         aMaterialPropertiesTable->GetProperty("REFLECTIVITY");
488       }                                        << 239         if (PropertyPointer) { 
489     }                                          << 240                       theReflectivity =
490   }                                            << 241           PropertyPointer->GetProperty(thePhotonMomentum);
491   else if(type == dielectric_metal)            << 242               } else {
492   {                                            << 243                       theReflectivity = 1.0;
493     DielectricMetal();                         << 244               }
494   }                                            << 245 
495   else if(type == dielectric_LUT)              << 246         PropertyPointer = 
496   {                                            << 247         aMaterialPropertiesTable->GetProperty("EFFICIENCY");
497     DielectricLUT();                           << 248         if (PropertyPointer) {
498   }                                            << 249                       theEfficiency =
499   else if(type == dielectric_LUTDAVIS)         << 250           PropertyPointer->GetProperty(thePhotonMomentum);
500   {                                            << 251               } else {
501     DielectricLUTDAVIS();                      << 252                       theEfficiency = 0.0;
502   }                                            << 253               }
503   else if(type == dielectric_dichroic)         << 254 
504   {                                            << 255         if ( theModel == unified ) {
505     DielectricDichroic();                      << 256           PropertyPointer = 
506   }                                            << 257     aMaterialPropertiesTable->GetProperty("SPECULARLOBECONSTANT");
507   else if(type == coated)                      << 258           if (PropertyPointer) {
508   {                                            << 259                          prob_sl =
509     CoatedDielectricDielectric();              << 260        PropertyPointer->GetProperty(thePhotonMomentum);
510   }                                            << 261                 } else {
511   else                                         << 262                          prob_sl = 0.0;
512   {                                            << 263                 }
513     if(fNumBdryTypeWarnings <= 10)             << 264 
514     {                                          << 265           PropertyPointer = 
515       ++fNumBdryTypeWarnings;                  << 266     aMaterialPropertiesTable->GetProperty("SPECULARSPIKECONSTANT");
516       if(verboseLevel > 0)                     << 267           if (PropertyPointer) {
517       {                                        << 268                          prob_ss =
518         G4ExceptionDescription ed;             << 269        PropertyPointer->GetProperty(thePhotonMomentum);
519         ed << " PostStepDoIt(): Illegal bounda << 270                 } else {
520         if(fNumBdryTypeWarnings == 10)         << 271                          prob_ss = 0.0;
521         {                                      << 272                 }
522           ed << "** Boundary type warnings sto << 273 
                                                   >> 274           PropertyPointer = 
                                                   >> 275     aMaterialPropertiesTable->GetProperty("BACKSCATTERCONSTANT");
                                                   >> 276           if (PropertyPointer) {
                                                   >> 277                          prob_bs =
                                                   >> 278        PropertyPointer->GetProperty(thePhotonMomentum);
                                                   >> 279                 } else {
                                                   >> 280                          prob_bs = 0.0;
                                                   >> 281                 }
                                                   >> 282         }
                                                   >> 283      }
                                                   >> 284            else if (theFinish == polishedbackpainted ||
                                                   >> 285                     theFinish == groundbackpainted ) {
                                                   >> 286                       aParticleChange.ProposeTrackStatus(fStopAndKill);
                                                   >> 287                       return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
                                                   >> 288            }
                                                   >> 289         }
                                                   >> 290 
                                                   >> 291         if (type == dielectric_dielectric ) {
                                                   >> 292            if (theFinish == polished || theFinish == ground ) {
                                                   >> 293 
                                                   >> 294         if (Material1 == Material2){
                                                   >> 295      theStatus = SameMaterial;
                                                   >> 296      return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
                                                   >> 297         }
                                                   >> 298               aMaterialPropertiesTable = 
                                                   >> 299                      Material2->GetMaterialPropertiesTable();
                                                   >> 300               if (aMaterialPropertiesTable)
                                                   >> 301                  Rindex = aMaterialPropertiesTable->GetProperty("RINDEX");
                                                   >> 302               if (Rindex) {
                                                   >> 303                  Rindex2 = Rindex->GetProperty(thePhotonMomentum);
                                                   >> 304               }
                                                   >> 305               else {
                                                   >> 306      theStatus = NoRINDEX;
                                                   >> 307                  aParticleChange.ProposeTrackStatus(fStopAndKill);
                                                   >> 308                  return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
                                                   >> 309         }
                                                   >> 310            }
                                                   >> 311         }
                                                   >> 312 
                                                   >> 313         if ( verboseLevel > 0 ) {
                                                   >> 314                 G4cout << " Photon at Boundary! " << G4endl;
                                                   >> 315                 G4cout << " Old Momentum Direction: " << OldMomentum     << G4endl;
                                                   >> 316                 G4cout << " Old Polarization:       " << OldPolarization << G4endl;
                                                   >> 317         }
                                                   >> 318 
                                                   >> 319   G4ThreeVector theGlobalPoint = pPostStepPoint->GetPosition();
                                                   >> 320 
                                                   >> 321         G4Navigator* theNavigator =
                                                   >> 322                      G4TransportationManager::GetTransportationManager()->
                                                   >> 323                                               GetNavigatorForTracking();
                                                   >> 324 
                                                   >> 325   G4ThreeVector theLocalPoint = theNavigator->
                                                   >> 326                     GetGlobalToLocalTransform().
                                                   >> 327               TransformPoint(theGlobalPoint);
                                                   >> 328 
                                                   >> 329   G4ThreeVector theLocalNormal; // Normal points back into volume
                                                   >> 330 
                                                   >> 331   G4bool valid;
                                                   >> 332   theLocalNormal = theNavigator->GetLocalExitNormal(&valid);
                                                   >> 333 
                                                   >> 334   if (valid) {
                                                   >> 335     theLocalNormal = -theLocalNormal;
                                                   >> 336   }
                                                   >> 337   else {
                                                   >> 338     G4cerr << " G4OpBoundaryProcess/PostStepDoIt(): "
                                                   >> 339          << " The Navigator reports that it returned an invalid normal" 
                                                   >> 340          << G4endl;
                                                   >> 341   }
                                                   >> 342 
                                                   >> 343   theGlobalNormal = theNavigator->GetLocalToGlobalTransform().
                                                   >> 344                                   TransformAxis(theLocalNormal);
                                                   >> 345         if (OldMomentum * theGlobalNormal > 0.0) {
                                                   >> 346 #ifdef G4DEBUG_OPTICAL
                                                   >> 347            G4cerr << " G4OpBoundaryProcess/PostStepDoIt(): "
                                                   >> 348                   << " theGlobalNormal points the wrong direction "
                                                   >> 349                   << G4endl;
                                                   >> 350 #endif
                                                   >> 351            theGlobalNormal = -theGlobalNormal;
523         }                                         352         }
524         G4Exception("G4OpBoundaryProcess", "Op << 353   if (type == dielectric_metal) {
525       }                                        << 
526     }                                          << 
527     return G4VDiscreteProcess::PostStepDoIt(aT << 
528   }                                            << 
529                                                << 
530   fNewMomentum     = fNewMomentum.unit();      << 
531   fNewPolarization = fNewPolarization.unit();  << 
532                                                << 
533   if(verboseLevel > 1)                         << 
534   {                                            << 
535     G4cout << " New Momentum Direction: " << f << 
536            << " New Polarization:       " << f << 
537     BoundaryProcessVerbose();                  << 
538   }                                            << 
539                                                << 
540   aParticleChange.ProposeMomentumDirection(fNe << 
541   aParticleChange.ProposePolarization(fNewPola << 
542                                                << 
543   if(fStatus == FresnelRefraction || fStatus = << 
544   {                                            << 
545     // not all surface types check that fMater << 
546     G4MaterialPropertiesTable* aMPT = fMateria << 
547     G4MaterialPropertyVector* groupvel = nullp << 
548     if(aMPT != nullptr)                        << 
549     {                                          << 
550       groupvel = aMPT->GetProperty(kGROUPVEL); << 
551     }                                          << 
552     if(groupvel != nullptr)                    << 
553     {                                          << 
554       aParticleChange.ProposeVelocity(         << 
555         groupvel->Value(fPhotonMomentum, idx_g << 
556     }                                          << 
557   }                                            << 
558                                                << 
559   if(fStatus == Detection && fInvokeSD)        << 
560     InvokeSD(pStep);                           << 
561   return G4VDiscreteProcess::PostStepDoIt(aTra << 
562 }                                              << 
563                                                   354 
564 //....oooOO0OOooo........oooOO0OOooo........oo << 355     DielectricMetal();
565 void G4OpBoundaryProcess::BoundaryProcessVerbo << 
566 {                                              << 
567   G4cout << " *** ";                           << 
568   if(fStatus == Undefined)                     << 
569     G4cout << "Undefined";                     << 
570   else if(fStatus == Transmission)             << 
571     G4cout << "Transmission";                  << 
572   else if(fStatus == FresnelRefraction)        << 
573     G4cout << "FresnelRefraction";             << 
574   else if(fStatus == FresnelReflection)        << 
575     G4cout << "FresnelReflection";             << 
576   else if(fStatus == TotalInternalReflection)  << 
577     G4cout << "TotalInternalReflection";       << 
578   else if(fStatus == LambertianReflection)     << 
