Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/optical/src/G4OpBoundaryProcess.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/optical/src/G4OpBoundaryProcess.cc (Version 11.3.0) and /processes/optical/src/G4OpBoundaryProcess.cc (Version 11.1.3)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 //////////////////////////////////////////////     26 ////////////////////////////////////////////////////////////////////////
 27 // Optical Photon Boundary Process Class Imple     27 // Optical Photon Boundary Process Class Implementation
 28 //////////////////////////////////////////////     28 ////////////////////////////////////////////////////////////////////////
 29 //                                                 29 //
 30 // File:        G4OpBoundaryProcess.cc             30 // File:        G4OpBoundaryProcess.cc
 31 // Description: Discrete Process -- reflection     31 // Description: Discrete Process -- reflection/refraction at
 32 //                                  optical in     32 //                                  optical interfaces
 33 // Version:     1.1                                33 // Version:     1.1
 34 // Created:     1997-06-18                         34 // Created:     1997-06-18
 35 // Modified:    1998-05-25 - Correct parallel      35 // Modified:    1998-05-25 - Correct parallel component of polarization
 36 //                           (thanks to: Stefa     36 //                           (thanks to: Stefano Magni + Giovanni Pieri)
 37 //              1998-05-28 - NULL Rindex point     37 //              1998-05-28 - NULL Rindex pointer before reuse
 38 //                           (thanks to: Stefa     38 //                           (thanks to: Stefano Magni)
 39 //              1998-06-11 - delete *sint1 in      39 //              1998-06-11 - delete *sint1 in oblique reflection
 40 //                           (thanks to: Giova     40 //                           (thanks to: Giovanni Pieri)
 41 //              1998-06-19 - move from GetLoca     41 //              1998-06-19 - move from GetLocalExitNormal() to the new
 42 //                           method: GetLocalE     42 //                           method: GetLocalExitNormal(&valid) to get
 43 //                           the surface norma     43 //                           the surface normal in all cases
 44 //              1998-11-07 - NULL OpticalSurfa     44 //              1998-11-07 - NULL OpticalSurface pointer before use
 45 //                           comparison not sh     45 //                           comparison not sharp for: std::abs(cost1) < 1.0
 46 //                           remove sin1, sin2     46 //                           remove sin1, sin2 in lines 556,567
 47 //                           (thanks to Stefan     47 //                           (thanks to Stefano Magni)
 48 //              1999-10-10 - Accommodate chang     48 //              1999-10-10 - Accommodate changes done in DoAbsorption by
 49 //                           changing logic in     49 //                           changing logic in DielectricMetal
 50 //              2001-10-18 - avoid Linux (gcc-     50 //              2001-10-18 - avoid Linux (gcc-2.95.2) warning about variables
 51 //                           might be used uni     51 //                           might be used uninitialized in this function
 52 //                           moved E2_perp, E2     52 //                           moved E2_perp, E2_parl and E2_total out of 'if'
 53 //              2003-11-27 - Modified line 168     53 //              2003-11-27 - Modified line 168-9 to reflect changes made to
 54 //                           G4OpticalSurface      54 //                           G4OpticalSurface class ( by Fan Lei)
 55 //              2004-02-02 - Set theStatus = U     55 //              2004-02-02 - Set theStatus = Undefined at start of DoIt
 56 //              2005-07-28 - add G4ProcessType     56 //              2005-07-28 - add G4ProcessType to constructor
 57 //              2006-11-04 - add capability of     57 //              2006-11-04 - add capability of calculating the reflectivity
 58 //                           off a metal surfa     58 //                           off a metal surface by way of a complex index
 59 //                           of refraction - T     59 //                           of refraction - Thanks to Sehwook Lee and John
 60 //                           Hauptman (Dept. o     60 //                           Hauptman (Dept. of Physics - Iowa State Univ.)
 61 //              2009-11-10 - add capability of     61 //              2009-11-10 - add capability of simulating surface reflections
 62 //                           with Look-Up-Tabl     62 //                           with Look-Up-Tables (LUT) containing measured
 63 //                           optical reflectan     63 //                           optical reflectance for a variety of surface
 64 //                           treatments - Than     64 //                           treatments - Thanks to Martin Janecek and
 65 //                           William Moses (La     65 //                           William Moses (Lawrence Berkeley National Lab.)
