Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // 26 ////////////////////////////////////////////// 23 //////////////////////////////////////////////////////////////////////// 27 // Optical Photon Boundary Process Class Imple 24 // Optical Photon Boundary Process Class Implementation 28 ////////////////////////////////////////////// 25 //////////////////////////////////////////////////////////////////////// 29 // 26 // 30 // File: G4OpBoundaryProcess.cc 27 // File: G4OpBoundaryProcess.cc 31 // Description: Discrete Process -- reflection 28 // Description: Discrete Process -- reflection/refraction at 32 // optical in 29 // optical interfaces 33 // Version: 1.1 30 // Version: 1.1 34 // Created: 1997-06-18 31 // Created: 1997-06-18 35 // Modified: 1998-05-25 - Correct parallel 32 // Modified: 1998-05-25 - Correct parallel component of polarization 36 // (thanks to: Stefa 33 // (thanks to: Stefano Magni + Giovanni Pieri) 37 // 1998-05-28 - NULL Rindex point 34 // 1998-05-28 - NULL Rindex pointer before reuse 38 // (thanks to: Stefa 35 // (thanks to: Stefano Magni) 39 // 1998-06-11 - delete *sint1 in 36 // 1998-06-11 - delete *sint1 in oblique reflection 40 // (thanks to: Giova 37 // (thanks to: Giovanni Pieri) 41 // 1998-06-19 - move from GetLoca << 38 // 1998-06-19 - move from GetLocalExitNormal() to the new 42 // method: GetLocalE 39 // method: GetLocalExitNormal(&valid) to get 43 // the surface norma 40 // the surface normal in all cases 44 // 1998-11-07 - NULL OpticalSurfa 41 // 1998-11-07 - NULL OpticalSurface pointer before use 45 // comparison not sh 42 // comparison not sharp for: std::abs(cost1) < 1.0 46 // remove sin1, sin2 43 // remove sin1, sin2 in lines 556,567 47 // (thanks to Stefan 44 // (thanks to Stefano Magni) 48 // 1999-10-10 - Accommodate chang 45 // 1999-10-10 - Accommodate changes done in DoAbsorption by 49 // changing logic in 46 // changing logic in DielectricMetal 50 // 2001-10-18 - avoid Linux (gcc- 47 // 2001-10-18 - avoid Linux (gcc-2.95.2) warning about variables 51 // might be used uni 48 // might be used uninitialized in this function 52 // moved E2_perp, E2 49 // moved E2_perp, E2_parl and E2_total out of 'if' 53 // 2003-11-27 - Modified line 168 50 // 2003-11-27 - Modified line 168-9 to reflect changes made to 54 // G4OpticalSurface 51 // G4OpticalSurface class ( by Fan Lei) 55 // 2004-02-02 - Set theStatus = U 52 // 2004-02-02 - Set theStatus = Undefined at start of DoIt 56 // 2005-07-28 - add G4ProcessType 53 // 2005-07-28 - add G4ProcessType to constructor 57 // 2006-11-04 - add capability of << 58 // off a metal surfa << 59 // of refraction - T << 60 // Hauptman (Dept. o << 61 // 2009-11-10 - add capability of << 62 // with Look-Up-Tabl << 63 // optical reflectan << 64 // treatments - Than << 65 // William Moses (La << 66 // 2013-06-01 - add the capabilit << 67 // of a dichronic fi << 68 // 2017-02-24 - add capability of << 69 // with Look-Up-Tabl << 70 // 54 // 71 // Author: Peter Gumplinger 55 // Author: Peter Gumplinger 72 // adopted from work by Werner Keil - April 56 // adopted from work by Werner Keil - April 2/96 >> 57 // mail: gum@triumf.ca 73 // 58 // 74 ////////////////////////////////////////////// 59 //////////////////////////////////////////////////////////////////////// 75 60 >> 61 #include "G4ios.hh" 76 #include "G4OpBoundaryProcess.hh" 62 #include "G4OpBoundaryProcess.hh" 77 63 78 #include "G4ios.hh" << 64 ///////////////////////// 79 #include "G4GeometryTolerance.hh" << 65 // Class Implementation 80 #include "G4LogicalBorderSurface.hh" << 66 ///////////////////////// 81 #include "G4LogicalSkinSurface.hh" << 67 82 #include "G4OpProcessSubType.hh" << 68 ////////////// 83 #include "G4OpticalParameters.hh" << 69 // Operators 84 #include "G4ParallelWorldProcess.hh" << 70 ////////////// 85 #include "G4PhysicalConstants.hh" << 71 86 #include "G4SystemOfUnits.hh" << 72 // G4OpBoundaryProcess::operator=(const G4OpBoundaryProcess &right) 87 #include "G4TransportationManager.hh" << 73 // { 88 #include "G4VSensitiveDetector.hh" << 74 // } >> 75 >> 76 ///////////////// >> 77 // Constructors >> 78 ///////////////// 89 79 90 //....oooOO0OOooo........oooOO0OOooo........oo << 91 G4OpBoundaryProcess::G4OpBoundaryProcess(const 80 G4OpBoundaryProcess::G4OpBoundaryProcess(const G4String& processName, 92 G4Pro << 81 G4ProcessType type) 93 : G4VDiscreteProcess(processName, ptype) << 82 : G4VDiscreteProcess(processName, type) 94 { 83 { 95 Initialise(); << 84 if ( verboseLevel > 0) { >> 85 G4cout << GetProcessName() << " is created " << G4endl; >> 86 } >> 87 >> 88 theStatus = Undefined; >> 89 theModel = glisur; >> 90 theFinish = polished; >> 91 theReflectivity = 1.; >> 92 theEfficiency = 0.; >> 93 >> 94 prob_sl = 0.; >> 95 prob_ss = 0.; >> 96 prob_bs = 0.; 96 97 97 if(verboseLevel > 0) << 98 { << 99 G4cout << GetProcessName() << " is created << 100 } << 101 SetProcessSubType(fOpBoundary); << 102 << 103 fStatus = Undefined; << 104 fModel = glisur; << 105 fFinish = polished; << 106 fReflectivity = 1.; << 107 fEfficiency = 0.; << 108 fTransmittance = 0.; << 109 fSurfaceRoughness = 0.; << 110 fProb_sl = 0.; << 111 fProb_ss = 0.; << 112 fProb_bs = 0.; << 113 << 114 fRealRIndexMPV = nullptr; << 115 fImagRIndexMPV = nullptr; << 116 fMaterial1 = nullptr; << 117 fMaterial2 = nullptr; << 118 fOpticalSurface = nullptr; << 119 fCarTolerance = G4GeometryTolerance::GetIn << 120 << 121 f_iTE = f_iTM = 0; << 122 fPhotonMomentum = 0.; << 123 fRindex1 = fRindex2 = 1.; << 124 fSint1 = 0.; << 125 fDichroicVector = nullptr; << 126 } 98 } 127 99 128 //....oooOO0OOooo........oooOO0OOooo........oo << 100 // G4OpBoundaryProcess::G4OpBoundaryProcess(const G4OpBoundaryProcess &right) 129 G4OpBoundaryProcess::~G4OpBoundaryProcess() = << 101 // { >> 102 // } 130 103 131 //....oooOO0OOooo........oooOO0OOooo........oo << 104 //////////////// 132 void G4OpBoundaryProcess::PreparePhysicsTable( << 105 // Destructors 133 { << 106 //////////////// 134 Initialise(); << 135 } << 136 107 137 //....oooOO0OOooo........oooOO0OOooo........oo << 108 G4OpBoundaryProcess::~G4OpBoundaryProcess(){} 138 void G4OpBoundaryProcess::Initialise() << 139 { << 140 G4OpticalParameters* params = G4OpticalParam << 141 SetInvokeSD(params->GetBoundaryInvokeSD()); << 142 SetVerboseLevel(params->GetBoundaryVerboseLe << 143 } << 144 109 145 //....oooOO0OOooo........oooOO0OOooo........oo << 110 //////////// 146 G4VParticleChange* G4OpBoundaryProcess::PostSt << 111 // Methods 147 << 112 //////////// >> 113 >> 114 // PostStepDoIt >> 115 // ------------ >> 116 // >> 117 G4VParticleChange* >> 118 G4OpBoundaryProcess::PostStepDoIt(const G4Track& aTrack, const G4Step& aStep) 148 { 119 { 149 fStatus = Undefined; << 120 theStatus = Undefined; 150 aParticleChange.Initialize(aTrack); << 151 aParticleChange.ProposeVelocity(aTrack.GetVe << 152 << 153 // Get hyperStep from G4ParallelWorldProces << 154 // NOTE: PostSetpDoIt of this process to be << 155 // G4ParallelWorldProcess! << 156 const G4Step* pStep = &aStep; << 157 const G4Step* hStep = G4ParallelWorldProcess << 158 if(hStep != nullptr) << 159 pStep = hStep; << 160 << 161 if(pStep->GetPostStepPoint()->GetStepStatus( << 162 { << 163 fMaterial1 = pStep->GetPreStepPoint()->Get << 164 fMaterial2 = pStep->GetPostStepPoint()->Ge << 165 } << 166 else << 167 { << 168 fStatus = NotAtBoundary; << 169 if(verboseLevel > 1) << 170 BoundaryProcessVerbose(); << 171 return G4VDiscreteProcess::PostStepDoIt(aT << 172 } << 173 << 174 G4VPhysicalVolume* thePrePV = pStep->GetPre << 175 G4VPhysicalVolume* thePostPV = pStep->GetPos << 176 << 177 if(verboseLevel > 1) << 178 { << 179 G4cout << " Photon at Boundary! " << G4end << 180 if(thePrePV != nullptr) << 181 G4cout << " thePrePV: " << thePrePV->Ge << 182 if(thePostPV != nullptr) << 183 G4cout << " thePostPV: " << thePostPV->G << 184 } << 185 << 186 G4double stepLength = aTrack.GetStepLength() << 187 if(stepLength <= fCarTolerance) << 188 { << 189 fStatus = StepTooSmall; << 190 if(verboseLevel > 1) << 191 BoundaryProcessVerbose(); << 192 << 193 G4MaterialPropertyVector* groupvel = nullp << 194 G4MaterialPropertiesTable* aMPT = fMateria << 195 if(aMPT != nullptr) << 196 { << 197 groupvel = aMPT->GetProperty(kGROUPVEL); << 198 } << 199 << 200 if(groupvel != nullptr) << 201 { << 202 aParticleChange.ProposeVelocity( << 203 groupvel->Value(fPhotonMomentum, idx_g << 204 } << 205 return G4VDiscreteProcess::PostStepDoIt(aT << 206 } << 207 else if (stepLength <= 10.