579     G4cout << "LambertianReflection";          << 
580   else if(fStatus == LobeReflection)           << 
581     G4cout << "LobeReflection";                << 
582   else if(fStatus == SpikeReflection)          << 
583     G4cout << "SpikeReflection";               << 
584   else if(fStatus == BackScattering)           << 
585     G4cout << "BackScattering";                << 
586   else if(fStatus == PolishedLumirrorAirReflec << 
587     G4cout << "PolishedLumirrorAirReflection"; << 
588   else if(fStatus == PolishedLumirrorGlueRefle << 
589     G4cout << "PolishedLumirrorGlueReflection" << 
590   else if(fStatus == PolishedAirReflection)    << 
591     G4cout << "PolishedAirReflection";         << 
592   else if(fStatus == PolishedTeflonAirReflecti << 
593     G4cout << "PolishedTeflonAirReflection";   << 
594   else if(fStatus == PolishedTiOAirReflection) << 
595     G4cout << "PolishedTiOAirReflection";      << 
596   else if(fStatus == PolishedTyvekAirReflectio << 
597     G4cout << "PolishedTyvekAirReflection";    << 
598   else if(fStatus == PolishedVM2000AirReflecti << 
599     G4cout << "PolishedVM2000AirReflection";   << 
600   else if(fStatus == PolishedVM2000GlueReflect << 
601     G4cout << "PolishedVM2000GlueReflection";  << 
602   else if(fStatus == EtchedLumirrorAirReflecti << 
603     G4cout << "EtchedLumirrorAirReflection";   << 
604   else if(fStatus == EtchedLumirrorGlueReflect << 
605     G4cout << "EtchedLumirrorGlueReflection";  << 
606   else if(fStatus == EtchedAirReflection)      << 
607     G4cout << "EtchedAirReflection";           << 
608   else if(fStatus == EtchedTeflonAirReflection << 
609     G4cout << "EtchedTeflonAirReflection";     << 
610   else if(fStatus == EtchedTiOAirReflection)   << 
611     G4cout << "EtchedTiOAirReflection";        << 
612   else if(fStatus == EtchedTyvekAirReflection) << 
613     G4cout << "EtchedTyvekAirReflection";      << 
614   else if(fStatus == EtchedVM2000AirReflection << 
615     G4cout << "EtchedVM2000AirReflection";     << 
616   else if(fStatus == EtchedVM2000GlueReflectio << 
617     G4cout << "EtchedVM2000GlueReflection";    << 
618   else if(fStatus == GroundLumirrorAirReflecti << 
619     G4cout << "GroundLumirrorAirReflection";   << 
620   else if(fStatus == GroundLumirrorGlueReflect << 
621     G4cout << "GroundLumirrorGlueReflection";  << 
622   else if(fStatus == GroundAirReflection)      << 
623     G4cout << "GroundAirReflection";           << 
624   else if(fStatus == GroundTeflonAirReflection << 
625     G4cout << "GroundTeflonAirReflection";     << 
626   else if(fStatus == GroundTiOAirReflection)   << 
627     G4cout << "GroundTiOAirReflection";        << 
628   else if(fStatus == GroundTyvekAirReflection) << 
629     G4cout << "GroundTyvekAirReflection";      << 
630   else if(fStatus == GroundVM2000AirReflection << 
631     G4cout << "GroundVM2000AirReflection";     << 
632   else if(fStatus == GroundVM2000GlueReflectio << 
633     G4cout << "GroundVM2000GlueReflection";    << 
634   else if(fStatus == Absorption)               << 
635     G4cout << "Absorption";                    << 
636   else if(fStatus == Detection)                << 
637     G4cout << "Detection";                     << 
638   else if(fStatus == NotAtBoundary)            << 
639     G4cout << "NotAtBoundary";                 << 
640   else if(fStatus == SameMaterial)             << 
641     G4cout << "SameMaterial";                  << 
642   else if(fStatus == StepTooSmall)             << 
643     G4cout << "StepTooSmall";                  << 
644   else if(fStatus == NoRINDEX)                 << 
645     G4cout << "NoRINDEX";                      << 
646   else if(fStatus == Dichroic)                 << 
647     G4cout << "Dichroic Transmission";         << 
648   else if(fStatus == CoatedDielectricReflectio << 
649     G4cout << "Coated Dielectric Reflection";  << 
650   else if(fStatus == CoatedDielectricRefractio << 
651     G4cout << "Coated Dielectric Refraction";  << 
652   else if(fStatus == CoatedDielectricFrustrate << 
653     G4cout << "Coated Dielectric Frustrated Tr << 
654                                                << 
655   G4cout << " ***" << G4endl;                  << 
656 }                                              << 
657                                                   356 
658 //....oooOO0OOooo........oooOO0OOooo........oo << 357   }
659 G4ThreeVector G4OpBoundaryProcess::GetFacetNor << 358   else if (type == dielectric_dielectric) {
660   const G4ThreeVector& momentum, const G4Three << 
661 {                                              << 
662   G4ThreeVector facetNormal;                   << 
663   if(fModel == unified || fModel == LUT || fMo << 
664   {                                            << 
665     /* This function codes alpha to a random v << 
666     distribution p(alpha) = g(alpha; 0, sigma_ << 
667     for alpha > 0 and alpha < 90, where g(alph << 
668     gaussian distribution with mean 0 and stan << 
669                                                << 
670     G4double sigma_alpha = 0.0;                << 
671     if(fOpticalSurface)                        << 
672       sigma_alpha = fOpticalSurface->GetSigmaA << 
673     if(sigma_alpha == 0.0)                     << 
674     {                                          << 
675       return normal;                           << 
676     }                                          << 
677                                                << 
678     G4double f_max = std::min(1.0, 4. * sigma_ << 
679     G4double alpha, phi, sinAlpha;             << 
680                                                << 
681     do                                         << 
682     {  // Loop checking, 13-Aug-2015, Peter Gu << 
683       do                                       << 
684       {  // Loop checking, 13-Aug-2015, Peter  << 
685         alpha    = G4RandGauss::shoot(0.0, sig << 
686         sinAlpha = std::sin(alpha);            << 
687       } while(G4UniformRand() * f_max > sinAlp << 
688                                                << 
689       phi = G4UniformRand() * twopi;           << 
690       facetNormal.set(sinAlpha * std::cos(phi) << 
691                       std::cos(alpha));        << 
692       facetNormal.rotateUz(normal);            << 
693     } while(momentum * facetNormal >= 0.0);    << 
694   }                                            << 
695   else                                         << 
696   {                                            << 
697     G4double polish = 1.0;                     << 
698     if(fOpticalSurface)                        << 
699       polish = fOpticalSurface->GetPolish();   << 
700     if(polish < 1.0)                           << 
701     {                                          << 
702       do                                       << 
703       {  // Loop checking, 13-Aug-2015, Peter  << 
704         G4ThreeVector smear;                   << 
705         do                                     << 
706         {  // Loop checking, 13-Aug-2015, Pete << 
707           smear.setX(2. * G4UniformRand() - 1. << 
708           smear.setY(2. * G4UniformRand() - 1. << 
709           smear.setZ(2. * G4UniformRand() - 1. << 
710         } while(smear.mag2() > 1.0);           << 
711         facetNormal = normal + (1. - polish) * << 
712       } while(momentum * facetNormal >= 0.0);  << 
713       facetNormal = facetNormal.unit();        << 
714     }                                          << 
715     else                                       << 
716     {                                          << 
717       facetNormal = normal;                    << 
718     }                                          << 
719   }                                            << 
720   return facetNormal;                          << 
721 }                                              << 
722                                                   359 
723 //....oooOO0OOooo........oooOO0OOooo........oo << 360     if ( theFinish == polishedfrontpainted ||
724 void G4OpBoundaryProcess::DielectricMetal()    << 361          theFinish == groundfrontpainted ) {
725 {                                              << 362             if( !G4BooleanRand(theReflectivity) ) {
726   G4int n = 0;                                 << 363         DoAbsorption();
727   G4double rand;                               << 364       }
728   G4ThreeVector A_trans;                       << 365             else {
729                                                << 366         if ( theFinish == groundfrontpainted )
730   do                                           << 367           theStatus = LambertianReflection;
731   {                                            << 368         DoReflection();
732     ++n;                                       << 369       }
733     rand = G4UniformRand();                    << 370     }
734     if(rand > fReflectivity && n == 1)         << 371     else {
735     {                                          << 372       DielectricDielectric();
736       if(rand > fReflectivity + fTransmittance << 373     }
737       {                                        << 374   }
738         DoAbsorption();                        << 375   else {
739       }                                        << 376 
740       else                                     << 377     G4cerr << " Error: G4BoundaryProcess: illegal boundary type " << G4endl;
741       {                                        << 378     return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
742         fStatus          = Transmission;       << 379 
743         fNewMomentum     = fOldMomentum;       << 380   }
744         fNewPolarization = fOldPolarization;   << 381 
745       }                                        << 382         NewMomentum = NewMomentum.unit();
746       break;                                   << 383         NewPolarization = NewPolarization.unit();
747     }                                          << 384 
748     else                                       << 385         if ( verboseLevel > 0) {
749     {                                          << 386     G4cout << " New Momentum Direction: " << NewMomentum     << G4endl;
750       if(fRealRIndexMPV && fImagRIndexMPV)     << 387     G4cout << " New Polarization:       " << NewPolarization << G4endl;
751       {                                        << 388     if ( theStatus == Undefined )
752         if(n > 1)                              << 389       G4cout << " *** Undefined *** " << G4endl;
753         {                                      << 390     if ( theStatus == FresnelRefraction )
754           CalculateReflectivity();             << 391       G4cout << " *** FresnelRefraction *** " << G4endl;
755           if(!G4BooleanRand(fReflectivity))    << 392     if ( theStatus == FresnelReflection )
756           {                                    << 393       G4cout << " *** FresnelReflection *** " << G4endl;
757             DoAbsorption();                    << 394     if ( theStatus == TotalInternalReflection )
758             break;                             << 395       G4cout << " *** TotalInternalReflection *** " << G4endl;
759           }                                    << 396     if ( theStatus == LambertianReflection )
760         }                                      << 397       G4cout << " *** LambertianReflection *** " << G4endl;
761       }                                        << 398     if ( theStatus == LobeReflection ) 
762       if(fModel == glisur || fFinish == polish << 399       G4cout << " *** LobeReflection *** " << G4endl;
763       {                                        << 400     if ( theStatus == SpikeReflection )
764         DoReflection();                        << 401       G4cout << " *** SpikeReflection *** " << G4endl;
765       }                                        << 402     if ( theStatus == BackScattering )
766       else                                     << 403       G4cout << " *** BackScattering *** " << G4endl;
767       {                                        << 404     if ( theStatus == Absorption )
768         if(n == 1)                             << 405       G4cout << " *** Absorption *** " << G4endl;
769           ChooseReflection();                  << 406     if ( theStatus == Detection )
770         if(fStatus == LambertianReflection)    << 407       G4cout << " *** Detection *** " << G4endl;
771         {                                      << 408                 if ( theStatus == NotAtBoundary )
772           DoReflection();                      << 409                         G4cout << " *** NotAtBoundary *** " << G4endl;
773         }                                      << 410                 if ( theStatus == SameMaterial )
774         else if(fStatus == BackScattering)     << 411                         G4cout << " *** SameMaterial *** " << G4endl;
775         {                                      << 412                 if ( theStatus == StepTooSmall )
776           fNewMomentum     = -fOldMomentum;    << 413                         G4cout << " *** StepTooSmall *** " << G4endl;
777           fNewPolarization = -fOldPolarization << 414                 if ( theStatus == NoRINDEX )
778         }                                      << 415                         G4cout << " *** NoRINDEX *** " << G4endl;
779         else                                   << 
780         {                                      << 
781           if(fStatus == LobeReflection)        << 
782           {                                    << 
783             if(!fRealRIndexMPV || !fImagRIndex << 
784             {                                  << 
785               fFacetNormal = GetFacetNormal(fO << 