 66 //              2013-06-01 - add the capabilit     66 //              2013-06-01 - add the capability of simulating the transmission
 67 //                           of a dichronic fi     67 //                           of a dichronic filter
 68 //              2017-02-24 - add capability of     68 //              2017-02-24 - add capability of simulating surface reflections
 69 //                           with Look-Up-Tabl     69 //                           with Look-Up-Tables (LUT) developed in DAVIS
 70 //                                                 70 //
 71 // Author:      Peter Gumplinger                   71 // Author:      Peter Gumplinger
 72 //    adopted from work by Werner Keil - April     72 //    adopted from work by Werner Keil - April 2/96
 73 //                                                 73 //
 74 //////////////////////////////////////////////     74 ////////////////////////////////////////////////////////////////////////
 75                                                    75 
 76 #include "G4OpBoundaryProcess.hh"                  76 #include "G4OpBoundaryProcess.hh"
 77                                                    77 
 78 #include "G4ios.hh"                                78 #include "G4ios.hh"
 79 #include "G4GeometryTolerance.hh"                  79 #include "G4GeometryTolerance.hh"
 80 #include "G4LogicalBorderSurface.hh"               80 #include "G4LogicalBorderSurface.hh"
 81 #include "G4LogicalSkinSurface.hh"                 81 #include "G4LogicalSkinSurface.hh"
 82 #include "G4OpProcessSubType.hh"                   82 #include "G4OpProcessSubType.hh"
 83 #include "G4OpticalParameters.hh"                  83 #include "G4OpticalParameters.hh"
 84 #include "G4ParallelWorldProcess.hh"               84 #include "G4ParallelWorldProcess.hh"
 85 #include "G4PhysicalConstants.hh"                  85 #include "G4PhysicalConstants.hh"
 86 #include "G4SystemOfUnits.hh"                      86 #include "G4SystemOfUnits.hh"
 87 #include "G4TransportationManager.hh"              87 #include "G4TransportationManager.hh"
 88 #include "G4VSensitiveDetector.hh"                 88 #include "G4VSensitiveDetector.hh"
 89                                                    89 
 90 //....oooOO0OOooo........oooOO0OOooo........oo     90 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 91 G4OpBoundaryProcess::G4OpBoundaryProcess(const     91 G4OpBoundaryProcess::G4OpBoundaryProcess(const G4String& processName,
 92                                          G4Pro     92                                          G4ProcessType ptype)
 93   : G4VDiscreteProcess(processName, ptype)         93   : G4VDiscreteProcess(processName, ptype)
 94 {                                                  94 {
 95   Initialise();                                    95   Initialise();
 96                                                    96 
 97   if(verboseLevel > 0)                             97   if(verboseLevel > 0)
 98   {                                                98   {
 99     G4cout << GetProcessName() << " is created     99     G4cout << GetProcessName() << " is created " << G4endl;
100   }                                               100   }
101   SetProcessSubType(fOpBoundary);                 101   SetProcessSubType(fOpBoundary);
102                                                   102 
103   fStatus           = Undefined;                  103   fStatus           = Undefined;
104   fModel            = glisur;                     104   fModel            = glisur;
105   fFinish           = polished;                   105   fFinish           = polished;
106   fReflectivity     = 1.;                         106   fReflectivity     = 1.;
107   fEfficiency       = 0.;                         107   fEfficiency       = 0.;
108   fTransmittance    = 0.;                         108   fTransmittance    = 0.;
109   fSurfaceRoughness = 0.;                         109   fSurfaceRoughness = 0.;
110   fProb_sl          = 0.;                         110   fProb_sl          = 0.;
111   fProb_ss          = 0.;                         111   fProb_ss          = 0.;