*fCarTolerance && << 208 { // see bug 2510 << 209 ++fNumSmallStepWarnings; << 210 if(verboseLevel > 0) << 211 { << 212 G4ExceptionDescription ed; << 213 ed << "G4OpBoundaryProcess: " << 214 << "Opticalphoton step length: " << s << 215 << "This is larger than the threshold << 216 "to set status StepTooSmall." << G << 217 << "Boundary scattering may be incorr << 218 if(fNumSmallStepWarnings == 10) << 219 { << 220 ed << G4endl << "*** Step size warning << 221 } << 222 G4Exception("G4OpBoundaryProcess", "OpBo << 223 } << 224 } << 225 << 226 const G4DynamicParticle* aParticle = aTrack. << 227 << 228 fPhotonMomentum = aParticle->GetTotalMoment << 229 fOldMomentum = aParticle->GetMomentumDir << 230 fOldPolarization = aParticle->GetPolarizatio << 231 << 232 if(verboseLevel > 1) << 233 { << 234 G4cout << " Old Momentum Direction: " << f << 235 << " Old Polarization: " << f << 236 } << 237 << 238 G4ThreeVector theGlobalPoint = pStep->GetPos << 239 G4bool valid; << 240 << 241 // ID of Navigator which limits step << 242 G4int hNavId = G4ParallelWorldProcess::GetHy << 243 auto iNav = G4TransportationManager::GetT << 244 ->GetActiveNavigatorsIterator( << 245 fGlobalNormal = (iNav[hNavId])->GetGlobalExi << 246 << 247 if(valid) << 248 { << 249 fGlobalNormal = -fGlobalNormal; << 250 } << 251 else << 252 { << 253 G4ExceptionDescription ed; << 254 ed << " G4OpBoundaryProcess/PostStepDoIt() << 255 << " The Navigator reports that it retu << 256 G4Exception( << 257 "G4OpBoundaryProcess::PostStepDoIt", "Op << 258 "Invalid Surface Normal - Geometry must << 259 } << 260 << 261 if(fOldMomentum * fGlobalNormal > 0.0) << 262 { << 263 #ifdef G4OPTICAL_DEBUG << 264 G4ExceptionDescription ed; << 265 ed << " G4OpBoundaryProcess/PostStepDoIt() << 266 "wrong direction. " << 267 << G4endl << 268 << " The momentum of the photon arriv << 269 << " must exit the volume cross in th << 270 << " So it MUST have dot < 0 with the << 271 "volume (globalNormal)." << 272 << G4endl << " >> The dot product of << 273 << fOldMomentum * fGlobalNormal << G4en << 274 << " Old Momentum (during step) << 275 << " Global Normal (Exiting New Vol << 276 << G4endl; << 277 G4Exception("G4OpBoundaryProcess::PostStep << 278 EventMustBeAborted, // Or Jus << 279 // repeat << 280 ed, << 281 "Invalid Surface Normal - Geom << 282 "normal pointing in the right << 283 #else << 284 fGlobalNormal = -fGlobalNormal; << 285 #endif << 286 } << 287 121 288 G4MaterialPropertyVector* rIndexMPV = nullpt << 122 aParticleChange.Initialize(aTrack); 289 G4MaterialPropertiesTable* MPT = fMaterial1- << 290 if(MPT != nullptr) << 291 { << 292 rIndexMPV = MPT->GetProperty(kRINDEX); << 293 } << 294 if(rIndexMPV != nullptr) << 295 { << 296 fRindex1 = rIndexMPV->Value(fPhotonMomentu << 297 } << 298 else << 299 { << 300 fStatus = NoRINDEX; << 301 if(verboseLevel > 1) << 302 BoundaryProcessVerbose(); << 303 aParticleChange.ProposeLocalEnergyDeposit( << 304 aParticleChange.ProposeTrackStatus(fStopAn << 305 return G4VDiscreteProcess::PostStepDoIt(aT << 306 } << 307 << 308 fReflectivity = 1.; << 309 fEfficiency = 0.; << 310 fTransmittance = 0.; << 311 fSurfaceRoughness = 0.; << 312 fModel = glisur; << 313 fFinish = polished; << 314 G4SurfaceType type = dielectric_dielectric; << 315 << 316 rIndexMPV = nullptr; << 317 fOpticalSurface = nullptr; << 318 << 319 G4LogicalSurface* surface = << 320 G4LogicalBorderSurface::GetSurface(thePreP << 321 if(surface == nullptr) << 322 { << 323 if(thePostPV->GetMotherLogical() == thePre << 324 { << 325 surface = G4LogicalSkinSurface::GetSurfa << 326 if(surface == nullptr) << 327 { << 328 surface = << 329 G4LogicalSkinSurface::GetSurface(the << 330 } << 331 } << 332 else << 333 { << 334 surface = G4LogicalSkinSurface::GetSurfa << 335 if(surface == nullptr) << 336 { << 337 surface = << 338 G4LogicalSkinSurface::GetSurface(the << 339 } << 340 } << 341 } << 342 << 343 if(surface != nullptr) << 344 { << 345 fOpticalSurface = << 346 dynamic_cast<G4OpticalSurface*>(surface- << 347 } << 348 if(fOpticalSurface != nullptr) << 349 { << 350 type = fOpticalSurface->GetType(); << 351 fModel = fOpticalSurface->GetModel(); << 352 fFinish = fOpticalSurface->GetFinish(); << 353 << 354 G4MaterialPropertiesTable* sMPT = << 355 fOpticalSurface->GetMaterialPropertiesTa << 356 if(sMPT != nullptr) << 357 { << 358 if(fFinish == polishedbackpainted || fFi << 359 { << 360 rIndexMPV = sMPT->GetProperty(kRINDEX) << 361 if(rIndexMPV != nullptr) << 362 { << 363 fRindex2 = rIndexMPV->Value(fPhotonM << 364 } << 365 else << 366 { << 367 fStatus = NoRINDEX; << 368 if(verboseLevel > 1) << 369 BoundaryProcessVerbose(); << 370 aParticleChange.ProposeLocalEnergyDe << 371 aParticleChange.ProposeTrackStatus(f << 372 return G4VDiscreteProcess::PostStepD << 373 } << 374 } << 375 123 376 fRealRIndexMPV = sMPT->GetProperty(kREAL << 124 G4StepPoint* pPreStepPoint = aStep.GetPreStepPoint(); 377 fImagRIndexMPV = sMPT->GetProperty(kIMAG << 125 G4StepPoint* pPostStepPoint = aStep.GetPostStepPoint(); 378 f_iTE = f_iTM = 1; << 126 379 << 127 if (pPostStepPoint->GetStepStatus() != fGeomBoundary){ 380 G4MaterialPropertyVector* pp; << 128 theStatus = NotAtBoundary; 381 if((pp = sMPT->GetProperty(kREFLECTIVITY << 129 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); 382 { << 130 } 383 fReflectivity = pp->Value(fPhotonMomen << 131 384 } << 132 if (aTrack.GetStepLength()<=kCarTolerance/2){ 385 else if(fRealRIndexMPV && fImagRIndexMPV << 133 theStatus = StepTooSmall; 386 { << 134 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); 387 CalculateReflectivity(); << 135 } 388 } << 136 389 << 137 Material1 = pPreStepPoint -> GetMaterial(); 390 if((pp = sMPT->GetProperty(kEFFICIENCY)) << 138 Material2 = pPostStepPoint -> GetMaterial(); 391 { << 139 392 fEfficiency = pp->Value(fPhotonMomentu << 140 const G4DynamicParticle* aParticle = aTrack.GetDynamicParticle(); 393 } << 141 394 if((pp = sMPT->GetProperty(kTRANSMITTANC << 142 thePhotonMomentum = aParticle->GetTotalMomentum(); 395 { << 143 OldMomentum = aParticle->GetMomentumDirection(); 396 fTransmittance = pp->Value(fPhotonMome << 144 OldPolarization = aParticle->GetPolarization(); 397 } << 145 398 if(sMPT->ConstPropertyExists(kSURFACEROU << 146 G4MaterialPropertiesTable* aMaterialPropertiesTable; 399 { << 147 G4MaterialPropertyVector* Rindex; 400 fSurfaceRoughness = sMPT->GetConstProp << 148 401 } << 149 aMaterialPropertiesTable = Material1->GetMaterialPropertiesTable(); 402 << 150 if (aMaterialPropertiesTable) { 403 if(fModel == unified) << 151 Rindex = aMaterialPropertiesTable->GetProperty("RINDEX"); 404 { << 152 } 405 fProb_sl = (pp = sMPT->GetProperty(kSP << 153 else { 406 ? pp->Value(fPhotonMoment << 154 theStatus = NoRINDEX; 407 : 0.; << 155 aParticleChange.ProposeTrackStatus(fStopAndKill); 408 fProb_ss = (pp = sMPT->GetProperty(kSP << 156 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); 409 ? pp->Value(fPhotonMoment << 157 } 410 : 0.; << 158 411 fProb_bs = (pp = sMPT->GetProperty(kBA << 159 if (Rindex) { 412 ? pp->Value(fPhotonMoment << 160 Rindex1 = Rindex->GetProperty(thePhotonMomentum); 413 : 0.; << 161 } 414 } << 162 else { 415 } // end of if(sMPT) << 163 theStatus = NoRINDEX; 416 else if(fFinish == polishedbackpainted || << 164 aParticleChange.ProposeTrackStatus(fStopAndKill); 417 { << 165 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); 418 aParticleChange.ProposeLocalEnergyDeposi << 166 } 419 aParticleChange.ProposeTrackStatus(fStop << 167 420 return G4VDiscreteProcess::PostStepDoIt( << 168 theModel = glisur; 421 } << 169 theFinish = polished; 422 } // end of if(fOpticalSurface) << 170 423 << 171 G4SurfaceType type = dielectric_dielectric; 424 // DIELECTRIC-DIELECTRIC << 172 425 if(type == dielectric_dielectric) << 173 Rindex = NULL; 426 { << 174 OpticalSurface = NULL; 427 if(fFinish == polished || fFinish == groun << 175 428 { << 176 G4LogicalSurface* Surface = G4LogicalBorderSurface::GetSurface 429 if(fMaterial1 == fMaterial2) << 177 (pPreStepPoint ->GetPhysicalVolume(), 430 { << 178 pPostStepPoint->GetPhysicalVolume()); 431 fStatus = SameMaterial; << 179 432 if(verboseLevel > 1) << 180 if (Surface == NULL){ 433 BoundaryProcessVerbose(); << 181 G4bool enteredDaughter=(pPostStepPoint->GetPhysicalVolume() 434 return G4VDiscreteProcess::PostStepDoI << 182 ->GetMotherLogical() == 435 } << 183 pPreStepPoint->GetPhysicalVolume() 436 MPT = fMaterial2->GetMaterialPrope << 184 ->GetLogicalVolume()); 437 rIndexMPV = nullptr; << 185 if(enteredDaughter){ 438 if(MPT != nullptr) << 186 Surface = G4LogicalSkinSurface::GetSurface 439 { << 187 (pPostStepPoint->GetPhysicalVolume()-> 440 rIndexMPV = MPT->GetProperty(kRINDEX); << 188 GetLogicalVolume()); 441 } << 189 if(Surface == NULL) 442 if(rIndexMPV != nullptr) << 190 Surface = G4LogicalSkinSurface::GetSurface 443 { << 191 (pPreStepPoint->GetPhysicalVolume()-> 444 fRindex2 = rIndexMPV->Value(fPhotonMom << 192 GetLogicalVolume()); 445 } << 193 } 446 else << 194 else{ 447 { << 195 Surface = G4LogicalSkinSurface::GetSurface 448 fStatus = NoRINDEX; << 196 (pPreStepPoint->GetPhysicalVolume()-> 449 if(verboseLevel > 1) << 197 GetLogicalVolume()); 450 BoundaryProcessVerbose(); << 198 if(Surface == NULL) 451 aParticleChange.ProposeLocalEnergyDepo << 199 Surface = G4LogicalSkinSurface::GetSurface 452 aParticleChange.ProposeTrackStatus(fSt << 200 (pPostStepPoint->GetPhysicalVolume()-> 453 return G4VDiscreteProcess::PostStepDoI << 201 GetLogicalVolume()); 454 } << 202 } 455 } << 203 } 456 if(fFinish == polishedbackpainted || fFini << 204 457 { << 205 // if (Surface) OpticalSurface = dynamic_cast <G4OpticalSurface*> (Surface->GetSurfaceProperty()); 458 DielectricDielectric(); << 