786             }                                  << 
787             // else                            << 
788             //  case of complex rindex needs t << 
789           }                                    << 
790           fNewMomentum =                       << 
791             fOldMomentum - 2. * fOldMomentum * << 
792                                                << 
793           if(f_iTE > 0 && f_iTM > 0)           << 
794           {                                    << 
795             fNewPolarization =                 << 
796               -fOldPolarization +              << 
797               (2. * fOldPolarization * fFacetN << 
798           }                                    << 
799           else if(f_iTE > 0)                   << 
800           {                                    << 
801             A_trans = (fSint1 > 0.0) ? fOldMom << 
802                                      : fOldPol << 
803             fNewPolarization = -A_trans;       << 
804           }                                    << 
805           else if(f_iTM > 0)                   << 
806           {                                    << 
807             fNewPolarization =                 << 
808               -fNewMomentum.cross(A_trans).uni << 
809           }                                    << 
810         }                                         416         }
811       }                                        << 
812       fOldMomentum     = fNewMomentum;         << 
813       fOldPolarization = fNewPolarization;     << 
814     }                                          << 
815     // Loop checking, 13-Aug-2015, Peter Gumpl << 
816   } while(fNewMomentum * fGlobalNormal < 0.0); << 
817 }                                              << 
818                                                   417 
819 //....oooOO0OOooo........oooOO0OOooo........oo << 418   aParticleChange.ProposeMomentumDirection(NewMomentum);
820 void G4OpBoundaryProcess::DielectricLUT()      << 419   aParticleChange.ProposePolarization(NewPolarization);
821 {                                              << 
822   G4int thetaIndex, phiIndex;                  << 
823   G4double angularDistVal, thetaRad, phiRad;   << 
824   G4ThreeVector perpVectorTheta, perpVectorPhi << 
825                                                << 
826   fStatus = G4OpBoundaryProcessStatus(         << 
827     G4int(fFinish) + (G4int(NoRINDEX) - G4int( << 
828                                                << 
829   G4int thetaIndexMax = fOpticalSurface->GetTh << 
830   G4int phiIndexMax   = fOpticalSurface->GetPh << 
831                                                << 
832   G4double rand;                               << 
833                                                << 
834   do                                           << 
835   {                                            << 
836     rand = G4UniformRand();                    << 
837     if(rand > fReflectivity)                   << 
838     {                                          << 
839       if(rand > fReflectivity + fTransmittance << 
840       {                                        << 
841         DoAbsorption();                        << 
842       }                                        << 
843       else                                     << 
844       {                                        << 
845         fStatus          = Transmission;       << 
846         fNewMomentum     = fOldMomentum;       << 
847         fNewPolarization = fOldPolarization;   << 
848       }                                        << 
849       break;                                   << 
850     }                                          << 
851     else                                       << 
852     {                                          << 
853       // Calculate Angle between Normal and Ph << 
854       G4double anglePhotonToNormal = fOldMomen << 
855       // Round to closest integer: LBNL model  << 
856       G4int angleIncident = (G4int)std::lrint( << 
857                                                << 
858       // Take random angles THETA and PHI,     << 
859       // and see if below Probability - if not << 
860       do                                       << 
861       {                                        << 
862         thetaIndex = (G4int)G4RandFlat::shootI << 
863         phiIndex   = (G4int)G4RandFlat::shootI << 
864         // Find probability with the new indec << 
865         angularDistVal = fOpticalSurface->GetA << 
866           angleIncident, thetaIndex, phiIndex) << 
867         // Loop checking, 13-Aug-2015, Peter G << 
868       } while(!G4BooleanRand(angularDistVal)); << 
869                                                << 
870       thetaRad = G4double(-90 + 4 * thetaIndex << 
871       phiRad   = G4double(-90 + 5 * phiIndex)  << 
872       // Rotate Photon Momentum in Theta, then << 
873       fNewMomentum = -fOldMomentum;            << 
874                                                << 
875       perpVectorTheta = fNewMomentum.cross(fGl << 
876       if(perpVectorTheta.mag() < fCarTolerance << 
877       {                                        << 
878         perpVectorTheta = fNewMomentum.orthogo << 
879       }                                        << 
880       fNewMomentum =                           << 
881         fNewMomentum.rotate(anglePhotonToNorma << 
882       perpVectorPhi = perpVectorTheta.cross(fN << 
883       fNewMomentum  = fNewMomentum.rotate(-phi << 
884                                                << 
885       // Rotate Polarization too:              << 
886       fFacetNormal     = (fNewMomentum - fOldM << 
887       fNewPolarization = -fOldPolarization +   << 
888                          (2. * fOldPolarizatio << 
889     }                                          << 
890     // Loop checking, 13-Aug-2015, Peter Gumpl << 
891   } while(fNewMomentum * fGlobalNormal <= 0.0) << 
892 }                                              << 
893                                                   420 
894 //....oooOO0OOooo........oooOO0OOooo........oo << 421         return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
895 void G4OpBoundaryProcess::DielectricLUTDAVIS() << 422 }
896 {                                              << 
897   G4int angindex, random, angleIncident;       << 
898   G4double reflectivityValue, elevation, azimu << 
899   G4double anglePhotonToNormal;                << 
900                                                << 
901   G4int lutbin  = fOpticalSurface->GetLUTbins( << 
902   G4double rand = G4UniformRand();             << 
903                                                << 
904   G4double sinEl;                              << 
905   G4ThreeVector u, vNorm, w;                   << 
906                                                << 
907   do                                           << 
908   {                                            << 
909     anglePhotonToNormal = fOldMomentum.angle(- << 
910                                                << 
911     // Davis model has 90 reflection bins: rou << 
912     // don't allow angleIncident to be 90 for  << 
913     angleIncident = std::min(                  << 
914       static_cast<G4int>(std::floor(anglePhoto << 
915     reflectivityValue = fOpticalSurface->GetRe << 
916                                                << 
917     if(rand > reflectivityValue)               << 
918     {                                          << 
919       if(fEfficiency > 0.)                     << 
920       {                                        << 
921         DoAbsorption();                        << 
922         break;                                 << 
923       }                                        << 
924       else                                     << 
925       {                                        << 
926         fStatus = Transmission;                << 
927                                                << 
928         if(angleIncident <= 0.01)              << 
929         {                                      << 
930           fNewMomentum = fOldMomentum;         << 
931           break;                               << 
932         }                                      << 
933                                                   423 
934         do                                     << 424 G4ThreeVector 
935         {                                      << 425 G4OpBoundaryProcess::GetFacetNormal(const G4ThreeVector& Momentum,
936           random = (G4int)G4RandFlat::shootInt << 426                   const G4ThreeVector&  Normal ) const
937           angindex =                           << 427 {
938             (((random * 2) - 1)) + angleIncide << 428         G4ThreeVector FacetNormal;
939                                                << 429 
940           azimuth =                            << 430   if (theModel == unified) {
941             fOpticalSurface->GetAngularDistrib << 431 
942           elevation = fOpticalSurface->GetAngu << 432   /* This function code alpha to a random value taken from the
943         } while(elevation == 0. && azimuth ==  << 433            distribution p(alpha) = g(alpha; 0, sigma_alpha)*std::sin(alpha), 
944                                                << 434            for alpha > 0 and alpha < 90, where g(alpha; 0, sigma_alpha) 
945         sinEl = std::sin(elevation);           << 435            is a gaussian distribution with mean 0 and standard deviation 
946         vNorm = (fGlobalNormal.cross(fOldMomen << 436            sigma_alpha.  */
947         u     = vNorm.cross(fGlobalNormal) * ( << 437 
948         vNorm *= (sinEl * std::sin(azimuth));  << 438      G4double alpha;
949         // fGlobalNormal shouldn't be modified << 439 
950         w            = (fGlobalNormal *= std:: << 440      G4double sigma_alpha = 0.0;
951         fNewMomentum = u + vNorm + w;          << 441      if (OpticalSurface) sigma_alpha = OpticalSurface->GetSigmaAlpha();
952                                                << 442 
953         // Rotate Polarization too:            << 443      G4double f_max = std::min(1.0,4.*sigma_alpha);
954         fFacetNormal     = (fNewMomentum - fOl << 444 
955         fNewPolarization = -fOldPolarization + << 445      do {
956                                                << 446         do {
957       }                                        << 447            alpha = G4RandGauss::shoot(0.0,sigma_alpha);
958     }                                          << 448         } while (G4UniformRand()*f_max > std::sin(alpha) || alpha >= halfpi );
959     else                                       << 449 
960     {                                          << 450         G4double phi = G4UniformRand()*twopi;
961       fStatus = LobeReflection;                << 451 
962                                                << 452         G4double SinAlpha = std::sin(alpha);
963       if(angleIncident == 0)                   << 453         G4double CosAlpha = std::cos(alpha);
964       {                                        << 454               G4double SinPhi = std::sin(phi);
965         fNewMomentum = -fOldMomentum;          << 455               G4double CosPhi = std::cos(phi);
966         break;                                 << 456 
967       }                                        << 457               G4double unit_x = SinAlpha * CosPhi;
968                                                << 458               G4double unit_y = SinAlpha * SinPhi;
969       do                                       << 459               G4double unit_z = CosAlpha;
970       {                                        << 460 
971         random   = (G4int)G4RandFlat::shootInt << 461         FacetNormal.setX(unit_x);
972         angindex = (((random * 2) - 1)) + (ang << 462         FacetNormal.setY(unit_y);
973                                                << 463         FacetNormal.setZ(unit_z);
974         azimuth = fOpticalSurface->GetAngularD << 464 
975         elevation = fOpticalSurface->GetAngula << 465         G4ThreeVector tmpNormal = Normal;
976       } while(elevation == 0. && azimuth == 0. << 466 
977                                                << 467         FacetNormal.rotateUz(tmpNormal);
978       sinEl = std::sin(elevation);             << 468      } while (Momentum * FacetNormal >= 0.0);
979       vNorm = (fGlobalNormal.cross(fOldMomentu << 469   }
980       u     = vNorm.cross(fGlobalNormal) * (si << 470   else {
981       vNorm *= (sinEl * std::sin(azimuth));    << 471 
982       // fGlobalNormal shouldn't be modified h << 472      G4double  polish = 1.0;
983       w = (fGlobalNormal *= std::cos(elevation << 473      if (OpticalSurface) polish = OpticalSurface->GetPolish();
984                                                << 474 
985       fNewMomentum = u + vNorm + w;            << 475            if (polish < 1.0) {
986                                                << 476               do {
987       // Rotate Polarization too: (needs revis << 477                  G4ThreeVector smear;
988       fNewPolarization = fOldPolarization;     << 478                  do {
989     }                                          << 479                     smear.setX(2.*G4UniformRand()-1.0);
990   } while(fNewMomentum * fGlobalNormal <= 0.0) << 480                     smear.setY(2.*G4UniformRand()-1.0);
                                                   >> 481                     smear.setZ(2.*G4UniformRand()-1.0);
                                                   >> 482                  } while (smear.mag()>1.0);
                                                   >> 483                  smear = (1.-polish) * smear;