112   fProb_bs          = 0.;                         112   fProb_bs          = 0.;
113                                                   113 
114   fRealRIndexMPV  = nullptr;                      114   fRealRIndexMPV  = nullptr;
115   fImagRIndexMPV  = nullptr;                      115   fImagRIndexMPV  = nullptr;
116   fMaterial1      = nullptr;                      116   fMaterial1      = nullptr;
117   fMaterial2      = nullptr;                      117   fMaterial2      = nullptr;
118   fOpticalSurface = nullptr;                      118   fOpticalSurface = nullptr;
119   fCarTolerance   = G4GeometryTolerance::GetIn    119   fCarTolerance   = G4GeometryTolerance::GetInstance()->GetSurfaceTolerance();
120                                                   120 
121   f_iTE = f_iTM   = 0;                            121   f_iTE = f_iTM   = 0;
122   fPhotonMomentum = 0.;                           122   fPhotonMomentum = 0.;
123   fRindex1 = fRindex2 = 1.;                       123   fRindex1 = fRindex2 = 1.;
124   fSint1              = 0.;                       124   fSint1              = 0.;
125   fDichroicVector     = nullptr;                  125   fDichroicVector     = nullptr;
                                                   >> 126 
                                                   >> 127   fNumWarnings = 0;
126 }                                                 128 }
127                                                   129 
128 //....oooOO0OOooo........oooOO0OOooo........oo    130 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
129 G4OpBoundaryProcess::~G4OpBoundaryProcess() =     131 G4OpBoundaryProcess::~G4OpBoundaryProcess() = default;
130                                                   132 
131 //....oooOO0OOooo........oooOO0OOooo........oo    133 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
132 void G4OpBoundaryProcess::PreparePhysicsTable(    134 void G4OpBoundaryProcess::PreparePhysicsTable(const G4ParticleDefinition&)
133 {                                                 135 {
134   Initialise();                                   136   Initialise();
135 }                                                 137 }
136                                                   138 
137 //....oooOO0OOooo........oooOO0OOooo........oo    139 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
138 void G4OpBoundaryProcess::Initialise()            140 void G4OpBoundaryProcess::Initialise()
139 {                                                 141 {
140   G4OpticalParameters* params = G4OpticalParam    142   G4OpticalParameters* params = G4OpticalParameters::Instance();
141   SetInvokeSD(params->GetBoundaryInvokeSD());     143   SetInvokeSD(params->GetBoundaryInvokeSD());
142   SetVerboseLevel(params->GetBoundaryVerboseLe    144   SetVerboseLevel(params->GetBoundaryVerboseLevel());
143 }                                                 145 }
144                                                   146 
145 //....oooOO0OOooo........oooOO0OOooo........oo    147 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
146 G4VParticleChange* G4OpBoundaryProcess::PostSt    148 G4VParticleChange* G4OpBoundaryProcess::PostStepDoIt(const G4Track& aTrack,
147                                                   149                                                      const G4Step& aStep)
148 {                                                 150 {
149   fStatus = Undefined;                            151   fStatus = Undefined;
150   aParticleChange.Initialize(aTrack);             152   aParticleChange.Initialize(aTrack);
151   aParticleChange.ProposeVelocity(aTrack.GetVe    153   aParticleChange.ProposeVelocity(aTrack.GetVelocity());
152                                                   154 
153   // Get hyperStep from  G4ParallelWorldProces    155   // Get hyperStep from  G4ParallelWorldProcess
154   //  NOTE: PostSetpDoIt of this process to be    156   //  NOTE: PostSetpDoIt of this process to be invoked after
155   //  G4ParallelWorldProcess!                     157   //  G4ParallelWorldProcess!