206 if (Surface) OpticalSurface = (G4OpticalSurface*) Surface->GetSurfaceProperty(); 459 } << 207 460 else << 208 if (OpticalSurface) { 461 { << 209 462 G4double rand = G4UniformRand(); << 210 type = OpticalSurface->GetType(); 463 if(rand > fReflectivity + fTransmittance << 211 theModel = OpticalSurface->GetModel(); 464 { << 212 theFinish = OpticalSurface->GetFinish(); 465 DoAbsorption(); << 213 466 } << 214 aMaterialPropertiesTable = OpticalSurface-> 467 else if(rand > fReflectivity) << 215 GetMaterialPropertiesTable(); 468 { << 216 469 fStatus = Transmission; << 217 if (aMaterialPropertiesTable) { 470 fNewMomentum = fOldMomentum; << 218 471 fNewPolarization = fOldPolarization; << 219 if (theFinish == polishedbackpainted || 472 } << 220 theFinish == groundbackpainted ) { 473 else << 221 Rindex = aMaterialPropertiesTable->GetProperty("RINDEX"); 474 { << 222 if (Rindex) { 475 if(fFinish == polishedfrontpainted) << 223 Rindex2 = Rindex->GetProperty(thePhotonMomentum); 476 { << 224 } 477 DoReflection(); << 225 else { 478 } << 226 theStatus = NoRINDEX; 479 else if(fFinish == groundfrontpainted) << 227 aParticleChange.ProposeTrackStatus(fStopAndKill); 480 { << 228 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); 481 fStatus = LambertianReflection; << 229 } 482 DoReflection(); << 230 } 483 } << 231 484 else << 232 G4MaterialPropertyVector* PropertyPointer; 485 { << 233 486 DielectricDielectric(); << 234 PropertyPointer = 487 } << 235 aMaterialPropertiesTable->GetProperty("REFLECTIVITY"); 488 } << 236 if (PropertyPointer) { 489 } << 237 theReflectivity = 490 } << 238 PropertyPointer->GetProperty(thePhotonMomentum); 491 else if(type == dielectric_metal) << 239 } else { 492 { << 240 theReflectivity = 1.0; 493 DielectricMetal(); << 241 } 494 } << 242 495 else if(type == dielectric_LUT) << 243 PropertyPointer = 496 { << 244 aMaterialPropertiesTable->GetProperty("EFFICIENCY"); 497 DielectricLUT(); << 245 if (PropertyPointer) { 498 } << 246 theEfficiency = 499 else if(type == dielectric_LUTDAVIS) << 247 PropertyPointer->GetProperty(thePhotonMomentum); 500 { << 248 } else { 501 DielectricLUTDAVIS(); << 249 theEfficiency = 0.0; 502 } << 250 } 503 else if(type == dielectric_dichroic) << 251 504 { << 252 if ( theModel == unified ) { 505 DielectricDichroic(); << 253 PropertyPointer = 506 } << 254 aMaterialPropertiesTable->GetProperty("SPECULARLOBECONSTANT"); 507 else if(type == coated) << 255 if (PropertyPointer) { 508 { << 256 prob_sl = 509 CoatedDielectricDielectric(); << 257 PropertyPointer->GetProperty(thePhotonMomentum); 510 } << 258 } else { 511 else << 259 prob_sl = 0.0; 512 { << 260 } 513 if(fNumBdryTypeWarnings <= 10) << 261 514 { << 262 PropertyPointer = 515 ++fNumBdryTypeWarnings; << 263 aMaterialPropertiesTable->GetProperty("SPECULARSPIKECONSTANT"); 516 if(verboseLevel > 0) << 264 if (PropertyPointer) { 517 { << 265 prob_ss = 518 G4ExceptionDescription ed; << 266 PropertyPointer->GetProperty(thePhotonMomentum); 519 ed << " PostStepDoIt(): Illegal bounda << 267 } else { 520 if(fNumBdryTypeWarnings == 10) << 268 prob_ss = 0.0; 521 { << 269 } 522 ed << "** Boundary type warnings sto << 270 >> 271 PropertyPointer = >> 272 aMaterialPropertiesTable->GetProperty("BACKSCATTERCONSTANT"); >> 273 if (PropertyPointer) { >> 274 prob_bs = >> 275 PropertyPointer->GetProperty(thePhotonMomentum); >> 276 } else { >> 277 prob_bs = 0.0; >> 278 } >> 279 } >> 280 } >> 281 else if (theFinish == polishedbackpainted || >> 282 theFinish == groundbackpainted ) { >> 283 aParticleChange.ProposeTrackStatus(fStopAndKill); >> 284 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); >> 285 } >> 286 } >> 287 >> 288 if (type == dielectric_dielectric ) { >> 289 if (theFinish == polished || theFinish == ground ) { >> 290 >> 291 if (Material1 == Material2){ >> 292 theStatus = SameMaterial; >> 293 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); >> 294 } >> 295 aMaterialPropertiesTable = >> 296 Material2->GetMaterialPropertiesTable(); >> 297 if (aMaterialPropertiesTable) >> 298 Rindex = aMaterialPropertiesTable->GetProperty("RINDEX"); >> 299 if (Rindex) { >> 300 Rindex2 = Rindex->GetProperty(thePhotonMomentum); >> 301 } >> 302 else { >> 303 theStatus = NoRINDEX; >> 304 aParticleChange.ProposeTrackStatus(fStopAndKill); >> 305 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); >> 306 } >> 307 } >> 308 } >> 309 >> 310 if ( verboseLevel > 0 ) { >> 311 G4cout << " Photon at Boundary! " << G4endl; >> 312 G4cout << " Old Momentum Direction: " << OldMomentum << G4endl; >> 313 G4cout << " Old Polarization: " << OldPolarization << G4endl; >> 314 } >> 315 >> 316 G4ThreeVector theGlobalPoint = pPostStepPoint->GetPosition(); >> 317 >> 318 G4Navigator* theNavigator = >> 319 G4TransportationManager::GetTransportationManager()-> >> 320 GetNavigatorForTracking(); >> 321 >> 322 G4ThreeVector theLocalPoint = theNavigator-> >> 323 GetGlobalToLocalTransform(). >> 324 TransformPoint(theGlobalPoint); >> 325 >> 326 G4ThreeVector theLocalNormal; // Normal points back into volume >> 327 >> 328 G4bool valid; >> 329 theLocalNormal = theNavigator->GetLocalExitNormal(&valid); >> 330 >> 331 if (valid) { >> 332 theLocalNormal = -theLocalNormal; >> 333 } >> 334 else { >> 335 G4cerr << " G4OpBoundaryProcess/PostStepDoIt(): " >> 336 << " The Navigator reports that it returned an invalid normal" >> 337 << G4endl; >> 338 } >> 339 >> 340 theGlobalNormal = theNavigator->GetLocalToGlobalTransform(). >> 341 TransformAxis(theLocalNormal); >> 342 if (OldMomentum * theGlobalNormal > 0.0) { >> 343 #ifdef G4DEBUG_OPTICAL >> 344 G4cerr << " G4OpBoundaryProcess/PostStepDoIt(): " >> 345 << " theGlobalNormal points the wrong direction " >> 346 << G4endl; >> 347 #endif >> 348 theGlobalNormal = -theGlobalNormal; 523 } 349 } 524 G4Exception("G4OpBoundaryProcess", "Op << 350 if (type == dielectric_metal) { 525 } << 526 } << 527 return G4VDiscreteProcess::PostStepDoIt(aT << 528 } << 529 << 530 fNewMomentum = fNewMomentum.unit(); << 531 fNewPolarization = fNewPolarization.unit(); << 532 << 533 if(verboseLevel > 1) << 534 { << 535 G4cout << " New Momentum Direction: " << f << 536 << " New Polarization: " << f << 537 BoundaryProcessVerbose(); << 538 } << 539 << 540 aParticleChange.ProposeMomentumDirection(fNe << 541 aParticleChange.ProposePolarization(fNewPola << 542 << 543 if(fStatus == FresnelRefraction || fStatus = << 544 { << 545 // not all surface types check that fMater << 546 G4MaterialPropertiesTable* aMPT = fMateria << 547 G4MaterialPropertyVector* groupvel = nullp << 548 if(aMPT != nullptr) << 549 { << 550 groupvel = aMPT->GetProperty(kGROUPVEL); << 551 } << 552 if(groupvel != nullptr) << 553 { << 554 aParticleChange.ProposeVelocity( << 555 groupvel->Value(fPhotonMomentum, idx_g << 556 } << 557 } << 558 << 559 if(fStatus == Detection && fInvokeSD) << 560 InvokeSD(pStep); << 561 return G4VDiscreteProcess::PostStepDoIt(aTra << 562 } << 563 351 564 //....oooOO0OOooo........oooOO0OOooo........oo << 352 DielectricMetal(); 565 void G4OpBoundaryProcess::BoundaryProcessVerbo << 566 { << 567 G4cout << " *** "; << 568 if(fStatus == Undefined) << 569 G4cout << "Undefined"; << 570 else if(fStatus == Transmission) << 571 G4cout << "Transmission"; << 572 else if(fStatus == FresnelRefraction) << 573 G4cout << "FresnelRefraction"; << 574 else if(fStatus == FresnelReflection) << 575 G4cout << "FresnelReflection"; << 576 else if(fStatus == TotalInternalReflection) << 577 G4cout << "TotalInternalReflection"; << 578 else if(fStatus == LambertianReflection) << 579 G4cout << "LambertianReflection"; << 580 else if(fStatus == LobeReflection) << 581 G4cout << "LobeReflection"; << 582 else if(fStatus == SpikeReflection) << 583 G4cout << "SpikeReflection"; << 584 else if(fStatus == BackScattering) << 585 G4cout << "BackScattering"; << 586 else if(fStatus == PolishedLumirrorAirReflec << 587 G4cout << "PolishedLumirrorAirReflection"; << 588 else if(fStatus == PolishedLumirrorGlueRefle << 589 G4cout << "PolishedLumirrorGlueReflection" << 590 else if(fStatus == PolishedAirReflection) << 591 G4cout << "PolishedAirReflection"; << 592 else if(fStatus == PolishedTeflonAirReflecti << 593 G4cout << "PolishedTeflonAirReflection"; << 594 else if(fStatus == PolishedTiOAirReflection) << 595 G4cout << "PolishedTiOAirReflection"; << 596 else if(fStatus == PolishedTyvekAirReflectio << 597 G4cout << "PolishedTyvekAirReflection"; << 598 else if(fStatus == PolishedVM2000AirReflecti << 599 G4cout << "PolishedVM2000AirReflection"; << 600 else if(fStatus == PolishedVM2000GlueReflect << 601 G4cout << "PolishedVM2000GlueReflection"; << 602 else if(fStatus == EtchedLumirrorAirReflecti << 603 G4cout << "EtchedLumirrorAirReflection"; << 604 else if(fStatus == EtchedLumirrorGlueReflect << 605 G4cout << "EtchedLumirrorGlueReflection"; << 606 else if(fStatus == EtchedAirReflection) << 607 G4cout << "EtchedAirReflection"; << 608 else if(fStatus == EtchedTeflonAirReflection << 609 G4cout << "EtchedTeflonAirReflection"; << 610 else if(fStatus == EtchedTiOAirReflection) << 611 G4cout << "EtchedTiOAirReflection"; << 