                                                   >> 484                  FacetNormal = Normal + smear;
                                                   >> 485               } while (Momentum * FacetNormal >= 0.0);
                                                   >> 486               FacetNormal = FacetNormal.unit();
                                                   >> 487      }
                                                   >> 488            else {
                                                   >> 489               FacetNormal = Normal;
                                                   >> 490            }
                                                   >> 491   }
                                                   >> 492   return FacetNormal;
991 }                                                 493 }
992                                                   494 
993 //....oooOO0OOooo........oooOO0OOooo........oo << 495 void G4OpBoundaryProcess::DielectricMetal()
994 void G4OpBoundaryProcess::DielectricDichroic() << 
995 {                                                 496 {
996   // Calculate Angle between Normal and Photon << 497         G4int n = 0;
997   G4double anglePhotonToNormal = fOldMomentum. << 
998                                                   498 
999   // Round it to closest integer               << 499   do {
1000   G4double angleIncident = std::floor(180. /  << 
1001                                                  500 
1002   if(!fDichroicVector)                        << 501            n++;
1003   {                                           << 
1004     if(fOpticalSurface)                       << 
1005       fDichroicVector = fOpticalSurface->GetD << 
1006   }                                           << 
1007                                               << 
1008   if(fDichroicVector)                         << 
1009   {                                           << 
1010     G4double wavelength = h_Planck * c_light  << 
1011     fTransmittance      = fDichroicVector->Va << 
1012                                             i << 
1013                      perCent;                 << 
1014     //   G4cout << "wavelength: " << std::flo << 
1015     //                            << "nm" <<  << 
1016     //   G4cout << "Incident angle: " << angl << 
1017     //   G4cout << "Transmittance: "          << 
1018     //          << std::floor(fTransmittance/ << 
1019   }                                           << 
1020   else                                        << 
1021   {                                           << 
1022     G4ExceptionDescription ed;                << 
1023     ed << " G4OpBoundaryProcess/DielectricDic << 
1024        << " The dichroic surface has no G4Phy << 
1025     G4Exception("G4OpBoundaryProcess::Dielect << 
1026                 FatalException, ed,           << 
1027                 "A dichroic surface must have << 
1028   }                                           << 
1029                                               << 
1030   if(!G4BooleanRand(fTransmittance))          << 
1031   {  // Not transmitted, so reflect           << 
1032     if(fModel == glisur || fFinish == polishe << 
1033     {                                         << 
1034       DoReflection();                         << 
1035     }                                         << 
1036     else                                      << 
1037     {                                         << 
1038       ChooseReflection();                     << 
1039       if(fStatus == LambertianReflection)     << 
1040       {                                       << 
1041         DoReflection();                       << 
1042       }                                       << 
1043       else if(fStatus == BackScattering)      << 
1044       {                                       << 
1045         fNewMomentum     = -fOldMomentum;     << 
1046         fNewPolarization = -fOldPolarization; << 
1047       }                                       << 
1048       else                                    << 
1049       {                                       << 
1050         G4double PdotN, EdotN;                << 
1051         do                                    << 
1052         {                                     << 
1053           if(fStatus == LobeReflection)       << 
1054           {                                   << 
1055             fFacetNormal = GetFacetNormal(fOl << 
1056           }                                   << 
1057           PdotN        = fOldMomentum * fFace << 
1058           fNewMomentum = fOldMomentum - (2. * << 
1059           // Loop checking, 13-Aug-2015, Pete << 
1060         } while(fNewMomentum * fGlobalNormal  << 
1061                                               << 
1062         EdotN            = fOldPolarization * << 
1063         fNewPolarization = -fOldPolarization  << 
1064       }                                       << 
1065     }                                         << 
1066   }                                           << 
1067   else                                        << 
1068   {                                           << 
1069     fStatus          = Dichroic;              << 
1070     fNewMomentum     = fOldMomentum;          << 
1071     fNewPolarization = fOldPolarization;      << 
1072   }                                           << 
1073 }                                             << 
1074                                                  502 
1075 //....oooOO0OOooo........oooOO0OOooo........o << 503            if( !G4BooleanRand(theReflectivity) && n == 1 ) {
1076 void G4OpBoundaryProcess::DielectricDielectri << 
1077 {                                             << 
1078   G4bool inside = false;                      << 
1079   G4bool swap   = false;                      << 
1080                                                  504 
1081   if(fFinish == polished)                     << 505              DoAbsorption();
1082   {                                           << 506              break;
1083     fFacetNormal = fGlobalNormal;             << 
1084   }                                           << 
1085   else                                        << 
1086   {                                           << 
1087     fFacetNormal = GetFacetNormal(fOldMomentu << 
1088   }                                           << 
1089   G4double cost1 = -fOldMomentum * fFacetNorm << 
1090   G4double cost2 = 0.;                        << 
1091   G4double sint2 = 0.;                        << 
1092                                               << 
1093   G4bool surfaceRoughnessCriterionPass = true << 
1094   if(fSurfaceRoughness != 0. && fRindex1 > fR << 
1095   {                                           << 
1096     G4double wavelength                = h_Pl << 
1097     G4double surfaceRoughnessCriterion = std: << 
1098       (4. * pi * fSurfaceRoughness * fRindex1 << 
1099     surfaceRoughnessCriterionPass = G4Boolean << 
1100   }                                           << 
1101                                               << 
1102 leap:                                         << 
1103                                               << 
1104   G4bool through = false;                     << 
1105   G4bool done    = false;                     << 
1106                                               << 
1107   G4ThreeVector A_trans, A_paral, E1pp, E1pl; << 
1108   G4double E1_perp, E1_parl;                  << 
1109   G4double s1, s2, E2_perp, E2_parl, E2_total << 
1110   G4double E2_abs, C_parl, C_perp;            << 
1111   G4double alpha;                             << 
1112                                               << 
1113   do                                          << 
1114   {                                           << 
1115     if(through)                               << 
1116     {                                         << 
1117       swap          = !swap;                  << 
1118       through       = false;                  << 
1119       fGlobalNormal = -fGlobalNormal;         << 
1120       G4SwapPtr(fMaterial1, fMaterial2);      << 
1121       G4SwapObj(&fRindex1, &fRindex2);        << 
1122     }                                         << 
1123                                               << 
1124     if(fFinish == polished)                   << 
1125     {                                         << 
1126       fFacetNormal = fGlobalNormal;           << 
1127     }                                         << 
1128     else                                      << 
1129     {                                         << 
1130       fFacetNormal = GetFacetNormal(fOldMomen << 
1131     }                                         << 
1132                                               << 
1133     cost1 = -fOldMomentum * fFacetNormal;     << 
1134     if(std::abs(cost1) < 1.0 - fCarTolerance) << 
1135     {                                         << 
1136       fSint1 = std::sqrt(1. - cost1 * cost1); << 
1137       sint2  = fSint1 * fRindex1 / fRindex2;  << 
1138       // this isn't a sine as we might expect << 
1139     }                                         << 
1140     else                                      << 
1141     {                                         << 
1142       fSint1 = 0.0;                           << 
1143       sint2  = 0.0;                           << 
1144     }                                         << 
1145                                               << 
1146     // TOTAL INTERNAL REFLECTION              << 
1147     if(sint2 >= 1.0)                          << 
1148     {                                         << 
1149       swap = false;                           << 
1150                                               << 
1151       fStatus = TotalInternalReflection;      << 
1152       if(!surfaceRoughnessCriterionPass)      << 
1153         fStatus = LambertianReflection;       << 
1154       if(fModel == unified && fFinish != poli << 
1155         ChooseReflection();                   << 
1156       if(fStatus == LambertianReflection)     << 
1157       {                                       << 
1158         DoReflection();                       << 
1159       }                                       << 
1160       else if(fStatus == BackScattering)      << 
1161       {                                       << 
1162         fNewMomentum     = -fOldMomentum;     << 
1163         fNewPolarization = -fOldPolarization; << 
1164       }                                       << 
1165       else                                    << 
1166       {                                       << 
1167         fNewMomentum =                        << 
1168           fOldMomentum - 2. * fOldMomentum *  << 
1169         fNewPolarization = -fOldPolarization  << 
1170                                               << 
1171       }                                       << 
1172     }                                         << 
1173     // NOT TIR                                << 
1174     else if(sint2 < 1.0)                      << 
1175     {                                         << 
1176       // Calculate amplitude for transmission << 
1177       if(cost1 > 0.0)                         << 
1178       {                                       << 
1179         cost2 = std::sqrt(1. - sint2 * sint2) << 
1180       }                                       << 
1181       else                                    << 
1182       {                                       << 
1183         cost2 = -std::sqrt(1. - sint2 * sint2 << 
1184       }                                       << 
1185                                               << 
1186       if(fSint1 > 0.0)                        << 
1187       {                                       << 
1188         A_trans = (fOldMomentum.cross(fFacetN << 
1189         E1_perp = fOldPolarization * A_trans; << 
1190         E1pp    = E1_perp * A_trans;          << 
1191         E1pl    = fOldPolarization - E1pp;    << 
1192         E1_parl = E1pl.mag();                 << 
1193       }                                       << 
1194       else                                    << 
1195       {                                       << 
1196         A_trans = fOldPolarization;           << 
1197         // Here we Follow Jackson's conventio << 
1198         // component = 1 in case of a ray per << 
1199         E1_perp = 0.0;                        << 
1200         E1_parl = 1.0;                        << 
1201       }                                       << 
1202                                               << 
1203       s1       = fRindex1 * cost1;            << 
1204       E2_perp  = 2. * s1 * E1_perp / (fRindex << 
1205       E2_parl  = 2. * s1 * E1_parl / (fRindex << 
1206       E2_total = E2_perp * E2_perp + E2_parl  << 
1207       s2       = fRindex2 * cost2 * E2_total; << 
1208                                               << 
1209       // D.Sawkey, 24 May 24                  << 
1210       // Transmittance has already been taken << 
1211       // For e.g. specular surfaces, the rati << 
1212       // reflection should be given by the ma << 
1213       // TRANSMITTANCE                        << 
1214       //if(fTransmittance > 0.)               << 
1215       //  transCoeff = fTransmittance;        << 
1216       //else if(cost1 != 0.0)                 << 
1217       if(cost1 != 0.0)                        << 
1218         transCoeff = s2 / s1;                 << 
1219       else                                    << 
1220         transCoeff = 0.0;                     << 
1221                                               << 
1222       // NOT TIR: REFLECTION                  << 
1223       if(!G4BooleanRand(transCoeff))          << 