156   const G4Step* pStep = &aStep;                   158   const G4Step* pStep = &aStep;
157   const G4Step* hStep = G4ParallelWorldProcess    159   const G4Step* hStep = G4ParallelWorldProcess::GetHyperStep();
158   if(hStep != nullptr)                            160   if(hStep != nullptr)
159     pStep = hStep;                                161     pStep = hStep;
160                                                   162 
161   if(pStep->GetPostStepPoint()->GetStepStatus(    163   if(pStep->GetPostStepPoint()->GetStepStatus() == fGeomBoundary)
162   {                                               164   {
163     fMaterial1 = pStep->GetPreStepPoint()->Get    165     fMaterial1 = pStep->GetPreStepPoint()->GetMaterial();
164     fMaterial2 = pStep->GetPostStepPoint()->Ge    166     fMaterial2 = pStep->GetPostStepPoint()->GetMaterial();
165   }                                               167   }
166   else                                            168   else
167   {                                               169   {
168     fStatus = NotAtBoundary;                      170     fStatus = NotAtBoundary;
169     if(verboseLevel > 1)                          171     if(verboseLevel > 1)
170       BoundaryProcessVerbose();                   172       BoundaryProcessVerbose();
171     return G4VDiscreteProcess::PostStepDoIt(aT    173     return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
172   }                                               174   }
173                                                   175 
174   G4VPhysicalVolume* thePrePV  = pStep->GetPre    176   G4VPhysicalVolume* thePrePV  = pStep->GetPreStepPoint()->GetPhysicalVolume();
175   G4VPhysicalVolume* thePostPV = pStep->GetPos    177   G4VPhysicalVolume* thePostPV = pStep->GetPostStepPoint()->GetPhysicalVolume();
176                                                   178 
177   if(verboseLevel > 1)                            179   if(verboseLevel > 1)
178   {                                               180   {
179     G4cout << " Photon at Boundary! " << G4end    181     G4cout << " Photon at Boundary! " << G4endl;
180     if(thePrePV != nullptr)                       182     if(thePrePV != nullptr)
181       G4cout << " thePrePV:  " << thePrePV->Ge    183       G4cout << " thePrePV:  " << thePrePV->GetName() << G4endl;
182     if(thePostPV != nullptr)                      184     if(thePostPV != nullptr)
183       G4cout << " thePostPV: " << thePostPV->G    185       G4cout << " thePostPV: " << thePostPV->GetName() << G4endl;
184   }                                               186   }
185                                                   187 
186   G4double stepLength = aTrack.GetStepLength()    188   G4double stepLength = aTrack.GetStepLength();
187   if(stepLength <= fCarTolerance)                 189   if(stepLength <= fCarTolerance)
188   {                                               190   {
189     fStatus = StepTooSmall;                       191     fStatus = StepTooSmall;
190     if(verboseLevel > 1)                          192     if(verboseLevel > 1)
191       BoundaryProcessVerbose();                   193       BoundaryProcessVerbose();
192                                                   194 
193     G4MaterialPropertyVector* groupvel = nullp    195     G4MaterialPropertyVector* groupvel = nullptr;
194     G4MaterialPropertiesTable* aMPT = fMateria    196     G4MaterialPropertiesTable* aMPT = fMaterial2->GetMaterialPropertiesTable();
195     if(aMPT != nullptr)                           197     if(aMPT != nullptr)
196     {                                             198     {
197       groupvel = aMPT->GetProperty(kGROUPVEL);    199       groupvel = aMPT->GetProperty(kGROUPVEL);
198     }                                             200     }
199                                                   201 
200     if(groupvel != nullptr)                       202     if(groupvel != nullptr)
201     {                                             203     {
202       aParticleChange.ProposeVelocity(            204       aParticleChange.ProposeVelocity(
203         groupvel->Value(fPhotonMomentum, idx_g    205         groupvel->Value(fPhotonMomentum, idx_groupvel));
204     }                                             206     }
205     return G4VDiscreteProcess::PostStepDoIt(aT    207     return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
206   }                                               208   }
207   else if (stepLength <= 10.*fCarTolerance &&  << 209   else if (stepLength <= 10.*fCarTolerance && fNumWarnings < 10)
208   {  // see bug 2510                              210   {  // see bug 2510
209     ++fNumSmallStepWarnings;                   << 211     ++fNumWarnings;
210     if(verboseLevel > 0)                       << 
211     {                                             212     {
212       G4ExceptionDescription ed;                  213       G4ExceptionDescription ed;
213       ed << "G4OpBoundaryProcess: "               214       ed << "G4OpBoundaryProcess: "
214          << "Opticalphoton step length: " << s    215          << "Opticalphoton step length: " << stepLength/mm << " mm." << G4endl
215          << "This is larger than the threshold    216          << "This is larger than the threshold " << fCarTolerance/mm << " mm "