612 else if(fStatus == EtchedTyvekAirReflection) << 613 G4cout << "EtchedTyvekAirReflection"; << 614 else if(fStatus == EtchedVM2000AirReflection << 615 G4cout << "EtchedVM2000AirReflection"; << 616 else if(fStatus == EtchedVM2000GlueReflectio << 617 G4cout << "EtchedVM2000GlueReflection"; << 618 else if(fStatus == GroundLumirrorAirReflecti << 619 G4cout << "GroundLumirrorAirReflection"; << 620 else if(fStatus == GroundLumirrorGlueReflect << 621 G4cout << "GroundLumirrorGlueReflection"; << 622 else if(fStatus == GroundAirReflection) << 623 G4cout << "GroundAirReflection"; << 624 else if(fStatus == GroundTeflonAirReflection << 625 G4cout << "GroundTeflonAirReflection"; << 626 else if(fStatus == GroundTiOAirReflection) << 627 G4cout << "GroundTiOAirReflection"; << 628 else if(fStatus == GroundTyvekAirReflection) << 629 G4cout << "GroundTyvekAirReflection"; << 630 else if(fStatus == GroundVM2000AirReflection << 631 G4cout << "GroundVM2000AirReflection"; << 632 else if(fStatus == GroundVM2000GlueReflectio << 633 G4cout << "GroundVM2000GlueReflection"; << 634 else if(fStatus == Absorption) << 635 G4cout << "Absorption"; << 636 else if(fStatus == Detection) << 637 G4cout << "Detection"; << 638 else if(fStatus == NotAtBoundary) << 639 G4cout << "NotAtBoundary"; << 640 else if(fStatus == SameMaterial) << 641 G4cout << "SameMaterial"; << 642 else if(fStatus == StepTooSmall) << 643 G4cout << "StepTooSmall"; << 644 else if(fStatus == NoRINDEX) << 645 G4cout << "NoRINDEX"; << 646 else if(fStatus == Dichroic) << 647 G4cout << "Dichroic Transmission"; << 648 else if(fStatus == CoatedDielectricReflectio << 649 G4cout << "Coated Dielectric Reflection"; << 650 else if(fStatus == CoatedDielectricRefractio << 651 G4cout << "Coated Dielectric Refraction"; << 652 else if(fStatus == CoatedDielectricFrustrate << 653 G4cout << "Coated Dielectric Frustrated Tr << 654 << 655 G4cout << " ***" << G4endl; << 656 } << 657 353 658 //....oooOO0OOooo........oooOO0OOooo........oo << 354 } 659 G4ThreeVector G4OpBoundaryProcess::GetFacetNor << 355 else if (type == dielectric_dielectric) { 660 const G4ThreeVector& momentum, const G4Three << 661 { << 662 G4ThreeVector facetNormal; << 663 if(fModel == unified || fModel == LUT || fMo << 664 { << 665 /* This function codes alpha to a random v << 666 distribution p(alpha) = g(alpha; 0, sigma_ << 667 for alpha > 0 and alpha < 90, where g(alph << 668 gaussian distribution with mean 0 and stan << 669 << 670 G4double sigma_alpha = 0.0; << 671 if(fOpticalSurface) << 672 sigma_alpha = fOpticalSurface->GetSigmaA << 673 if(sigma_alpha == 0.0) << 674 { << 675 return normal; << 676 } << 677 << 678 G4double f_max = std::min(1.0, 4. * sigma_ << 679 G4double alpha, phi, sinAlpha; << 680 << 681 do << 682 { // Loop checking, 13-Aug-2015, Peter Gu << 683 do << 684 { // Loop checking, 13-Aug-2015, Peter << 685 alpha = G4RandGauss::shoot(0.0, sig << 686 sinAlpha = std::sin(alpha); << 687 } while(G4UniformRand() * f_max > sinAlp << 688 << 689 phi = G4UniformRand() * twopi; << 690 facetNormal.set(sinAlpha * std::cos(phi) << 691 std::cos(alpha)); << 692 facetNormal.rotateUz(normal); << 693 } while(momentum * facetNormal >= 0.0); << 694 } << 695 else << 696 { << 697 G4double polish = 1.0; << 698 if(fOpticalSurface) << 699 polish = fOpticalSurface->GetPolish(); << 700 if(polish < 1.0) << 701 { << 702 do << 703 { // Loop checking, 13-Aug-2015, Peter << 704 G4ThreeVector smear; << 705 do << 706 { // Loop checking, 13-Aug-2015, Pete << 707 smear.setX(2. * G4UniformRand() - 1. << 708 smear.setY(2. * G4UniformRand() - 1. << 709 smear.setZ(2. * G4UniformRand() - 1. << 710 } while(smear.mag2() > 1.0); << 711 facetNormal = normal + (1. - polish) * << 712 } while(momentum * facetNormal >= 0.0); << 713 facetNormal = facetNormal.unit(); << 714 } << 715 else << 716 { << 717 facetNormal = normal; << 718 } << 719 } << 720 return facetNormal; << 721 } << 722 356 723 //....oooOO0OOooo........oooOO0OOooo........oo << 357 if ( theFinish == polishedfrontpainted || 724 void G4OpBoundaryProcess::DielectricMetal() << 358 theFinish == groundfrontpainted ) { 725 { << 359 if( !G4BooleanRand(theReflectivity) ) { 726 G4int n = 0; << 360 DoAbsorption(); 727 G4double rand; << 361 } 728 G4ThreeVector A_trans; << 362 else { 729 << 363 if ( theFinish == groundfrontpainted ) 730 do << 364 theStatus = LambertianReflection; 731 { << 365 DoReflection(); 732 ++n; << 366 } 733 rand = G4UniformRand(); << 367 } 734 if(rand > fReflectivity && n == 1) << 368 else { 735 { << 369 DielectricDielectric(); 736 if(rand > fReflectivity + fTransmittance << 370 } 737 { << 371 } 738 DoAbsorption(); << 372 else { 739 } << 373 740 else << 374 G4cerr << " Error: G4BoundaryProcess: illegal boundary type " << G4endl; 741 { << 375 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); 742 fStatus = Transmission; << 376 743 fNewMomentum = fOldMomentum; << 377 } 744 fNewPolarization = fOldPolarization; << 378 745 } << 379 NewMomentum = NewMomentum.unit(); 746 break; << 380 NewPolarization = NewPolarization.unit(); 747 } << 381 748 else << 382 if ( verboseLevel > 0) { 749 { << 383 G4cout << " New Momentum Direction: " << NewMomentum << G4endl; 750 if(fRealRIndexMPV && fImagRIndexMPV) << 384 G4cout << " New Polarization: " << NewPolarization << G4endl; 751 { << 385 if ( theStatus == Undefined ) 752 if(n > 1) << 386 G4cout << " *** Undefined *** " << G4endl; 753 { << 387 if ( theStatus == FresnelRefraction ) 754 CalculateReflectivity(); << 388 G4cout << " *** FresnelRefraction *** " << G4endl; 755 if(!G4BooleanRand(fReflectivity)) << 389 if ( theStatus == FresnelReflection ) 756 { << 390 G4cout << " *** FresnelReflection *** " << G4endl; 757 DoAbsorption(); << 391 if ( theStatus == TotalInternalReflection ) 758 break; << 392 G4cout << " *** TotalInternalReflection *** " << G4endl; 759 } << 393 if ( theStatus == LambertianReflection ) 760 } << 394 G4cout << " *** LambertianReflection *** " << G4endl; 761 } << 395 if ( theStatus == LobeReflection ) 762 if(fModel == glisur || fFinish == polish << 396 G4cout << " *** LobeReflection *** " << G4endl; 763 { << 397 if ( theStatus == SpikeReflection ) 764 DoReflection(); << 398 G4cout << " *** SpikeReflection *** " << G4endl; 765 } << 399 if ( theStatus == BackScattering ) 766 else << 400 G4cout << " *** BackScattering *** " << G4endl; 767 { << 401 if ( theStatus == Absorption ) 768 if(n == 1) << 402 G4cout << " *** Absorption *** " << G4endl; 769 ChooseReflection(); << 403 if ( theStatus == Detection ) 770 if(fStatus == LambertianReflection) << 404 G4cout << " *** Detection *** " << G4endl; 771 { << 405 if ( theStatus == NotAtBoundary ) 772 DoReflection(); << 406 G4cout << " *** NotAtBoundary *** " << G4endl; 773 } << 407 if ( theStatus == SameMaterial ) 774 else if(fStatus == BackScattering) << 408 G4cout << " *** SameMaterial *** " << G4endl; 775 { << 409 if ( theStatus == StepTooSmall ) 776 fNewMomentum = -fOldMomentum; << 410 G4cout << " *** StepTooSmall *** " << G4endl; 777 fNewPolarization = -fOldPolarization << 411 if ( theStatus == NoRINDEX ) 778 } << 412 G4cout << " *** NoRINDEX *** " << G4endl; 779 else << 780 { << 781 if(fStatus == LobeReflection) << 782 { << 783 if(!fRealRIndexMPV || !fImagRIndex << 784 { << 785 fFacetNormal = GetFacetNormal(fO << 786 } << 787 // else << 788 // case of complex rindex needs t << 789 } << 790 fNewMomentum = << 791 fOldMomentum - 2. * fOldMomentum * << 792 << 793 if(f_iTE > 0 && f_iTM > 0) << 794 { << 795 fNewPolarization = << 796 -fOldPolarization + << 797 (2. * fOldPolarization * fFacetN << 798 } << 799 else if(f_iTE > 0) << 800 { << 801 A_trans = (fSint1 > 0.0) ? fOldMom << 802 : fOldPol << 803 fNewPolarization = -A_trans; << 804 } << 805 else if(f_iTM > 0) << 806 { << 807 fNewPolarization = << 808 -fNewMomentum.cross(A_trans).uni << 809 } << 810 } 413 } 811 } << 812 fOldMomentum = fNewMomentum; << 813 fOldPolarization = fNewPolarization; << 814 } << 815 // Loop checking, 13-Aug-2015, Peter Gumpl << 816 } while(fNewMomentum * fGlobalNormal < 0.0); << 817 } << 818 414 819 //....oooOO0OOooo........oooOO0OOooo........oo << 415 aParticleChange.ProposeMomentumDirection(NewMomentum); 820 void G4OpBoundaryProcess::DielectricLUT() << 416 aParticleChange.ProposePolarization(NewPolarization); 821 { << 822 G4int thetaIndex, phiIndex; << 823 G4double angularDistVal, thetaRad, phiRad; << 824 G4ThreeVector perpVectorTheta, perpVectorPhi << 825 << 826 fStatus = G4OpBoundaryProcessStatus( << 827 G4int(fFinish) + (G4int(NoRINDEX) - G4int( << 828 << 829 G4int thetaIndexMax = fOpticalSurface->GetTh << 830 G4int phiIndexMax = fOpticalSurface->GetPh << 831 << 832 G4double rand; << 833 << 834 do << 835 { << 836 rand = G4UniformRand(); << 837 if(rand > fReflectivity) << 838 { << 839 if(rand > fReflectivity + fTransmittance << 840 { << 841 DoAbsorption(); << 842 } << 843 else << 844 { << 845 fStatus = Transmission; << 846 fNewMomentum = fOldMomentum; << 847 fNewPolarization = fOldPolarization; << 848 } << 849 break; << 850 } << 851 else << 852 { << 853 // Calculate Angle between Normal and Ph << 854 G4double anglePhotonToNormal = fOldMomen << 855 // Round to closest integer: LBNL model << 856 G4int angleIncident = (G4int)std::lrint( << 857 << 858 // Take random angles THETA and PHI, << 859 // and see if below Probability - if not << 860 do << 861 { << 862 thetaIndex = (G4int)G4RandFlat::shootI << 863 phiIndex = (G4int)G4RandFlat::shootI << 864 // Find probability with the new indec << 865 angularDistVal = fOpticalSurface->GetA << 866 angleIncident, thetaIndex, phiIndex) << 867 // Loop checking, 13-Aug-2015, Peter G << 868 } while(!G4BooleanRand(angularDistVal)); << 869 << 870 thetaRad = G4double(-90 + 4 * thetaIndex << 871 phiRad = G4double(-90 + 5 * phiIndex) << 872 // Rotate Photon Momentum in Theta, then << 873 fNewMomentum = -fOldMomentum; << 874 << 875 perpVectorTheta = fNewMomentum.cross(fGl << 876 if(perpVectorTheta.mag() < fCarTolerance << 877 { << 878 perpVectorTheta = fNewMomentum.orthogo << 879 } << 880 fNewMomentum = << 881 fNewMomentum.rotate(anglePhotonToNorma << 882 perpVectorPhi = perpVectorTheta.cross(fN << 883 fNewMomentum = fNewMomentum.rotate(-phi << 884 << 885 // Rotate Polarization too: << 886 fFacetNormal = (fNewMomentum - fOldM << 887 fNewPolarization = -fOldPolarization + << 888 (2. * fOldPolarizatio << 889 } << 890 // Loop checking, 13-Aug-2015, Peter Gumpl << 891 } while(fNewMomentum * fGlobalNormal <= 0.0) << 892 } << 893 417 894 //....oooOO0OOooo........oooOO0OOooo........oo << 418 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); 895 void G4OpBoundaryProcess::DielectricLUTDAVIS() << 419 } 896 { << 897 G4int angindex, random, angleIncident; << 898 G4double reflectivityValue, elevation, azimu << 899 G4double anglePhotonToNormal; << 900 << 901 G4int lutbin = fOpticalSurface->GetLUTbins( << 902 G4double rand = G4UniformRand(); << 903 << 904 G4double sinEl; << 905 G4ThreeVector u, vNorm, w; << 906 << 907 do << 908 { << 909 anglePhotonToNormal = fOldMomentum.angle(- << 910 << 911 // Davis model has 90 reflection bins: rou << 912 // don't allow angleIncident to be 90 for << 913 angleIncident = std::min( << 914 static_cast<G4int>(std::floor(anglePhoto << 915 reflectivityValue = fOpticalSurface->GetRe << 916 << 917 if(rand > reflectivityValue) << 918 { << 919 if(fEfficiency > 0.) << 920 { << 921 DoAbsorption(); << 922 break; << 923 } << 924 else << 925 { << 926 fStatus = Transmission; << 927 << 928 if(angleIncident <= 0.01) << 929 { << 930 fNewMomentum = fOldMomentum; << 931 break; << 932 } << 933 420 934 do << 421 G4ThreeVector 935 { << 422 G4OpBoundaryProcess::GetFacetNormal(const G4ThreeVector& Momentum, 936 random = (G4int)G4RandFlat::shootInt << 423 const G4ThreeVector& Normal ) const 937 angindex = << 424 { 938 (((random * 2) - 1)) + angleIncide << 425 G4ThreeVector FacetNormal; 939 << 426 940 azimuth = << 427 if (theModel == unified) { 941 fOpticalSurface->GetAngularDistrib << 428 942 elevation = fOpticalSurface->GetAngu << 429 /* This function code alpha to a random value taken from the 943 } while(elevation == 0. && azimuth == << 430 distribution p(alpha) = g(alpha; 0, sigma_alpha)*std::sin(alpha), 944 << 431 for alpha > 0 and alpha < 90, where g(alpha; 0, sigma_alpha) 945 sinEl = std::sin(elevation); << 432 is a gaussian distribution with mean 0 and standard deviation 946 vNorm = (fGlobalNormal.cross(fOldMomen << 433 sigma_alpha. */ 947 u = vNorm.cross(fGlobalNormal) * ( << 434 948 vNorm *= (sinEl * std::sin(azimuth)); << 435 G4double alpha; 949 // fGlobalNormal shouldn't be modified << 436 950 w = (fGlobalNormal *= std:: << 437 G4double sigma_alpha = 0.0; 951 fNewMomentum = u + vNorm + w; << 438 if (OpticalSurface) sigma_alpha = OpticalSurface->GetSigmaAlpha(); 952 << 439 953 // Rotate Polarization too: << 440 G4double f_max = std::min(1.0,4.*sigma_alpha); 954 fFacetNormal = (fNewMomentum - fOl << 441 955 fNewPolarization = -fOldPolarization + << 442 do { 956 << 443 do { 957 } << 444 alpha = G4RandGauss::shoot(0.0,sigma_alpha); 958 } << 445 } while (G4UniformRand()*f_max > std::sin(alpha) || alpha >= halfpi ); 959 else << 446 960 { << 447 G4double phi = G4UniformRand()*twopi; 961 fStatus = LobeReflection; << 448 962 << 449 G4double SinAlpha = std::sin(alpha); 963 if(angleIncident == 0) << 450 G4double CosAlpha = std::cos(alpha); 964 { << 451 G4double SinPhi = std::sin(phi); 965 fNewMomentum = -fOldMomentum; << 452 G4double CosPhi = std::cos(phi); 966 break; << 453 967 } << 454 G4double unit_x = SinAlpha * CosPhi; 968 << 455 G4double unit_y = SinAlpha * SinPhi; 969 do << 456 G4double unit_z = CosAlpha; 970 { << 457 971 random = (G4int)G4RandFlat::shootInt << 458 FacetNormal.setX(unit_x); 972 angindex = (((random * 2) - 1)) + (ang << 459 FacetNormal.setY(unit_y); 973 << 460 FacetNormal.setZ(unit_z); 974 azimuth = fOpticalSurface->GetAngularD << 461 975 elevation = fOpticalSurface->GetAngula << 462 G4ThreeVector tmpNormal = Normal; 976 } while(elevation == 0. && azimuth == 0. << 463 977 << 464 FacetNormal.rotateUz(tmpNormal); 978 sinEl = std::sin(elevation); << 465 } while (Momentum * FacetNormal >= 0.0); 979 vNorm = (fGlobalNormal.cross(fOldMomentu << 466 } 980 u = vNorm.cross(fGlobalNormal) * (si << 467 else { 981 vNorm *= (sinEl * std::sin(azimuth)); << 468 982 // fGlobalNormal shouldn't be modified h << 469 G4double polish = 1.0; 983 w = (fGlobalNormal *= std::cos(elevation << 470 if (OpticalSurface) polish = OpticalSurface->GetPolish(); 984 << 471 985 fNewMomentum = u + vNorm + w; << 472 if (polish < 1.0) { 986 << 473 do { 987 // Rotate Polarization too: (needs revis << 474 G4ThreeVector smear; 988 fNewPolarization = fOldPolarization; << 475 do { 989 } << 476 smear.setX(2.*G4UniformRand()-1.0); 990 } while(fNewMomentum * fGlobalNormal <= 0.0) << 477 smear.setY(2.*G4UniformRand()-1.0); >> 478 smear.setZ(2.*G4UniformRand()-1.0); >> 479 } while (smear.mag()>1.0); >> 480 smear = (1.-polish) * smear; >> 481 FacetNormal = Normal + smear; >> 482 } while (Momentum * FacetNormal >= 0.0); >> 483 FacetNormal = FacetNormal.unit(); >> 484 } >> 485 else { >> 486 FacetNormal = Normal; >> 487 } >> 488 } >> 489 return FacetNormal; 991 } 490 } 992 491 993 //....oooOO0OOooo........oooOO0OOooo........oo << 492 void G4OpBoundaryProcess::DielectricMetal() 994 void G4OpBoundaryProcess::DielectricDichroic() << 995 { 493 { 996 // Calculate Angle between Normal and Photon << 494 G4int n = 0; 997 G4double anglePhotonToNormal = fOldMomentum. << 998 495 999 // Round it to closest integer << 496 do { 1000 G4double angleIncident = std::floor(180. / << 1001 497 1002 if(!fDichroicVector) << 498 n++; 1003 { << 1004 if(fOpticalSurface) << 1005 fDichroicVector = fOpticalSurface->GetD << 1006 } << 1007 << 1008 if(fDichroicVector) << 1009 { << 1010 G4double wavelength = h_Planck * c_light << 1011 fTransmittance = fDichroicVector->Va << 1012 i << 1013 perCent; << 1014 // G4cout << "wavelength: " << std::flo << 1015 // << "nm" << << 1016 // G4cout << "Incident angle: " << angl << 1017 // G4cout << "Transmittance: " << 1018 // << std::floor(fTransmittance/ << 1019 } << 1020 else << 1021 { << 1022 G4ExceptionDescription ed; << 1023 ed << " G4OpBoundaryProcess/DielectricDic << 1024 << " The dichroic surface has no G4Phy << 1025 G4Exception("G4OpBoundaryProcess::Dielect << 1026 FatalException, ed, << 1027 "A dichroic surface must have << 1028 } << 1029 << 1030 if(!G4BooleanRand(fTransmittance)) << 1031 { // Not transmitted, so reflect << 1032 if(fModel == glisur || fFinish == polishe << 1033 { << 1034 DoReflection(); << 1035 } << 1036 else << 1037 { << 1038 ChooseReflection(); << 1039 if(fStatus == LambertianReflection) << 1040 { << 1041 DoReflection(); << 1042 } << 1043 else if(fStatus == BackScattering) << 1044 { << 1045 fNewMomentum = -fOldMomentum; << 1046 fNewPolarization = -fOldPolarization; << 1047 } << 1048 else << 1049 { << 1050 G4double PdotN, EdotN; << 1051 do << 1052 { << 1053 if(fStatus == LobeReflection) << 1054 { << 1055 fFacetNormal = GetFacetNormal(fOl << 1056 } << 1057 PdotN = fOldMomentum * fFace << 1058 fNewMomentum = fOldMomentum - (2. * << 1059 // Loop checking, 13-Aug-2015, Pete << 1060 } while(fNewMomentum * fGlobalNormal << 1061 << 1062 EdotN = fOldPolarization * << 1063 fNewPolarization = -fOldPolarization << 1064 } << 1065 } << 1066 } << 1067 else << 1068 { << 1069 fStatus = Dichroic; << 1070 fNewMomentum = fOldMomentum; << 1071 fNewPolarization = fOldPolarization; << 1072 } << 1073 } << 1074 499 1075 //....oooOO0OOooo........oooOO0OOooo........o << 500 if( !G4BooleanRand(theReflectivity) && n == 1 ) { 1076 void G4OpBoundaryProcess::DielectricDielectri << 1077 { << 1078 G4bool inside = false; << 1079 G4bool swap = false; << 1080 501 1081 if(fFinish == polished) << 502 DoAbsorption(); 1082 { << 503 break; 1083 fFacetNormal = fGlobalNormal; << 1084 } << 1085 else << 1086 { << 1087 fFacetNormal = GetFacetNormal(fOldMomentu << 1088 } << 1089 G4double cost1 = -fOldMomentum * fFacetNorm << 1090 G4double cost2 = 0.; << 1091 G4double sint2 = 0.; << 1092 << 1093 G4bool surfaceRoughnessCriterionPass = true << 1094 if(fSurfaceRoughness != 0. && fRindex1 > fR << 1095 { << 1096 G4double wavelength = h_Pl << 1097 G4double surfaceRoughnessCriterion = std: << 1098 (4. * pi * fSurfaceRoughness * fRindex1 << 1099 surfaceRoughnessCriterionPass = G4Boolean << 1100 } << 1101 << 1102 leap: << 1103 << 1104 G4bool through = false; << 1105 G4bool done = false; << 1106 << 1107 G4ThreeVector A_trans, A_paral, E1pp, E1pl; << 1108 G4double E1_perp, E1_parl; << 1109 G4double s1, s2, E2_perp, E2_parl, E2_total << 1110 G4double E2_abs, C_parl, C_perp; << 1111 G4double alpha; << 1112 << 1113 do << 1114 { << 1115 if(through) << 1116 { << 1117 swap = !swap; << 1118 through = false; << 1119 fGlobalNormal = -fGlobalNormal; << 1120 G4SwapPtr(fMaterial1, fMaterial2); << 1121 G4SwapObj(&fRindex1, &fRindex2); << 1122 } << 1123 << 1124 if(fFinish == polished) << 1125 { << 1126 fFacetNormal = fGlobalNormal; << 1127 } << 1128 else << 1129 { << 1130 fFacetNormal = GetFacetNormal(fOldMomen << 1131 } << 1132 << 1133 cost1 = -fOldMomentum * fFacetNormal; << 1134 if(std::abs(cost1) < 1.0 - fCarTolerance) << 1135 { << 1136 fSint1 = std::sqrt(1. - cost1 * cost1); << 1137 sint2 = fSint1 * fRindex1 / fRindex2; << 1138 // this isn't a sine as we might expect << 1139 } << 1140 else << 1141 { << 1142 fSint1 = 0.0; << 1143 sint2 = 0.0; << 1144 } << 1145 << 1146 // TOTAL INTERNAL REFLECTION << 1147 if(sint2 >= 1.0) << 1148 { << 1149 swap = false; << 1150 << 1151 fStatus = TotalInternalReflection; << 1152 if(!surfaceRoughnessCriterionPass) << 1153 fStatus = LambertianReflection; << 1154 if(fModel == unified && fFinish != poli << 1155 ChooseReflection(); << 1156 if(fStatus == LambertianReflection) << 1157 { << 1158 DoReflection(); << 1159 } << 1160 else if(fStatus == BackScattering) << 1161 { << 1162 fNewMomentum = -fOldMomentum; << 1163 fNewPolarization = -fOldPolarization; << 1164 } << 1165 else << 1166 { << 1167 fNewMomentum = << 1168 fOldMomentum - 2. * fOldMomentum * << 1169 fNewPolarization = -fOldPolarization << 1170 << 1171 } << 1172 } << 1173 // NOT TIR << 1174 else if(sint2 < 1.0) << 1175 { << 1176 // Calculate amplitude for transmission << 1177 if(cost1 > 0.0) << 1178 { << 1179 cost2 = std::sqrt(1. - sint2 * sint2) << 1180 } << 1181 else << 1182 { << 1183 cost2 = -std::sqrt(1. - sint2 * sint2 << 1184 } << 1185 << 1186 if(fSint1 > 0.0) << 1187 { << 1188 A_trans = (fOldMomentum.cross(fFacetN << 1189 E1_perp = fOldPolarization * A_trans; << 1190 E1pp = E1_perp * A_trans; << 1191 E1pl = fOldPolarization - E1pp; << 1192 E1_parl = E1pl.mag(); << 1193 } << 1194 else << 1195 { << 1196 A_trans = fOldPolarization; << 1197 // Here we Follow Jackson's conventio << 1198 // component = 1 in case of a ray per << 1199 E1_perp = 0.0; << 1200 E1_parl = 1.0; << 1201 } << 1202 << 1203 s1 = fRindex1 * cost1; << 1204 E2_perp = 2. * s1 * E1_perp / (fRindex << 1205 E2_parl = 2. * s1 * E1_parl / (fRindex << 1206 E2_total = E2_perp * E2_perp + E2_parl << 1207 s2 = fRindex2 * cost2 * E2_total; << 1208 << 1209 // D.Sawkey, 24 May 24 << 1210 // Transmittance has already been taken << 1211 // For e.g. specular surfaces, the rati << 1212 // reflection should be given by the ma << 1213 // TRANSMITTANCE << 1214 //if(fTransmittance > 0.) << 1215 // transCoeff = fTransmittance; << 1216 //else if(cost1 != 0.0) << 1217 if(cost1 != 0.0) << 1218 transCoeff = s2 / s1; << 1219 else << 1220 transCoeff = 0.0; << 1221 << 1222 // NOT TIR: REFLECTION << 1223 if(!G4BooleanRand(transCoeff)) << 1224 { << 1225 swap = false; << 1226 fStatus = FresnelReflection; << 1227 << 1228 if(!surfaceRoughnessCriterionPass) << 1229 fStatus = LambertianReflection; << 1230 if(fModel == unified && fFinish != po << 1231 ChooseReflection(); << 1232 if(fStatus == LambertianReflection) << 1233 { << 1234 DoReflection(); << 1235 } << 1236 else if(fStatus == BackScattering) << 1237 { << 1238 fNewMomentum = -fOldMomentum; << 1239 fNewPolarization = -fOldPolarizatio << 1240 } << 1241 else << 1242 { << 1243 fNewMomentum = << 1244 fOldMomentum - 2. * fOldMomentum << 1245 if(fSint1 > 0.0) << 1246 { // incident ray oblique << 1247 E2_parl = fRindex2 * E2_parl / f << 1248 E2_perp = E2_perp - E1_perp; << 1249 E2_total = E2_perp * E2_perp + E2 << 1250 A_paral = (fNewMomentum.cross(A_ << 1251 E2_abs = std::sqrt(E2_total); << 1252 C_parl = E2_parl / E2_abs; << 1253 C_perp = E2_perp / E2_abs; << 1254 << 1255 fNewPolarization = C_parl * A_par << 1256 } << 1257 else << 1258 { // incident ray perpendicular << 1259 if(fRindex2 > fRindex1) << 1260 { << 1261 fNewPolarization = -fOldPolariz << 1262 } << 1263 else << 1264 { << 1265 fNewPolarization = fOldPolariza << 1266 } << 1267 } << 1268 } << 1269 } << 1270 // NOT TIR: TRANSMISSION << 1271 else << 1272 { << 1273 inside = !inside; << 1274 through = true; << 1275 fStatus = FresnelRefraction; << 1276 << 1277 if(fSint1 > 0.0) << 1278 { // incident ray oblique << 1279 alpha = cost1 - cost2 * (fRi << 1280 fNewMomentum = (fOldMomentum + alph << 1281 A_paral = (fNewMomentum.cross( << 1282 E2_abs = std::sqrt(E2_total); << 1283 C_parl = E2_parl / E2_abs; << 1284 C_perp = E2_perp / E2_abs; << 1285 504 1286 fNewPolarization = C_parl * A_paral << 505 } 1287 } << 506 else { 1288 else << 1289 { // incident ray perpendicular << 1290 fNewMomentum = fOldMomentum; << 1291 fNewPolarization = fOldPolarization << 1292 } << 1293 } << 1294 } << 1295 507 1296 fOldMomentum = fNewMomentum.unit(); << 508 if ( theModel == glisur || theFinish == polished || 1297 fOldPolarization = fNewPolarization.unit( << 509 prob_ss+prob_sl+prob_bs == 0.0 ) { 1298 510 1299 if(fStatus == FresnelRefraction) << 511 DoReflection(); 1300 { << 1301 done = (fNewMomentum * fGlobalNormal <= << 1302 } << 1303 else << 1304 { << 1305 done = (fNewMomentum * fGlobalNormal >= << 1306 } << 1307 // Loop checking, 13-Aug-2015, Peter Gump << 1308 } while(!done); << 1309 << 1310 if(inside && !swap) << 1311 { << 1312 if(fFinish == polishedbackpainted || fFin << 1313 { << 1314 G4double rand = G4UniformRand(); << 1315 if(rand > fReflectivity + fTransmittanc << 1316 { << 1317 DoAbsorption(); << 1318 } << 1319 else if(rand > fReflectivity) << 1320 { << 1321 fStatus = Transmission; << 1322 fNewMomentum = fOldMomentum; << 1323 fNewPolarization = fOldPolarization; << 1324 } << 1325 else << 1326 { << 1327 if(fStatus != FresnelRefraction) << 1328 { << 1329 fGlobalNormal = -fGlobalNormal; << 1330 } << 1331 else << 1332 { << 1333 swap = !swap; << 1334 G4SwapPtr(fMaterial1, fMaterial2); << 1335 G4SwapObj(&fRindex1, &fRindex2); << 1336 } << 1337 if(fFinish == groundbackpainted) << 1338 fStatus = LambertianReflection; << 1339 512 1340 DoReflection(); << 513 } else { 1341 514 1342 fGlobalNormal = -fGlobalNormal; << 515 if ( n == 1 ) ChooseReflection(); 1343 fOldMomentum = fNewMomentum; << 516 >> 517 if ( theStatus == LambertianReflection ) { >> 518 DoReflection(); >> 519 } >> 520 else if ( theStatus == BackScattering ) { >> 521 NewMomentum = -OldMomentum; >> 522 NewPolarization = -OldPolarization; >> 523 } >> 524 else { 1344 525 1345 goto leap; << 526 if(theStatus==LobeReflection)theFacetNormal = 1346 } << 527 GetFacetNormal(OldMomentum,theGlobalNormal); 1347 } << 1348 } << 1349 } << 1350 528 1351 //....oooOO0OOooo........oooOO0OOooo........o << 529 G4double PdotN = OldMomentum * theFacetNormal; 1352 G4double G4OpBoundaryProcess::GetMeanFreePath << 530 NewMomentum = OldMomentum - (2.*PdotN)*theFacetNormal; 1353 << 531 G4double EdotN = OldPolarization * theFacetNormal; 1354 { << 532 NewPolarization = -OldPolarization + (2.*EdotN)*theFacetNormal; 1355 *condition = Forced; << 533 } 1356 return DBL_MAX; << 1357 } << 1358 534 1359 //....oooOO0OOooo........oooOO0OOooo........o << 535 } 1360 G4double G4OpBoundaryProcess::GetIncidentAngl << 1361 { << 1362 return pi - std::acos(fOldMomentum * fFacet << 1363 (fOldMomentum.mag() * << 1364 } << 1365 536 1366 //....oooOO0OOooo........oooOO0OOooo........o << 537 OldMomentum = NewMomentum; 1367 G4double G4OpBoundaryProcess::GetReflectivity << 538 OldPolarization = NewPolarization; 1368 << 1369 << 1370 << 1371 << 1372 { << 1373 G4complex reflectivity, reflectivity_TE, re << 1374 G4complex N1(fRindex1, 0.), N2(realRindex, << 1375 G4complex cosPhi; << 1376 << 1377 G4complex u(1., 0.); // unit number 1 << 1378 << 1379 G4complex numeratorTE; // E1_perp=1 E1_par << 1380 G4complex numeratorTM; // E1_parl=1 E1_per << 1381 G4complex denominatorTE, denominatorTM; << 1382 G4complex rTM, rTE; << 1383 << 1384 G4MaterialPropertiesTable* MPT = fMaterial1 << 1385 G4MaterialPropertyVector* ppR = MPT->GetPr << 1386 G4MaterialPropertyVector* ppI = MPT->GetPr << 1387 if(ppR && ppI) << 1388 { << 1389 G4double rRindex = ppR->Value(fPhotonMome << 1390 G4double iRindex = ppI->Value(fPhotonMome << 1391 N1 = G4complex(rRindex, iRi << 1392 } << 1393 << 1394 // Following two equations, rTM and rTE, ar << 1395 // Optics" written by Fowles << 1396 cosPhi = std::sqrt(u - ((std::sin(incidenta << 1397 (N1 * N1) / (N2 * N << 1398 << 1399 numeratorTE = N1 * std::cos(incidentangle << 1400 denominatorTE = N1 * std::cos(incidentangle << 1401 rTE = numeratorTE / denominatorTE << 1402 << 1403 