1224       {                                       << 
1225         swap    = false;                      << 
1226         fStatus = FresnelReflection;          << 
1227                                               << 
1228         if(!surfaceRoughnessCriterionPass)    << 
1229           fStatus = LambertianReflection;     << 
1230         if(fModel == unified && fFinish != po << 
1231           ChooseReflection();                 << 
1232         if(fStatus == LambertianReflection)   << 
1233         {                                     << 
1234           DoReflection();                     << 
1235         }                                     << 
1236         else if(fStatus == BackScattering)    << 
1237         {                                     << 
1238           fNewMomentum     = -fOldMomentum;   << 
1239           fNewPolarization = -fOldPolarizatio << 
1240         }                                     << 
1241         else                                  << 
1242         {                                     << 
1243           fNewMomentum =                      << 
1244             fOldMomentum - 2. * fOldMomentum  << 
1245           if(fSint1 > 0.0)                    << 
1246           {  // incident ray oblique          << 
1247             E2_parl  = fRindex2 * E2_parl / f << 
1248             E2_perp  = E2_perp - E1_perp;     << 
1249             E2_total = E2_perp * E2_perp + E2 << 
1250             A_paral  = (fNewMomentum.cross(A_ << 
1251             E2_abs   = std::sqrt(E2_total);   << 
1252             C_parl   = E2_parl / E2_abs;      << 
1253             C_perp   = E2_perp / E2_abs;      << 
1254                                               << 
1255             fNewPolarization = C_parl * A_par << 
1256           }                                   << 
1257           else                                << 
1258           {  // incident ray perpendicular    << 
1259             if(fRindex2 > fRindex1)           << 
1260             {                                 << 
1261               fNewPolarization = -fOldPolariz << 
1262             }                                 << 
1263             else                              << 
1264             {                                 << 
1265               fNewPolarization = fOldPolariza << 
1266             }                                 << 
1267           }                                   << 
1268         }                                     << 
1269       }                                       << 
1270       // NOT TIR: TRANSMISSION                << 
1271       else                                    << 
1272       {                                       << 
1273         inside  = !inside;                    << 
1274         through = true;                       << 
1275         fStatus = FresnelRefraction;          << 
1276                                               << 
1277         if(fSint1 > 0.0)                      << 
1278         {  // incident ray oblique            << 
1279           alpha        = cost1 - cost2 * (fRi << 
1280           fNewMomentum = (fOldMomentum + alph << 
1281           A_paral      = (fNewMomentum.cross( << 
1282           E2_abs       = std::sqrt(E2_total); << 
1283           C_parl       = E2_parl / E2_abs;    << 
1284           C_perp       = E2_perp / E2_abs;    << 
1285                                                  507 
1286           fNewPolarization = C_parl * A_paral << 508            }
1287         }                                     << 509            else {
1288         else                                  << 
1289         {  // incident ray perpendicular      << 
1290           fNewMomentum     = fOldMomentum;    << 
1291           fNewPolarization = fOldPolarization << 
1292         }                                     << 
1293       }                                       << 
1294     }                                         << 
1295                                                  510 
1296     fOldMomentum     = fNewMomentum.unit();   << 511              if ( theModel == glisur || theFinish == polished ) {
1297     fOldPolarization = fNewPolarization.unit( << 
1298                                                  512 
1299     if(fStatus == FresnelRefraction)          << 513                 DoReflection();
1300     {                                         << 
1301       done = (fNewMomentum * fGlobalNormal <= << 
1302     }                                         << 
1303     else                                      << 
1304     {                                         << 
1305       done = (fNewMomentum * fGlobalNormal >= << 
1306     }                                         << 
1307     // Loop checking, 13-Aug-2015, Peter Gump << 
1308   } while(!done);                             << 
1309                                               << 
1310   if(inside && !swap)                         << 
1311   {                                           << 
1312     if(fFinish == polishedbackpainted || fFin << 
1313     {                                         << 
1314       G4double rand = G4UniformRand();        << 
1315       if(rand > fReflectivity + fTransmittanc << 
1316       {                                       << 
1317         DoAbsorption();                       << 
1318       }                                       << 
1319       else if(rand > fReflectivity)           << 
1320       {                                       << 
1321         fStatus          = Transmission;      << 
1322         fNewMomentum     = fOldMomentum;      << 
1323         fNewPolarization = fOldPolarization;  << 
1324       }                                       << 
1325       else                                    << 
1326       {                                       << 
1327         if(fStatus != FresnelRefraction)      << 
1328         {                                     << 
1329           fGlobalNormal = -fGlobalNormal;     << 
1330         }                                     << 
1331         else                                  << 
1332         {                                     << 
1333           swap = !swap;                       << 
1334           G4SwapPtr(fMaterial1, fMaterial2);  << 
1335           G4SwapObj(&fRindex1, &fRindex2);    << 
1336         }                                     << 
1337         if(fFinish == groundbackpainted)      << 
1338           fStatus = LambertianReflection;     << 
1339                                                  514 
1340         DoReflection();                       << 515              } else {
1341                                                  516 
1342         fGlobalNormal = -fGlobalNormal;       << 517                 if ( n == 1 ) ChooseReflection();
1343         fOldMomentum  = fNewMomentum;         << 518                                                                                 
                                                   >> 519                 if ( theStatus == LambertianReflection ) {
                                                   >> 520                    DoReflection();
                                                   >> 521                 }
                                                   >> 522                 else if ( theStatus == BackScattering ) {
                                                   >> 523                    NewMomentum = -OldMomentum;
                                                   >> 524                    NewPolarization = -OldPolarization;
                                                   >> 525                 }
                                                   >> 526                 else {
1344                                                  527 
1345         goto leap;                            << 528                    if(theStatus==LobeReflection)theFacetNormal = 
1346       }                                       << 529                              GetFacetNormal(OldMomentum,theGlobalNormal);
1347     }                                         << 
1348   }                                           << 
1349 }                                             << 
1350                                                  530 
1351 //....oooOO0OOooo........oooOO0OOooo........o << 531                    G4double PdotN = OldMomentum * theFacetNormal;
1352 G4double G4OpBoundaryProcess::GetMeanFreePath << 532                    NewMomentum = OldMomentum - (2.*PdotN)*theFacetNormal;
1353                                               << 533                    G4double EdotN = OldPolarization * theFacetNormal;
1354 {                                             << 534                    NewPolarization = -OldPolarization + (2.*EdotN)*theFacetNormal;                                                                                
1355   *condition = Forced;                        << 535                 }
1356   return DBL_MAX;                             << 
1357 }                                             << 
1358                                                  536 
1359 //....oooOO0OOooo........oooOO0OOooo........o << 537              }
1360 G4double G4OpBoundaryProcess::GetIncidentAngl << 
1361 {                                             << 
1362   return pi - std::acos(fOldMomentum * fFacet << 
1363                         (fOldMomentum.mag() * << 
1364 }                                             << 
1365                                                  538 
1366 //....oooOO0OOooo........oooOO0OOooo........o << 539              OldMomentum = NewMomentum;
1367 G4double G4OpBoundaryProcess::GetReflectivity << 540              OldPolarization = NewPolarization;
1368                                               << 
1369                                               << 
1370                                               << 
1371                                               << 
1372 {                                             << 
1373   G4complex reflectivity, reflectivity_TE, re << 
1374   G4complex N1(fRindex1, 0.), N2(realRindex,  << 
1375   G4complex cosPhi;                           << 
1376                                               << 
1377   G4complex u(1., 0.);  // unit number 1      << 
1378                                               << 
1379   G4complex numeratorTE;  // E1_perp=1 E1_par << 
1380   G4complex numeratorTM;  // E1_parl=1 E1_per << 
1381   G4complex denominatorTE, denominatorTM;     << 
1382   G4complex rTM, rTE;                         << 
1383                                               << 
1384   G4MaterialPropertiesTable* MPT = fMaterial1 << 
1385   G4MaterialPropertyVector* ppR  = MPT->GetPr << 
1386   G4MaterialPropertyVector* ppI  = MPT->GetPr << 
1387   if(ppR && ppI)                              << 
1388   {                                           << 
1389     G4double rRindex = ppR->Value(fPhotonMome << 
1390     G4double iRindex = ppI->Value(fPhotonMome << 
1391     N1               = G4complex(rRindex, iRi << 
1392   }                                           << 
1393                                               << 
1394   // Following two equations, rTM and rTE, ar << 
1395   // Optics" written by Fowles                << 
1396   cosPhi = std::sqrt(u - ((std::sin(incidenta << 
1397                           (N1 * N1) / (N2 * N << 
1398                                               << 
1399   numeratorTE   = N1 * std::cos(incidentangle << 
1400   denominatorTE = N1 * std::cos(incidentangle << 
1401   rTE           = numeratorTE / denominatorTE << 
1402                                               << 
1403   numeratorTM   = N2 * std::cos(incidentangle << 
1404   denominatorTM = N2 * std::cos(incidentangle << 
1405   rTM           = numeratorTM / denominatorTM << 
1406                                               << 
1407   // This is my (PG) calculaton for reflectiv << 
1408   // depending on the fraction of TE and TM p << 
1409   // when TE polarization, E1_parl=0 and E1_p << 
1410   // when TM polarization, E1_parl=1 and E1_p << 
1411                                               << 
1412   reflectivity_TE = (rTE * conj(rTE)) * (E1_p << 
1413                     (E1_perp * E1_perp + E1_p << 
1414   reflectivity_TM = (rTM * conj(rTM)) * (E1_p << 
1415                     (E1_perp * E1_perp + E1_p << 
1416   reflectivity = reflectivity_TE + reflectivi << 
1417                                               << 
1418   do                                          << 
1419   {                                           << 
1420     if(G4UniformRand() * real(reflectivity) > << 
1421     {                                         << 
1422       f_iTE = -1;                             << 
1423     }                                         << 
1424     else                                      << 
1425     {                                         << 
1426       f_iTE = 1;                              << 
1427     }                                         << 
1428     if(G4UniformRand() * real(reflectivity) > << 
1429     {                                         << 
1430       f_iTM = -1;                             << 
1431     }                                         << 
1432     else                                      << 
1433     {                                         << 
1434       f_iTM = 1;                              << 
1435     }                                         << 
1436     // Loop checking, 13-Aug-2015, Peter Gump << 
1437   } while(f_iTE < 0 && f_iTM < 0);            << 
1438                                                  541 
1439   return real(reflectivity);                  << 542      }
1440 }                                             << 
1441                                                  543 