216             "to set status StepTooSmall." << G    217             "to set status StepTooSmall." << G4endl
217          << "Boundary scattering may be incorr    218          << "Boundary scattering may be incorrect. ";
218       if(fNumSmallStepWarnings == 10)          << 219       if(fNumWarnings == 10)
219       {                                           220       {
220         ed << G4endl << "*** Step size warning    221         ed << G4endl << "*** Step size warnings stopped.";
221       }                                           222       }
222       G4Exception("G4OpBoundaryProcess", "OpBo    223       G4Exception("G4OpBoundaryProcess", "OpBoun06", JustWarning, ed, "");
223     }                                             224     }
224   }                                               225   }
225                                                   226 
226   const G4DynamicParticle* aParticle = aTrack.    227   const G4DynamicParticle* aParticle = aTrack.GetDynamicParticle();
227                                                   228 
228   fPhotonMomentum  = aParticle->GetTotalMoment    229   fPhotonMomentum  = aParticle->GetTotalMomentum();
229   fOldMomentum     = aParticle->GetMomentumDir    230   fOldMomentum     = aParticle->GetMomentumDirection();
230   fOldPolarization = aParticle->GetPolarizatio    231   fOldPolarization = aParticle->GetPolarization();
231                                                   232 
232   if(verboseLevel > 1)                            233   if(verboseLevel > 1)
233   {                                               234   {
234     G4cout << " Old Momentum Direction: " << f    235     G4cout << " Old Momentum Direction: " << fOldMomentum << G4endl
235            << " Old Polarization:       " << f    236            << " Old Polarization:       " << fOldPolarization << G4endl;
236   }                                               237   }
237                                                   238 
238   G4ThreeVector theGlobalPoint = pStep->GetPos    239   G4ThreeVector theGlobalPoint = pStep->GetPostStepPoint()->GetPosition();
239   G4bool valid;                                   240   G4bool valid;
240                                                   241 
241   // ID of Navigator which limits step            242   // ID of Navigator which limits step
242   G4int hNavId = G4ParallelWorldProcess::GetHy    243   G4int hNavId = G4ParallelWorldProcess::GetHypNavigatorID();
243   auto iNav    = G4TransportationManager::GetT    244   auto iNav    = G4TransportationManager::GetTransportationManager()
244                 ->GetActiveNavigatorsIterator(    245                 ->GetActiveNavigatorsIterator();
245   fGlobalNormal = (iNav[hNavId])->GetGlobalExi    246   fGlobalNormal = (iNav[hNavId])->GetGlobalExitNormal(theGlobalPoint, &valid);
246                                                   247 
247   if(valid)                                       248   if(valid)
248   {                                               249   {
249     fGlobalNormal = -fGlobalNormal;               250     fGlobalNormal = -fGlobalNormal;
250   }                                               251   }
251   else                                            252   else
252   {                                               253   {
253     G4ExceptionDescription ed;                    254     G4ExceptionDescription ed;
254     ed << " G4OpBoundaryProcess/PostStepDoIt()    255     ed << " G4OpBoundaryProcess/PostStepDoIt(): "
255        << " The Navigator reports that it retu    256        << " The Navigator reports that it returned an invalid normal" << G4endl;
256     G4Exception(                                  257     G4Exception(
257       "G4OpBoundaryProcess::PostStepDoIt", "Op    258       "G4OpBoundaryProcess::PostStepDoIt", "OpBoun01", EventMustBeAborted, ed,
258       "Invalid Surface Normal - Geometry must     259       "Invalid Surface Normal - Geometry must return valid surface normal");
259   }                                               260   }
260                                                   261 
261   if(fOldMomentum * fGlobalNormal > 0.0)          262   if(fOldMomentum * fGlobalNormal > 0.0)
262   {                                               263   {
263 #ifdef G4OPTICAL_DEBUG                            264 #ifdef G4OPTICAL_DEBUG
264     G4ExceptionDescription ed;                    265     G4ExceptionDescription ed;
265     ed << " G4OpBoundaryProcess/PostStepDoIt()    266     ed << " G4OpBoundaryProcess/PostStepDoIt(): fGlobalNormal points in a "
266           "wrong direction. "                     267           "wrong direction. "
267        << G4endl                                  268        << G4endl
268        << "   The momentum of the photon arriv    269        << "   The momentum of the photon arriving at interface (oldMomentum)"
269        << "   must exit the volume cross in th    270        << "   must exit the volume cross in the step. " << G4endl
270        << "   So it MUST have dot < 0 with the    271        << "   So it MUST have dot < 0 with the normal that Exits the new "
271           "volume (globalNormal)."                272           "volume (globalNormal)."