numeratorTM = N2 * std::cos(incidentangle << 1404 denominatorTM = N2 * std::cos(incidentangle << 1405 rTM = numeratorTM / denominatorTM << 1406 << 1407 // This is my (PG) calculaton for reflectiv << 1408 // depending on the fraction of TE and TM p << 1409 // when TE polarization, E1_parl=0 and E1_p << 1410 // when TM polarization, E1_parl=1 and E1_p << 1411 << 1412 reflectivity_TE = (rTE * conj(rTE)) * (E1_p << 1413 (E1_perp * E1_perp + E1_p << 1414 reflectivity_TM = (rTM * conj(rTM)) * (E1_p << 1415 (E1_perp * E1_perp + E1_p << 1416 reflectivity = reflectivity_TE + reflectivi << 1417 << 1418 do << 1419 { << 1420 if(G4UniformRand() * real(reflectivity) > << 1421 { << 1422 f_iTE = -1; << 1423 } << 1424 else << 1425 { << 1426 f_iTE = 1; << 1427 } << 1428 if(G4UniformRand() * real(reflectivity) > << 1429 { << 1430 f_iTM = -1; << 1431 } << 1432 else << 1433 { << 1434 f_iTM = 1; << 1435 } << 1436 // Loop checking, 13-Aug-2015, Peter Gump << 1437 } while(f_iTE < 0 && f_iTM < 0); << 1438 539 1439 return real(reflectivity); << 540 } 1440 } << 1441 541 1442 //....oooOO0OOooo........oooOO0OOooo........o << 542 } while (NewMomentum * theGlobalNormal < 0.0); 1443 void G4OpBoundaryProcess::CalculateReflectivi << 1444 { << 1445 G4double realRindex = fRealRIndexMPV->Value << 1446 G4double imaginaryRindex = << 1447 fImagRIndexMPV->Value(fPhotonMomentum, id << 1448 << 1449 // calculate FacetNormal << 1450 if(fFinish == ground) << 1451 { << 1452 fFacetNormal = GetFacetNormal(fOldMomentu << 1453 } << 1454 else << 1455 { << 1456 fFacetNormal = fGlobalNormal; << 1457 } << 1458 << 1459 G4double cost1 = -fOldMomentum * fFacetNorm << 1460 if(std::abs(cost1) < 1.0 - fCarTolerance) << 1461 { << 1462 fSint1 = std::sqrt(1. - cost1 * cost1); << 1463 } << 1464 else << 1465 { << 1466 fSint1 = 0.0; << 1467 } << 1468 << 1469 G4ThreeVector A_trans, A_paral, E1pp, E1pl; << 1470 G4double E1_perp, E1_parl; << 1471 << 1472 if(fSint1 > 0.0) << 1473 { << 1474 A_trans = (fOldMomentum.cross(fFacetNorma << 1475 E1_perp = fOldPolarization * A_trans; << 1476 E1pp = E1_perp * A_trans; << 1477 E1pl = fOldPolarization - E1pp; << 1478 E1_parl = E1pl.mag(); << 1479 } << 1480 else << 1481 { << 1482 A_trans = fOldPolarization; << 1483 // Here we Follow Jackson's conventions a << 1484 // component = 1 in case of a ray perpend << 1485 E1_perp = 0.0; << 1486 E1_parl = 1.0; << 1487 } << 1488 << 1489 G4double incidentangle = GetIncidentAngle() << 1490 << 1491 // calculate the reflectivity depending on << 1492 // polarization and complex refractive << 1493 fReflectivity = GetReflectivity(E1_perp, E1 << 1494 imaginaryRi << 1495 } 543 } 1496 544 1497 //....oooOO0OOooo........oooOO0OOooo........o << 545 void G4OpBoundaryProcess::DielectricDielectric() 1498 G4bool G4OpBoundaryProcess::InvokeSD(const G4 << 1499 { 546 { 1500 G4Step aStep = *pStep; << 547 G4bool Inside = false; 1501 aStep.AddTotalEnergyDeposit(fPhotonMomentum << 548 G4bool Swap = false; 1502 549 1503 G4VSensitiveDetector* sd = aStep.GetPostSte << 550 leap: 1504 if(sd != nullptr) << 1505 return sd->Hit(&aStep); << 1506 else << 1507 return false; << 1508 } << 1509 551 1510 //....oooOO0OOooo........oooOO0OOooo........o << 552 G4bool Through = false; 1511 inline void G4OpBoundaryProcess::SetInvokeSD( << 553 G4bool Done = false; 1512 { << 1513 fInvokeSD = flag; << 1514 G4OpticalParameters::Instance()->SetBoundar << 1515 } << 1516 554 1517 //....oooOO0OOooo........oooOO0OOooo........o << 555 do { 1518 void G4OpBoundaryProcess::SetVerboseLevel(G4i << 556 1519 { << 557 if (Through) { 1520 verboseLevel = verbose; << 558 Swap = !Swap; 1521 G4OpticalParameters::Instance()->SetBoundar << 559 Through = false; >> 560 theGlobalNormal = -theGlobalNormal; >> 561 G4Swap(Material1,Material2); >> 562 G4Swap(&Rindex1,&Rindex2); >> 563 } >> 564 >> 565 if ( theFinish == ground || theFinish == groundbackpainted ) { >> 566 theFacetNormal = >> 567 GetFacetNormal(OldMomentum,theGlobalNormal); >> 568 } >> 569 else { >> 570 theFacetNormal = theGlobalNormal; >> 571 } >> 572 >> 573 G4double PdotN = OldMomentum * theFacetNormal; >> 574 G4double EdotN = OldPolarization * theFacetNormal; >> 575 >> 576 cost1 = - PdotN; >> 577 if (std::abs(cost1) < 1.0-kCarTolerance){ >> 578 sint1 = std::sqrt(1.-cost1*cost1); >> 579 sint2 = sint1*Rindex1/Rindex2; // *** Snell's Law *** >> 580 } >> 581 else { >> 582 sint1 = 0.0; >> 583 sint2 = 0.0; >> 584 } >> 585 >> 586 if (sint2 >= 1.0) { >> 587 >> 588 // Simulate total internal reflection >> 589 >> 590 if (Swap) Swap = !Swap; >> 591 >> 592 theStatus = TotalInternalReflection; >> 593 >> 594 if ( theModel == unified && theFinish != polished ) >> 595 ChooseReflection(); >> 596 >> 597 if ( theStatus == LambertianReflection ) { >> 598 DoReflection(); >> 599 } >> 600 else if ( theStatus == BackScattering ) { >> 601 NewMomentum = -OldMomentum; >> 602 NewPolarization = -OldPolarization; >> 603 } >> 604 else { >> 605 >> 606 PdotN = OldMomentum * theFacetNormal; >> 607 NewMomentum = OldMomentum - (2.*PdotN)*theFacetNormal; >> 608 EdotN = OldPolarization * theFacetNormal; >> 609 NewPolarization = -OldPolarization + (2.*EdotN)*theFacetNormal; >> 610 >> 611 } >> 612 } >> 613 else if (sint2 < 1.0) { >> 614 >> 615 // Calculate amplitude for transmission (Q = P x N) >> 616 >> 617 if (cost1 > 0.0) { >> 618 cost2 = std::sqrt(1.-sint2*sint2); >> 619 } >> 620 else { >> 621 cost2 = -std::sqrt(1.-sint2*sint2); >> 622 } >> 623 >> 624 G4ThreeVector A_trans, A_paral, E1pp, E1pl; >> 625 G4double E1_perp, E1_parl; >> 626 >> 627 if (sint1 > 0.0) { >> 628 A_trans = OldMomentum.cross(theFacetNormal); >> 629 A_trans = A_trans.unit(); >> 630 E1_perp = OldPolarization * A_trans; >> 631 E1pp = E1_perp * A_trans; >> 632 E1pl = OldPolarization - E1pp; >> 633 E1_parl = E1pl.mag(); >> 634 } >> 635 else { >> 636 A_trans = OldPolarization; >> 637 // Here we Follow Jackson's conventions and we set the >> 638 // parallel component = 1 in case of a ray perpendicular >> 639 // to the surface >> 640 E1_perp = 0.0; >> 641 E1_parl = 1.0; >> 642 } >> 643 >> 644 G4double s1 = Rindex1*cost1; >> 645 G4double E2_perp = 2.*s1*E1_perp/(Rindex1*cost1+Rindex2*cost2); >> 646 G4double E2_parl = 2.*s1*E1_parl/(Rindex2*cost1+Rindex1*cost2); >> 647 G4double E2_total = E2_perp*E2_perp + E2_parl*E2_parl; >> 648 G4double s2 = Rindex2*cost2*E2_total; >> 649 >> 650 G4double TransCoeff; >> 651 >> 652 if (cost1 != 0.0) { >> 653 TransCoeff = s2/s1; >> 654 } >> 655 else { >> 656 TransCoeff = 0.0; >> 657 } >> 658 >> 659 G4double E2_abs, C_parl, C_perp; >> 660 >> 661 if ( !G4BooleanRand(TransCoeff) ) { >> 662 >> 663 // Simulate reflection >> 664 >> 665 if (Swap) Swap = !Swap; >> 666 >> 667 theStatus = FresnelReflection; >> 668 >> 669 if ( theModel == unified && theFinish != polished ) >> 670 ChooseReflection(); >> 671 >> 672 if ( theStatus == LambertianReflection ) { >> 673 DoReflection(); >> 674 } >> 675 else if ( theStatus == BackScattering ) { >> 676 NewMomentum = -OldMomentum; >> 677 NewPolarization = -OldPolarization; >> 678 } >> 679 else { >> 680 >> 681 PdotN = OldMomentum * theFacetNormal; >> 682 NewMomentum = OldMomentum - (2.*PdotN)*theFacetNormal; >> 683 >> 684 if (sint1 > 0.0) { // incident ray oblique >> 685 >> 686 E2_parl = Rindex2*E2_parl/Rindex1 - E1_parl; >> 687 E2_perp = E2_perp - E1_perp; >> 688 E2_total = E2_perp*E2_perp + E2_parl*E2_parl; >> 689 A_paral = NewMomentum.cross(A_trans); >> 690 A_paral = A_paral.unit(); >> 691 E2_abs = std::sqrt(E2_total); >> 692 C_parl = E2_parl/E2_abs; >> 693 C_perp = E2_perp/E2_abs; >> 694 >> 695 NewPolarization = C_parl*A_paral + C_perp*A_trans; >> 696 >> 697 } >> 698 >> 699 else { // incident ray perpendicular >> 700 >> 701 if (Rindex2 > Rindex1) { >> 702 NewPolarization = - OldPolarization; >> 703 } >> 704 else { >> 705 NewPolarization = OldPolarization; >> 706 } >> 707 >> 708 } >> 709 } >> 710 } >> 711 else { // photon gets transmitted >> 712 >> 713 // Simulate transmission/refraction >> 714 >> 715 Inside = !Inside; >> 716 Through = true; >> 717 theStatus = FresnelRefraction; >> 718 >> 719 if (sint1 > 0.0) { // incident ray oblique >> 720 >> 721 G4double alpha = cost1 - cost2*(Rindex2/Rindex1); >> 722 NewMomentum = OldMomentum + alpha*theFacetNormal; >> 723 NewMomentum = NewMomentum.unit(); >> 724 PdotN = -cost2; >> 725 A_paral = NewMomentum.cross(A_trans); >> 726 A_paral = A_paral.unit(); >> 727 E2_abs = std::sqrt(E2_total); >> 728 C_parl = E2_parl/E2_abs; >> 729 C_perp = E2_perp/E2_abs; >> 730 >> 731 NewPolarization = C_parl*A_paral + C_perp*A_trans; >> 732 >> 733 } >> 734 else { // incident ray perpendicular >> 735 >> 736 NewMomentum = OldMomentum; >> 737 NewPolarization = OldPolarization; >> 738 >> 739 } >> 740 } >> 741 } >> 742 >> 743 OldMomentum = NewMomentum.unit(); >> 744 OldPolarization = NewPolarization.unit(); >> 745 >> 746 if (theStatus == FresnelRefraction) { >> 747 Done = (NewMomentum * theGlobalNormal <= 0.0); >> 748 } >> 749 else { >> 750 Done = (NewMomentum * theGlobalNormal >= 0.0); >> 751 } >> 752 >> 753 } while (!Done); >> 754 >> 755 if (Inside && !Swap) { >> 756 if( theFinish == polishedbackpainted || >> 757 theFinish == groundbackpainted ) { >> 758 if( !G4BooleanRand(theReflectivity) ) { >> 759 DoAbsorption(); >> 760 } >> 761 else { >> 762 if (theStatus != FresnelRefraction ) { >> 763 theGlobalNormal = -theGlobalNormal; >> 764 } >> 765 else { >> 766 Swap = !Swap; >> 767 G4Swap(Material1,Material2); >> 768 G4Swap(&Rindex1,&Rindex2); >> 769 } >> 770 if ( theFinish == groundbackpainted ) >> 771 theStatus = LambertianReflection; >> 772 >> 773 DoReflection(); >> 774 >> 775 theGlobalNormal = -theGlobalNormal; >> 776 OldMomentum = NewMomentum; >> 777 >> 778 goto leap; >> 779 } >> 780 } >> 781 } 1522 } 782 } 1523 783 1524 //....oooOO0OOooo........oooOO0OOooo........o << 784 // GetMeanFreePath 1525 void G4OpBoundaryProcess::CoatedDielectricDie << 785 // --------------- >> 786 // >> 787 G4double G4OpBoundaryProcess::GetMeanFreePath(const G4Track& , >> 788 G4double , >> 789 G4ForceCondition* condition) 1526 { 790 { 1527 G4MaterialPropertyVector* pp = nullptr; << 791 *condition = Forced; 1528 << 1529 G4MaterialPropertiesTable* MPT = fMaterial2 << 1530 if((pp = MPT->GetProperty(kRINDEX))) << 1531 { << 1532 fRindex2 = pp->Value(fPhotonMomentum, idx << 1533 } << 1534 << 1535 MPT = fOpticalSurface->GetMaterialPropertie << 1536 if((pp = MPT->GetProperty(kCOATEDRINDEX))) << 1537 { << 1538 fCoatedRindex = pp->Value(fPhotonMomentum << 1539 } << 1540 if(MPT->ConstPropertyExists(kCOATEDTHICKNES << 1541 { << 1542 fCoatedThickness = MPT->GetConstProperty( << 1543 } << 1544 if(MPT->ConstPropertyExists(kCOATEDFRUSTRAT << 1545 { << 1546 fCoatedFrustratedTransmission = << 1547 (G4bool)MPT->GetConstProperty(kCOATEDFR << 1548 } << 1549 << 1550 G4double sintTL; << 1551 G4double wavelength = h_Planck * c_light / << 1552 G4double PdotN; << 1553 G4double E1_perp, E1_parl; << 1554 G4double s1, E2_perp, E2_parl, E2_total, tr << 1555 G4double E2_abs, C_parl, C_perp; << 1556 G4double alpha; << 1557 G4ThreeVector A_trans, A_paral, E1pp, E1pl; << 1558 //G4bool Inside = false; << 1559 //G4bool Swap = false; << 1560 G4bool through = false; << 1561 G4bool done = false; << 1562 << 1563 do { << 1564 if (through) << 1565 { << 1566 //Swap = !Swap; << 1567 through = false; << 1568 fGlobalNormal = -fGlobalNormal; << 1569 G4SwapPtr(fMaterial1, fMaterial2); << 1570 G4SwapObj(&fRindex1, &fRindex2); << 1571 } << 1572 << 1573 if(fFinish == polished) << 1574 { << 1575 fFacetNormal = fGlobalNormal; << 1576 } << 1577 else << 1578 { << 1579 fFacetNormal = GetFacetNormal(fOldMomen << 1580 } << 1581 << 1582 PdotN = fOldMomentum * fFacetNormal; << 1583 G4double cost1 = -PdotN; << 1584 G4double sint2, cost2 = 0.; << 1585 << 1586 if (std::abs(cost1) < 1.0 - fCarTolerance << 1587 { << 1588 fSint1 = std::sqrt(1. - cost1 * cost1); << 1589 sint2 = fSint1 * fRindex1 / fRindex2; << 1590 sintTL = fSint1 * fRindex1 / fCoatedRin << 1591 } else << 1592 { << 1593 fSint1 = 0.0; << 1594 sint2 = 0.0; << 1595 sintTL = 0.0; << 1596 } << 1597 << 1598 if (fSint1 > 0.0) << 1599 { << 1600 A_trans = fOldMomentum.cross(fFacetNorm << 1601 A_trans = A_trans.unit(); << 1602 E1_perp = fOldPolarization * A_trans; << 1603 E1pp = E1_perp * A_trans; << 1604 E1pl = fOldPolarization - E1pp; << 1605 E1_parl = E1pl.mag(); << 1606 } << 1607 else << 1608 { << 1609 A_trans = fOldPolarization; << 1610 E1_perp = 0.0; << 1611 E1_parl = 1.0; << 1612 } << 1613 << 1614 s1 = fRindex1 * cost1; << 1615 << 1616 if (cost1 > 0.0) << 1617 { << 1618 cost2 = std::sqrt(1. - sint2 * sint2); << 1619 } << 1620 else << 1621 { << 1622 cost2 = -std::sqrt(1. - sint2 * sint2); << 1623 } << 1624 << 1625 transCoeff = 0.0; << 1626 << 1627 if (sintTL >= 1.0) << 1628 { // --> Angle > Angle Limit << 1629 //Swap = false; << 1630 } << 1631 E2_perp = 2. * s1 * E1_perp / (fRindex1 * << 1632 E2_parl = 2. * s1 * E1_parl / (fRindex2 * << 1633 E2_total = E2_perp * E2_perp + E2_parl * << 1634 << 1635 transCoeff = 1. - GetReflectivityThroughT << 1636 sintTL, E1_perp, E1_p << 1637 if (!G4BooleanRand(transCoeff)) << 1638 { << 1639 if(verboseLevel > 2) << 1640 G4cout << "Reflection from " << fMate << 1641 << fMaterial2->GetName() << G4 << 1642 << 1643 //Swap = false; << 1644 << 1645 if (sintTL >= 1.0) << 1646 { << 1647 fStatus = TotalInternalReflection; << 1648 } << 1649 else << 1650 { << 1651 fStatus = CoatedDielectricReflection; << 1652 } << 1653 << 1654 PdotN = fOldMomentum * fFacetNormal; << 1655 fNewMomentum = fOldMomentum - (2. * Pdo << 1656 << 1657 if (fSint1 > 0.0) { // incident ray o << 1658 << 1659 E2_parl = fRindex2 * E2_parl / fRinde << 1660 E2_perp = E2_perp - E1_perp; << 1661 E2_total = E2_perp * E2_perp + E2_par << 1662 A_paral = fNewMomentum.cross(A_trans) << 1663 A_paral = A_paral.unit(); << 1664 E2_abs = std::sqrt(E2_total); << 1665 C_parl = E2_parl / E2_abs; << 1666 C_perp = E2_perp / E2_abs; << 1667 << 1668 fNewPolarization = C_parl * A_paral + << 1669 << 1670 } << 1671 else << 1672 { // incident ray perpend << 1673 if (fRindex2 > fRindex1) << 1674 { << 1675 fNewPolarization = -fOldPolarizatio << 1676 } << 1677 else << 1678 { << 1679 fNewPolarization = fOldPolarization << 1680 } << 1681 } << 1682 << 1683 } else { // photon gets transmitted << 1684 if (verboseLevel > 2) << 1685 G4cout << "Transmission from " << fMa << 1686 << fMaterial2->GetName() << G4 << 1687 << 1688 //Inside = !Inside; << 1689 through = true; << 1690 << 1691 if (fEfficiency > 0.) << 1692 { << 1693 DoAbsorption(); << 1694 return; << 1695 } << 1696 else << 1697 { << 1698 if (sintTL >= 1.0) << 1699 { << 1700 fStatus = CoatedDielectricFrustrate << 1701 } << 1702 else << 1703 { << 1704 fStatus = CoatedDielectricRefractio << 1705 } << 1706 792 1707 if (fSint1 > 0.0) { // incident << 793 return DBL_MAX; 1708 << 1709 alpha = cost1 - cost2 * (fRindex2 / << 1710 fNewMomentum = fOldMomentum + alpha << 1711 fNewMomentum = fNewMomentum.unit(); << 1712 A_paral = fNewMomentum.cross(A_tran << 1713 A_paral = A_paral.unit(); << 1714 E2_abs = std::sqrt(E2_total); << 1715 C_parl = E2_parl / E2_abs; << 1716 C_perp = E2_perp / E2_abs; << 1717 << 1718 fNewPolarization = C_parl * A_paral << 1719 << 1720 } << 1721 else << 1722 { // incident ray pe << 1723 fNewMomentum = fOldMomentum; << 1724 fNewPolarization = fOldPolarization << 1725 } << 1726 } << 1727 } << 1728 << 1729 fOldMomentum = fNewMomentum.unit(); << 1730 fOldPolarization = fNewPolarization.unit( << 1731 if ((fStatus == CoatedDielectricFrustrate << 1732 (fStatus == CoatedDielectricRefractio << 1733 { << 1734 done = (fNewMomentum * fGlobalNormal <= << 1735 } << 1736 else << 1737 { << 1738 done = (fNewMomentum * fGlobalNormal >= << 1739 } << 1740 << 1741 } while (!done); << 1742 } 794 } 1743 795 1744 //....oooOO0OOooo........oooOO0OOooo........o << 1745 G4double G4OpBoundaryProcess::GetReflectivity << 1746 G4double E1_perp, << 1747 G4double E1_parl, << 1748 G4double wavelength, G4dou << 1749 G4complex Reflectivity, Reflectivity_TE, Re << 1750 G4double gammaTL, costTL; << 1751 << 1752 G4complex i(0, 1); << 1753 G4complex rTM, rTE; << 1754 G4complex r1toTL, rTLto2; << 1755 G4double k0 = 2 * pi / wavelength; << 1756 << 1757 // Angle > Angle limit << 1758 if (sinTL >= 1.0) { << 1759 if (fCoatedFrustratedTransmission) { //Fr << 1760 << 1761 if (cost1 > 0.0) << 1762 { << 1763 gammaTL = std::sqrt(fRindex1 * fRinde << 1764 fCoatedRindex * fCoatedRin << 1765 } << 1766 else << 1767 { << 1768 gammaTL = -std::sqrt(fRindex1 * fRind << 1769 fCoatedRindex * fCoatedRin << 1770 } << 1771 << 1772 // TE << 1773 r1toTL = (fRindex1 * cost1 - i * gammaT << 1774 rTLto2 = (i * gammaTL - fRindex2 * cost << 1775 if (cost1 != 0.0) << 1776 { << 1777 rTE = (r1toTL + rTLto2 * std::exp(-2 << 1778 (1.0 + r1toTL * rTLto2 * std << 1779 } << 1780 // TM << 1781 r1toTL = (fRindex1 * i * gammaTL - fCoa << 1782 (fRindex1 * i * gammaTL + f << 1783 rTLto2 = (fCoatedRindex * fCoatedRindex << 1784 (fCoatedRindex * fCoatedRin << 1785 if (cost1 != 0.0) << 1786 { << 1787 rTM = (r1toTL + rTLto2 * std::exp(-2 << 1788 (1.0 + r1toTL * rTLto2 * std << 1789 } << 1790 } << 1791 else << 1792 { //Total reflection << 1793 return(1.); << 1794 } << 1795 } << 1796 << 1797 // Angle <= Angle limit << 1798 else //if (sinTL < 1.0) << 1799 { << 1800 if (cost1 > 0.0) << 1801 { << 1802 costTL = std::sqrt(1. - sinTL * sinTL); << 1803 } << 1804 else << 1805 { << 1806 costTL = -std::sqrt(1. - sinTL * sinTL) << 1807 } << 1808 // TE << 1809 r1toTL = (fRindex1 * cost1 - fCoatedRinde << 1810 rTLto2 = (fCoatedRindex * costTL - fRinde << 1811 if (cost1 != 0.0) << 1812 { << 1813 rTE = (r1toTL + rTLto2 * std::exp(2.0 * << 1814 (1.0 + r1toTL * rTLto2 * std::exp << 1815 } << 1816 // TM << 1817 r1toTL = (fRindex1 * costTL - fCoatedRind << 1818 rTLto2 = (fCoatedRindex * cost2 - fRindex << 1819 if (cost1 != 0.0) << 1820 { << 1821 rTM = (r1toTL + rTLto2 * std::exp(2.0 * << 1822 (1.0 + r1toTL * rTLto2 * std::exp << 1823 } << 1824 } << 1825 << 1826 Reflectivity_TE = (rTE * conj(rTE)) * (E1_p << 1827 Reflectivity_TM = (rTM * conj(rTM)) * (E1_p << 1828 Reflectivity = Reflectivity_TE + Reflectivi << 1829 << 1830 return real(Reflectivity); << 1831 } << 1832 796