1442 //....oooOO0OOooo........oooOO0OOooo........o << 544   } while (NewMomentum * theGlobalNormal < 0.0);
1443 void G4OpBoundaryProcess::CalculateReflectivi << 
1444 {                                             << 
1445   G4double realRindex = fRealRIndexMPV->Value << 
1446   G4double imaginaryRindex =                  << 
1447     fImagRIndexMPV->Value(fPhotonMomentum, id << 
1448                                               << 
1449   // calculate FacetNormal                    << 
1450   if(fFinish == ground)                       << 
1451   {                                           << 
1452     fFacetNormal = GetFacetNormal(fOldMomentu << 
1453   }                                           << 
1454   else                                        << 
1455   {                                           << 
1456     fFacetNormal = fGlobalNormal;             << 
1457   }                                           << 
1458                                               << 
1459   G4double cost1 = -fOldMomentum * fFacetNorm << 
1460   if(std::abs(cost1) < 1.0 - fCarTolerance)   << 
1461   {                                           << 
1462     fSint1 = std::sqrt(1. - cost1 * cost1);   << 
1463   }                                           << 
1464   else                                        << 
1465   {                                           << 
1466     fSint1 = 0.0;                             << 
1467   }                                           << 
1468                                               << 
1469   G4ThreeVector A_trans, A_paral, E1pp, E1pl; << 
1470   G4double E1_perp, E1_parl;                  << 
1471                                               << 
1472   if(fSint1 > 0.0)                            << 
1473   {                                           << 
1474     A_trans = (fOldMomentum.cross(fFacetNorma << 
1475     E1_perp = fOldPolarization * A_trans;     << 
1476     E1pp    = E1_perp * A_trans;              << 
1477     E1pl    = fOldPolarization - E1pp;        << 
1478     E1_parl = E1pl.mag();                     << 
1479   }                                           << 
1480   else                                        << 
1481   {                                           << 
1482     A_trans = fOldPolarization;               << 
1483     // Here we Follow Jackson's conventions a << 
1484     // component = 1 in case of a ray perpend << 
1485     E1_perp = 0.0;                            << 
1486     E1_parl = 1.0;                            << 
1487   }                                           << 
1488                                               << 
1489   G4double incidentangle = GetIncidentAngle() << 
1490                                               << 
1491   // calculate the reflectivity depending on  << 
1492   // polarization and complex refractive      << 
1493   fReflectivity = GetReflectivity(E1_perp, E1 << 
1494                                   imaginaryRi << 
1495 }                                                545 }
1496                                                  546 
1497 //....oooOO0OOooo........oooOO0OOooo........o << 547 void G4OpBoundaryProcess::DielectricDielectric()
1498 G4bool G4OpBoundaryProcess::InvokeSD(const G4 << 
1499 {                                                548 {
1500   G4Step aStep = *pStep;                      << 549   G4bool Inside = false;
1501   aStep.AddTotalEnergyDeposit(fPhotonMomentum << 550   G4bool Swap = false;
1502                                                  551 
1503   G4VSensitiveDetector* sd = aStep.GetPostSte << 552   leap:
1504   if(sd != nullptr)                           << 
1505     return sd->Hit(&aStep);                   << 
1506   else                                        << 
1507     return false;                             << 
1508 }                                             << 
1509                                                  553 
1510 //....oooOO0OOooo........oooOO0OOooo........o << 554         G4bool Through = false;
1511 inline void G4OpBoundaryProcess::SetInvokeSD( << 555   G4bool Done = false;
1512 {                                             << 
1513   fInvokeSD = flag;                           << 
1514   G4OpticalParameters::Instance()->SetBoundar << 
1515 }                                             << 
1516                                                  556 
1517 //....oooOO0OOooo........oooOO0OOooo........o << 557   do {
1518 void G4OpBoundaryProcess::SetVerboseLevel(G4i << 558 
1519 {                                             << 559      if (Through) {
1520   verboseLevel = verbose;                     << 560         Swap = !Swap;
1521   G4OpticalParameters::Instance()->SetBoundar << 561         Through = false;
                                                   >> 562         theGlobalNormal = -theGlobalNormal;
                                                   >> 563         G4Swap(Material1,Material2);
                                                   >> 564         G4Swap(&Rindex1,&Rindex2);
                                                   >> 565      }
                                                   >> 566 
                                                   >> 567      if ( theFinish == ground || theFinish == groundbackpainted ) {
                                                   >> 568     theFacetNormal = 
                                                   >> 569            GetFacetNormal(OldMomentum,theGlobalNormal);
                                                   >> 570      }
                                                   >> 571      else {
                                                   >> 572     theFacetNormal = theGlobalNormal;
                                                   >> 573      }
                                                   >> 574 
                                                   >> 575      G4double PdotN = OldMomentum * theFacetNormal;
                                                   >> 576      G4double EdotN = OldPolarization * theFacetNormal;
                                                   >> 577 
                                                   >> 578      cost1 = - PdotN;
                                                   >> 579      if (std::abs(cost1) < 1.0-kCarTolerance){
                                                   >> 580         sint1 = std::sqrt(1.-cost1*cost1);
                                                   >> 581         sint2 = sint1*Rindex1/Rindex2;     // *** Snell's Law ***
                                                   >> 582      }
                                                   >> 583      else {
                                                   >> 584         sint1 = 0.0;
                                                   >> 585         sint2 = 0.0;
                                                   >> 586      }
                                                   >> 587 
                                                   >> 588      if (sint2 >= 1.0) {
                                                   >> 589 
                                                   >> 590         // Simulate total internal reflection
                                                   >> 591 
                                                   >> 592         if (Swap) Swap = !Swap;
                                                   >> 593 
                                                   >> 594               theStatus = TotalInternalReflection;
                                                   >> 595 
                                                   >> 596         if ( theModel == unified && theFinish != polished )
                                                   >> 597                  ChooseReflection();
                                                   >> 598 
                                                   >> 599         if ( theStatus == LambertianReflection ) {
                                                   >> 600      DoReflection();
                                                   >> 601         }
                                                   >> 602         else if ( theStatus == BackScattering ) {
                                                   >> 603      NewMomentum = -OldMomentum;
                                                   >> 604      NewPolarization = -OldPolarization;
                                                   >> 605         }
                                                   >> 606         else {
                                                   >> 607 
                                                   >> 608                  PdotN = OldMomentum * theFacetNormal;
                                                   >> 609      NewMomentum = OldMomentum - (2.*PdotN)*theFacetNormal;
                                                   >> 610      EdotN = OldPolarization * theFacetNormal;
                                                   >> 611      NewPolarization = -OldPolarization + (2.*EdotN)*theFacetNormal;
                                                   >> 612 
                                                   >> 613         }
                                                   >> 614      }
                                                   >> 615      else if (sint2 < 1.0) {
                                                   >> 616 
                                                   >> 617         // Calculate amplitude for transmission (Q = P x N)
                                                   >> 618 
                                                   >> 619         if (cost1 > 0.0) {
                                                   >> 620            cost2 =  std::sqrt(1.-sint2*sint2);
                                                   >> 621         }
                                                   >> 622         else {
                                                   >> 623            cost2 = -std::sqrt(1.-sint2*sint2);
                                                   >> 624         }
                                                   >> 625 
                                                   >> 626         G4ThreeVector A_trans, A_paral, E1pp, E1pl;
                                                   >> 627         G4double E1_perp, E1_parl;
                                                   >> 628 
                                                   >> 629         if (sint1 > 0.0) {
                                                   >> 630            A_trans = OldMomentum.cross(theFacetNormal);
                                                   >> 631                  A_trans = A_trans.unit();
                                                   >> 632            E1_perp = OldPolarization * A_trans;
                                                   >> 633                  E1pp    = E1_perp * A_trans;
                                                   >> 634                  E1pl    = OldPolarization - E1pp;
                                                   >> 635                  E1_parl = E1pl.mag();
                                                   >> 636               }
                                                   >> 637         else {
                                                   >> 638            A_trans  = OldPolarization;
                                                   >> 639            // Here we Follow Jackson's conventions and we set the
                                                   >> 640            // parallel component = 1 in case of a ray perpendicular
                                                   >> 641            // to the surface
                                                   >> 642            E1_perp  = 0.0;
                                                   >> 643            E1_parl  = 1.0;
                                                   >> 644         }
                                                   >> 645 
                                                   >> 646               G4double s1 = Rindex1*cost1;
                                                   >> 647               G4double E2_perp = 2.*s1*E1_perp/(Rindex1*cost1+Rindex2*cost2);
                                                   >> 648               G4double E2_parl = 2.*s1*E1_parl/(Rindex2*cost1+Rindex1*cost2);
                                                   >> 649               G4double E2_total = E2_perp*E2_perp + E2_parl*E2_parl;
                                                   >> 650               G4double s2 = Rindex2*cost2*E2_total;
                                                   >> 651 
                                                   >> 652               G4double TransCoeff;
                                                   >> 653 
                                                   >> 654         if (cost1 != 0.0) {
                                                   >> 655            TransCoeff = s2/s1;
                                                   >> 656         }
                                                   >> 657         else {
                                                   >> 658            TransCoeff = 0.0;
                                                   >> 659         }
                                                   >> 660 
                                                   >> 661         G4double E2_abs, C_parl, C_perp;
                                                   >> 662 
                                                   >> 663         if ( !G4BooleanRand(TransCoeff) ) {
                                                   >> 664 
                                                   >> 665            // Simulate reflection
                                                   >> 666 
                                                   >> 667                  if (Swap) Swap = !Swap;