272        << G4endl << "   >> The dot product of     273        << G4endl << "   >> The dot product of oldMomentum and global Normal is "
273        << fOldMomentum * fGlobalNormal << G4en    274        << fOldMomentum * fGlobalNormal << G4endl
274        << "     Old Momentum  (during step)       275        << "     Old Momentum  (during step)     = " << fOldMomentum << G4endl
275        << "     Global Normal (Exiting New Vol    276        << "     Global Normal (Exiting New Vol) = " << fGlobalNormal << G4endl
276        << G4endl;                                 277        << G4endl;
277     G4Exception("G4OpBoundaryProcess::PostStep    278     G4Exception("G4OpBoundaryProcess::PostStepDoIt", "OpBoun02",
278                 EventMustBeAborted,  // Or Jus    279                 EventMustBeAborted,  // Or JustWarning to see if it happens
279                                      // repeat    280                                      // repeatedly on one ray
280                 ed,                               281                 ed,
281                 "Invalid Surface Normal - Geom    282                 "Invalid Surface Normal - Geometry must return valid surface "
282                 "normal pointing in the right     283                 "normal pointing in the right direction");
283 #else                                             284 #else
284     fGlobalNormal = -fGlobalNormal;               285     fGlobalNormal = -fGlobalNormal;
285 #endif                                            286 #endif
286   }                                               287   }
287                                                   288 
288   G4MaterialPropertyVector* rIndexMPV = nullpt    289   G4MaterialPropertyVector* rIndexMPV = nullptr;
289   G4MaterialPropertiesTable* MPT = fMaterial1-    290   G4MaterialPropertiesTable* MPT = fMaterial1->GetMaterialPropertiesTable();
290   if(MPT != nullptr)                              291   if(MPT != nullptr)
291   {                                               292   {
292     rIndexMPV = MPT->GetProperty(kRINDEX);        293     rIndexMPV = MPT->GetProperty(kRINDEX);
293   }                                               294   }
294   if(rIndexMPV != nullptr)                        295   if(rIndexMPV != nullptr)
295   {                                               296   {
296     fRindex1 = rIndexMPV->Value(fPhotonMomentu    297     fRindex1 = rIndexMPV->Value(fPhotonMomentum, idx_rindex1);
297   }                                               298   }
298   else                                            299   else
299   {                                               300   {
300     fStatus = NoRINDEX;                           301     fStatus = NoRINDEX;
301     if(verboseLevel > 1)                          302     if(verboseLevel > 1)
302       BoundaryProcessVerbose();                   303       BoundaryProcessVerbose();
303     aParticleChange.ProposeLocalEnergyDeposit(    304     aParticleChange.ProposeLocalEnergyDeposit(fPhotonMomentum);
304     aParticleChange.ProposeTrackStatus(fStopAn    305     aParticleChange.ProposeTrackStatus(fStopAndKill);
305     return G4VDiscreteProcess::PostStepDoIt(aT    306     return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
306   }                                               307   }
307                                                   308 
308   fReflectivity      = 1.;                        309   fReflectivity      = 1.;
309   fEfficiency        = 0.;                        310   fEfficiency        = 0.;
310   fTransmittance     = 0.;                        311   fTransmittance     = 0.;
311   fSurfaceRoughness  = 0.;                        312   fSurfaceRoughness  = 0.;
312   fModel             = glisur;                    313   fModel             = glisur;
313   fFinish            = polished;                  314   fFinish            = polished;
314   G4SurfaceType type = dielectric_dielectric;     315   G4SurfaceType type = dielectric_dielectric;
315                                                   316 
316   rIndexMPV       = nullptr;                      317   rIndexMPV       = nullptr;
317   fOpticalSurface = nullptr;                      318   fOpticalSurface = nullptr;
318                                                   319 
319   G4LogicalSurface* surface =                     320   G4LogicalSurface* surface =
320     G4LogicalBorderSurface::GetSurface(thePreP    321     G4LogicalBorderSurface::GetSurface(thePrePV, thePostPV);
321   if(surface == nullptr)                          322   if(surface == nullptr)
322   {                                               323   {
323     if(thePostPV->GetMotherLogical() == thePre    324     if(thePostPV->GetMotherLogical() == thePrePV->GetLogicalVolume())
324     {                                             325     {
325       surface = G4LogicalSkinSurface::GetSurfa    326       surface = G4LogicalSkinSurface::GetSurface(thePostPV->GetLogicalVolume());
326       if(surface == nullptr)                      327       if(surface == nullptr)
327       {                                           328       {
328         surface =                                 329         surface =
329           G4LogicalSkinSurface::GetSurface(the    330           G4LogicalSkinSurface::GetSurface(thePrePV->GetLogicalVolume());
330       }                                           331       }
331     }                                             332     }
332     else                                          333     else
333     {                                             334     {
334       surface = G4LogicalSkinSurface::GetSurfa    335       surface = G4LogicalSkinSurface::GetSurface(thePrePV->GetLogicalVolume());
335       if(surface == nullptr)                      336       if(surface == nullptr)
336       {                                           337       {
337         surface =                                 338         surface =
338           G4LogicalSkinSurface::GetSurface(the    339           G4LogicalSkinSurface::GetSurface(thePostPV->GetLogicalVolume());
339       }                                           340       }
340     }                                             341     }
341   }                                               342   }
342                                                   343 
343   if(surface != nullptr)                          344   if(surface != nullptr)
344   {                                               345   {
345     fOpticalSurface =                             346     fOpticalSurface =
346       dynamic_cast<G4OpticalSurface*>(surface-    347       dynamic_cast<G4OpticalSurface*>(surface->GetSurfaceProperty());
347   }                                               348   }
348   if(fOpticalSurface != nullptr)                  349   if(fOpticalSurface != nullptr)
349   {                                               350   {
350     type    = fOpticalSurface->GetType();         351     type    = fOpticalSurface->GetType();
351     fModel  = fOpticalSurface->GetModel();        352     fModel  = fOpticalSurface->GetModel();
352     fFinish = fOpticalSurface->GetFinish();       353     fFinish = fOpticalSurface->GetFinish();
353                                                   354 
354     G4MaterialPropertiesTable* sMPT =             355     G4MaterialPropertiesTable* sMPT =
355       fOpticalSurface->GetMaterialPropertiesTa    356       fOpticalSurface->GetMaterialPropertiesTable();
356     if(sMPT != nullptr)                           357     if(sMPT != nullptr)
357     {                                             358     {
358       if(fFinish == polishedbackpainted || fFi    359       if(fFinish == polishedbackpainted || fFinish == groundbackpainted)
359       {                                           360       {
360         rIndexMPV = sMPT->GetProperty(kRINDEX)    361         rIndexMPV = sMPT->GetProperty(kRINDEX);
361         if(rIndexMPV != nullptr)                  362         if(rIndexMPV != nullptr)
362         {                                         363         {
363           fRindex2 = rIndexMPV->Value(fPhotonM    364           fRindex2 = rIndexMPV->Value(fPhotonMomentum, idx_rindex_surface);
364         }                                         365         }
365         else                                      366         else
366         {                                         367         {
367           fStatus = NoRINDEX;                     368           fStatus = NoRINDEX;
368           if(verboseLevel > 1)                    369           if(verboseLevel > 1)
369             BoundaryProcessVerbose();             370             BoundaryProcessVerbose();
370           aParticleChange.ProposeLocalEnergyDe    371           aParticleChange.ProposeLocalEnergyDeposit(fPhotonMomentum);
371           aParticleChange.ProposeTrackStatus(f    372           aParticleChange.ProposeTrackStatus(fStopAndKill);