                                                   >> 668 
                                                   >> 669      theStatus = FresnelReflection;
                                                   >> 670 
                                                   >> 671      if ( theModel == unified && theFinish != polished )
                                                   >> 672                  ChooseReflection();
                                                   >> 673 
                                                   >> 674      if ( theStatus == LambertianReflection ) {
                                                   >> 675         DoReflection();
                                                   >> 676      }
                                                   >> 677      else if ( theStatus == BackScattering ) {
                                                   >> 678         NewMomentum = -OldMomentum;
                                                   >> 679         NewPolarization = -OldPolarization;
                                                   >> 680      }
                                                   >> 681      else {
                                                   >> 682 
                                                   >> 683                     PdotN = OldMomentum * theFacetNormal;
                                                   >> 684               NewMomentum = OldMomentum - (2.*PdotN)*theFacetNormal;
                                                   >> 685 
                                                   >> 686               if (sint1 > 0.0) {   // incident ray oblique
                                                   >> 687 
                                                   >> 688            E2_parl   = Rindex2*E2_parl/Rindex1 - E1_parl;
                                                   >> 689            E2_perp   = E2_perp - E1_perp;
                                                   >> 690            E2_total  = E2_perp*E2_perp + E2_parl*E2_parl;
                                                   >> 691                        A_paral   = NewMomentum.cross(A_trans);
                                                   >> 692                        A_paral   = A_paral.unit();
                                                   >> 693            E2_abs    = std::sqrt(E2_total);
                                                   >> 694            C_parl    = E2_parl/E2_abs;
                                                   >> 695            C_perp    = E2_perp/E2_abs;
                                                   >> 696 
                                                   >> 697                        NewPolarization = C_parl*A_paral + C_perp*A_trans;
                                                   >> 698 
                                                   >> 699               }
                                                   >> 700 
                                                   >> 701               else {               // incident ray perpendicular
                                                   >> 702 
                                                   >> 703                  if (Rindex2 > Rindex1) {
                                                   >> 704               NewPolarization = - OldPolarization;
                                                   >> 705                  }
                                                   >> 706                  else {
                                                   >> 707                     NewPolarization =   OldPolarization;
                                                   >> 708                  }
                                                   >> 709 
                                                   >> 710               }
                                                   >> 711            }
                                                   >> 712         }
                                                   >> 713         else { // photon gets transmitted
                                                   >> 714 
                                                   >> 715            // Simulate transmission/refraction
                                                   >> 716 
                                                   >> 717      Inside = !Inside;
                                                   >> 718      Through = true;
                                                   >> 719      theStatus = FresnelRefraction;
                                                   >> 720 
                                                   >> 721            if (sint1 > 0.0) {      // incident ray oblique
                                                   >> 722 
                                                   >> 723         G4double alpha = cost1 - cost2*(Rindex2/Rindex1);
                                                   >> 724         NewMomentum = OldMomentum + alpha*theFacetNormal;
                                                   >> 725         NewMomentum = NewMomentum.unit();
                                                   >> 726         PdotN = -cost2;
                                                   >> 727                     A_paral = NewMomentum.cross(A_trans);
                                                   >> 728                     A_paral = A_paral.unit();
                                                   >> 729         E2_abs     = std::sqrt(E2_total);
                                                   >> 730         C_parl     = E2_parl/E2_abs;
                                                   >> 731         C_perp     = E2_perp/E2_abs;
                                                   >> 732 
                                                   >> 733                     NewPolarization = C_parl*A_paral + C_perp*A_trans;
                                                   >> 734 
                                                   >> 735            }
                                                   >> 736            else {                  // incident ray perpendicular
                                                   >> 737 
                                                   >> 738         NewMomentum = OldMomentum;
                                                   >> 739         NewPolarization = OldPolarization;
                                                   >> 740 
                                                   >> 741            }
                                                   >> 742         }
                                                   >> 743      }
                                                   >> 744 
                                                   >> 745      OldMomentum = NewMomentum.unit();
                                                   >> 746      OldPolarization = NewPolarization.unit();
                                                   >> 747 
                                                   >> 748      if (theStatus == FresnelRefraction) {
                                                   >> 749         Done = (NewMomentum * theGlobalNormal <= 0.0);
                                                   >> 750      } 
                                                   >> 751      else {
                                                   >> 752         Done = (NewMomentum * theGlobalNormal >= 0.0);
                                                   >> 753      }
                                                   >> 754 
                                                   >> 755   } while (!Done);
                                                   >> 756 
                                                   >> 757   if (Inside && !Swap) {
                                                   >> 758           if( theFinish == polishedbackpainted ||
                                                   >> 759               theFinish == groundbackpainted ) {
                                                   >> 760         if( !G4BooleanRand(theReflectivity) ) {
                                                   >> 761     DoAbsorption();
                                                   >> 762               }
                                                   >> 763         else {
                                                   >> 764     if (theStatus != FresnelRefraction ) {
                                                   >> 765        theGlobalNormal = -theGlobalNormal;
                                                   >> 766           }
                                                   >> 767           else {
                                                   >> 768        Swap = !Swap;
                                                   >> 769        G4Swap(Material1,Material2);
                                                   >> 770        G4Swap(&Rindex1,&Rindex2);
                                                   >> 771           }
                                                   >> 772     if ( theFinish == groundbackpainted )
                                                   >> 773           theStatus = LambertianReflection;
                                                   >> 774 
                                                   >> 775           DoReflection();
                                                   >> 776 
                                                   >> 777           theGlobalNormal = -theGlobalNormal;
                                                   >> 778     OldMomentum = NewMomentum;
                                                   >> 779 
                                                   >> 780           goto leap;
                                                   >> 781         }
                                                   >> 782     }
                                                   >> 783   }
1522 }                                                784 }
1523                                                  785 
1524 //....oooOO0OOooo........oooOO0OOooo........o << 786 // GetMeanFreePath
1525 void G4OpBoundaryProcess::CoatedDielectricDie << 787 // ---------------
                                                   >> 788 //
                                                   >> 789 G4double G4OpBoundaryProcess::GetMeanFreePath(const G4Track& ,
                                                   >> 790                                               G4double ,
                                                   >> 791                                               G4ForceCondition* condition)
1526 {                                                792 {
1527   G4MaterialPropertyVector* pp = nullptr;     << 793   *condition = Forced;
1528                                               << 
1529   G4MaterialPropertiesTable* MPT = fMaterial2 << 
1530   if((pp = MPT->GetProperty(kRINDEX)))        << 
1531   {                                           << 
1532     fRindex2 = pp->Value(fPhotonMomentum, idx << 
1533   }                                           << 
1534                                               << 
1535   MPT = fOpticalSurface->GetMaterialPropertie << 
1536   if((pp = MPT->GetProperty(kCOATEDRINDEX)))  << 
1537   {                                           << 
1538     fCoatedRindex = pp->Value(fPhotonMomentum << 
1539   }                                           << 
1540   if(MPT->ConstPropertyExists(kCOATEDTHICKNES << 
1541   {                                           << 
1542     fCoatedThickness = MPT->GetConstProperty( << 
1543   }                                           << 
1544   if(MPT->ConstPropertyExists(kCOATEDFRUSTRAT << 
1545   {                                           << 
1546     fCoatedFrustratedTransmission =           << 
1547       (G4bool)MPT->GetConstProperty(kCOATEDFR << 
1548   }                                           << 
1549                                               << 
1550   G4double sintTL;                            << 
1551   G4double wavelength = h_Planck * c_light /  << 
1552   G4double PdotN;                             << 
1553   G4double E1_perp, E1_parl;                  << 
1554   G4double s1, E2_perp, E2_parl, E2_total, tr << 
1555   G4double E2_abs, C_parl, C_perp;            << 
1556   G4double alpha;                             << 
1557   G4ThreeVector A_trans, A_paral, E1pp, E1pl; << 
1558   //G4bool Inside  = false;                   << 
1559   //G4bool Swap    = false;                   << 
1560   G4bool through = false;                     << 
1561   G4bool done    = false;                     << 
1562                                               << 
1563   do {                                        << 
1564     if (through)                              << 
1565     {                                         << 
1566       //Swap = !Swap;                         << 
1567       through = false;                        << 
1568       fGlobalNormal = -fGlobalNormal;         << 
1569       G4SwapPtr(fMaterial1, fMaterial2);      << 
1570       G4SwapObj(&fRindex1, &fRindex2);        << 
1571     }                                         << 
1572                                               << 
1573     if(fFinish == polished)                   << 
1574     {                                         << 
1575       fFacetNormal = fGlobalNormal;           << 
1576     }                                         << 
1577     else                                      << 
1578     {                                         << 
1579       fFacetNormal = GetFacetNormal(fOldMomen << 
1580     }                                         << 
1581                                               << 
1582     PdotN = fOldMomentum * fFacetNormal;      << 
1583     G4double cost1 = -PdotN;                  << 
1584     G4double sint2, cost2 = 0.;               << 
1585                                               << 
1586     if (std::abs(cost1) < 1.0 - fCarTolerance << 
1587     {                                         << 
1588       fSint1 = std::sqrt(1. - cost1 * cost1); << 
1589       sint2 = fSint1 * fRindex1 / fRindex2;   << 
1590       sintTL = fSint1 * fRindex1 / fCoatedRin << 
1591     } else                                    << 
1592     {                                         << 
1593       fSint1 = 0.0;                           << 
1594       sint2 = 0.0;                            << 
1595       sintTL = 0.0;                           << 
1596     }                                         << 
1597                                               << 
1598     if (fSint1 > 0.0)                         << 
1599     {                                         << 
1600       A_trans = fOldMomentum.cross(fFacetNorm << 
1601       A_trans = A_trans.unit();               << 
1602       E1_perp = fOldPolarization * A_trans;   << 
1603       E1pp = E1_perp * A_trans;               << 
1604       E1pl = fOldPolarization - E1pp;         << 
1605       E1_parl = E1pl.mag();                   << 
1606     }                                         << 
1607     else                                      << 
1608     {                                         << 
1609       A_trans = fOldPolarization;             << 
1610       E1_perp = 0.0;                          << 
1611       E1_parl = 1.0;                          << 
1612     }                                         << 
1613                                               << 
1614     s1 = fRindex1 * cost1;                    << 
1615                                               << 
1616     if (cost1 > 0.0)                          << 
1617     {                                         << 
1618       cost2 = std::sqrt(1. - sint2 * sint2);  << 
1619     }                                         << 
1620     else                                      << 
1621     {                                         << 
1622       cost2 = -std::sqrt(1. - sint2 * sint2); << 
1623     }                                         << 
1624                                               << 
1625     transCoeff = 0.0;                         << 
1626                                               << 
1627     if (sintTL >= 1.0)                        << 
1628     { // --> Angle > Angle Limit              << 
1629       //Swap = false;                         << 
1630     }                                         << 
1631     E2_perp = 2. * s1 * E1_perp / (fRindex1 * << 
1632     E2_parl = 2. * s1 * E1_parl / (fRindex2 * << 
1633     E2_total = E2_perp * E2_perp + E2_parl *  << 
1634                                               << 
1635     transCoeff = 1. - GetReflectivityThroughT << 
1636                         sintTL, E1_perp, E1_p << 
1637     if (!G4BooleanRand(transCoeff))           << 
1638     {                                         << 
1639       if(verboseLevel > 2)                    << 
1640         G4cout << "Reflection from " << fMate << 
1641                << fMaterial2->GetName() << G4 << 
1642                                               << 
1643       //Swap = false;                         << 
1644                                               << 
1645       if (sintTL >= 1.0)                      << 
1646       {                                       << 
1647         fStatus = TotalInternalReflection;    << 
1648       }                                       << 
1649       else                                    << 
1650       {                                       << 
1651         fStatus = CoatedDielectricReflection; << 
1652       }                                       << 
1653                                               << 
1654       PdotN = fOldMomentum * fFacetNormal;    << 
1655       fNewMomentum = fOldMomentum - (2. * Pdo << 
1656                                               << 
1657       if (fSint1 > 0.0) {   // incident ray o << 
1658                                               << 
1659         E2_parl = fRindex2 * E2_parl / fRinde << 
1660         E2_perp = E2_perp - E1_perp;          << 
1661         E2_total = E2_perp * E2_perp + E2_par << 
1662         A_paral = fNewMomentum.cross(A_trans) << 
1663         A_paral = A_paral.unit();             << 
1664         E2_abs = std::sqrt(E2_total);         << 
1665         C_parl = E2_parl / E2_abs;            << 
1666         C_perp = E2_perp / E2_abs;            << 
1667                                               << 
1668         fNewPolarization = C_parl * A_paral + << 
1669                                               << 
1670       }                                       << 
1671       else                                    << 
1672       {               // incident ray perpend << 
1673         if (fRindex2 > fRindex1)              << 
1674         {                                     << 
1675           fNewPolarization = -fOldPolarizatio << 
1676         }                                     << 
1677         else                                  << 
1678         {                                     << 
1679           fNewPolarization = fOldPolarization << 
1680         }                                     << 
1681       }                                       << 
1682                                               << 
1683     } else { // photon gets transmitted       << 
1684       if (verboseLevel > 2)                   << 
1685         G4cout << "Transmission from " << fMa << 
1686                << fMaterial2->GetName() << G4 << 
1687                                               << 
1688       //Inside = !Inside;                     << 
1689       through = true;                         << 
1690                                               << 
1691       if (fEfficiency > 0.)                   << 
1692       {                                       << 
1693         DoAbsorption();                       << 
1694         return;                               << 
1695       }                                       << 
1696       else                                    << 
1697       {                                       << 
1698         if (sintTL >= 1.0)                    << 
1699         {                                     << 
1700           fStatus = CoatedDielectricFrustrate << 
1701         }                                     << 
1702         else                                  << 
1703         {                                     << 
1704           fStatus = CoatedDielectricRefractio << 
1705         }                                     << 
1706                                                  794 
1707         if (fSint1 > 0.0) {      // incident  << 795   return DBL_MAX;
1708                                               << 
1709           alpha = cost1 - cost2 * (fRindex2 / << 
1710           fNewMomentum = fOldMomentum + alpha << 
1711           fNewMomentum = fNewMomentum.unit(); << 
1712           A_paral = fNewMomentum.cross(A_tran << 
1713           A_paral = A_paral.unit();           << 
1714           E2_abs = std::sqrt(E2_total);       << 
1715           C_parl = E2_parl / E2_abs;          << 
1716           C_perp = E2_perp / E2_abs;          << 
1717                                               << 
1718           fNewPolarization = C_parl * A_paral << 
1719                                               << 
1720         }                                     << 
1721         else                                  << 
1722         {                  // incident ray pe << 
1723           fNewMomentum = fOldMomentum;        << 
1724           fNewPolarization = fOldPolarization << 
1725         }                                     << 
1726       }                                       << 
1727     }                                         << 
1728                                               << 
1729     fOldMomentum = fNewMomentum.unit();       << 
1730     fOldPolarization = fNewPolarization.unit( << 
1731     if ((fStatus == CoatedDielectricFrustrate << 
1732         (fStatus == CoatedDielectricRefractio << 
1733     {                                         << 
1734       done = (fNewMomentum * fGlobalNormal <= << 
1735     }                                         << 
1736     else                                      << 
1737     {                                         << 
1738       done = (fNewMomentum * fGlobalNormal >= << 
1739     }                                         << 
1740                                               << 
1741   } while (!done);                            << 
1742 }                                                796 }
1743                                                  797 
1744 //....oooOO0OOooo........oooOO0OOooo........o << 
1745 G4double G4OpBoundaryProcess::GetReflectivity << 
1746                    G4double E1_perp,          << 
1747                    G4double E1_parl,          << 
1748                    G4double wavelength, G4dou << 
1749   G4complex Reflectivity, Reflectivity_TE, Re << 
1750   G4double gammaTL, costTL;                   << 
1751                                               << 
1752   G4complex i(0, 1);                          << 
1753   G4complex rTM, rTE;                         << 
1754   G4complex r1toTL, rTLto2;                   << 
1755   G4double k0 = 2 * pi / wavelength;          << 
1756                                               << 
1757   // Angle > Angle limit                      << 
1758   if (sinTL >= 1.0) {                         << 
1759     if (fCoatedFrustratedTransmission) { //Fr << 
1760                                               << 
1761       if (cost1 > 0.0)                        << 
1762       {                                       << 
1763         gammaTL = std::sqrt(fRindex1 * fRinde << 
1764                    fCoatedRindex * fCoatedRin << 
1765       }                                       << 
1766       else                                    << 
1767       {                                       << 
1768         gammaTL = -std::sqrt(fRindex1 * fRind << 
1769                    fCoatedRindex * fCoatedRin << 
1770       }                                       << 
1771                                               << 
1772       // TE                                   << 
1773       r1toTL = (fRindex1 * cost1 - i * gammaT << 
1774       rTLto2 = (i * gammaTL - fRindex2 * cost << 
1775       if (cost1 != 0.0)                       << 
1776       {                                       << 
1777         rTE = (r1toTL + rTLto2 * std::exp(-2  << 
1778                  (1.0 + r1toTL * rTLto2 * std << 
1779       }                                       << 
1780       // TM                                   << 
1781       r1toTL = (fRindex1 * i * gammaTL - fCoa << 
1782                   (fRindex1 * i * gammaTL + f << 
1783       rTLto2 = (fCoatedRindex * fCoatedRindex << 
1784                   (fCoatedRindex * fCoatedRin << 
1785       if (cost1 != 0.0)                       << 
1786       {                                       << 
1787         rTM = (r1toTL + rTLto2 * std::exp(-2  << 
1788                  (1.0 + r1toTL * rTLto2 * std << 
1789       }                                       << 
1790     }                                         << 
1791     else                                      << 
1792     { //Total reflection                      << 
1793       return(1.);                             << 
1794     }                                         << 
1795   }                                           << 
1796                                               << 
1797   // Angle <= Angle limit                     << 
1798   else //if (sinTL < 1.0)                     << 
1799   {                                           << 
1800     if (cost1 > 0.0)                          << 
1801     {                                         << 
1802       costTL = std::sqrt(1. - sinTL * sinTL); << 
1803     }                                         << 
1804     else                                      << 
1805     {                                         << 
1806       costTL = -std::sqrt(1. - sinTL * sinTL) << 
1807     }                                         << 
1808     // TE                                     << 
1809     r1toTL = (fRindex1 * cost1 - fCoatedRinde << 
1810     rTLto2 = (fCoatedRindex * costTL - fRinde << 
1811     if (cost1 != 0.0)                         << 
1812     {                                         << 
1813       rTE = (r1toTL + rTLto2 * std::exp(2.0 * << 
1814             (1.0 + r1toTL * rTLto2 * std::exp << 
1815     }                                         << 
1816     // TM                                     << 
1817     r1toTL = (fRindex1 * costTL - fCoatedRind << 
1818     rTLto2 = (fCoatedRindex * cost2 - fRindex << 
1819     if (cost1 != 0.0)                         << 
1820     {                                         << 
1821       rTM = (r1toTL + rTLto2 * std::exp(2.0 * << 
1822             (1.0 + r1toTL * rTLto2 * std::exp << 
1823     }                                         << 
1824   }                                           << 
1825                                               << 
1826   Reflectivity_TE = (rTE * conj(rTE)) * (E1_p << 
1827   Reflectivity_TM = (rTM * conj(rTM)) * (E1_p << 
1828   Reflectivity = Reflectivity_TE + Reflectivi << 
1829                                               << 
1830   return real(Reflectivity);                  << 
1831 }                                             << 
1832                                                  798