372           return G4VDiscreteProcess::PostStepD    373           return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
373         }                                         374         }
374       }                                           375       }
375                                                   376 
376       fRealRIndexMPV = sMPT->GetProperty(kREAL    377       fRealRIndexMPV = sMPT->GetProperty(kREALRINDEX);
377       fImagRIndexMPV = sMPT->GetProperty(kIMAG    378       fImagRIndexMPV = sMPT->GetProperty(kIMAGINARYRINDEX);
378       f_iTE = f_iTM = 1;                          379       f_iTE = f_iTM = 1;
379                                                   380 
380       G4MaterialPropertyVector* pp;               381       G4MaterialPropertyVector* pp;
381       if((pp = sMPT->GetProperty(kREFLECTIVITY    382       if((pp = sMPT->GetProperty(kREFLECTIVITY)))
382       {                                           383       {
383         fReflectivity = pp->Value(fPhotonMomen    384         fReflectivity = pp->Value(fPhotonMomentum, idx_reflect);
384       }                                           385       }
385       else if(fRealRIndexMPV && fImagRIndexMPV    386       else if(fRealRIndexMPV && fImagRIndexMPV)
386       {                                           387       {
387         CalculateReflectivity();                  388         CalculateReflectivity();
388       }                                           389       }
389                                                   390 
390       if((pp = sMPT->GetProperty(kEFFICIENCY))    391       if((pp = sMPT->GetProperty(kEFFICIENCY)))
391       {                                           392       {
392         fEfficiency = pp->Value(fPhotonMomentu    393         fEfficiency = pp->Value(fPhotonMomentum, idx_eff);
393       }                                           394       }
394       if((pp = sMPT->GetProperty(kTRANSMITTANC    395       if((pp = sMPT->GetProperty(kTRANSMITTANCE)))
395       {                                           396       {
396         fTransmittance = pp->Value(fPhotonMome    397         fTransmittance = pp->Value(fPhotonMomentum, idx_trans);
397       }                                           398       }
398       if(sMPT->ConstPropertyExists(kSURFACEROU    399       if(sMPT->ConstPropertyExists(kSURFACEROUGHNESS))
399       {                                           400       {
400         fSurfaceRoughness = sMPT->GetConstProp    401         fSurfaceRoughness = sMPT->GetConstProperty(kSURFACEROUGHNESS);
401       }                                           402       }
402                                                   403 
403       if(fModel == unified)                       404       if(fModel == unified)
404       {                                           405       {
405         fProb_sl = (pp = sMPT->GetProperty(kSP    406         fProb_sl = (pp = sMPT->GetProperty(kSPECULARLOBECONSTANT))
406                      ? pp->Value(fPhotonMoment    407                      ? pp->Value(fPhotonMomentum, idx_lobe)
407                      : 0.;                        408                      : 0.;
408         fProb_ss = (pp = sMPT->GetProperty(kSP    409         fProb_ss = (pp = sMPT->GetProperty(kSPECULARSPIKECONSTANT))
409                      ? pp->Value(fPhotonMoment    410                      ? pp->Value(fPhotonMomentum, idx_spike)
410                      : 0.;                        411                      : 0.;
411         fProb_bs = (pp = sMPT->GetProperty(kBA    412         fProb_bs = (pp = sMPT->GetProperty(kBACKSCATTERCONSTANT))
412                      ? pp->Value(fPhotonMoment    413                      ? pp->Value(fPhotonMomentum, idx_back)
413                      : 0.;                        414                      : 0.;
414       }                                           415       }
415     }  // end of if(sMPT)                         416     }  // end of if(sMPT)
416     else if(fFinish == polishedbackpainted ||     417     else if(fFinish == polishedbackpainted || fFinish == groundbackpainted)
417     {                                             418     {
418       aParticleChange.ProposeLocalEnergyDeposi    419       aParticleChange.ProposeLocalEnergyDeposit(fPhotonMomentum);
419       aParticleChange.ProposeTrackStatus(fStop    420       aParticleChange.ProposeTrackStatus(fStopAndKill);
420       return G4VDiscreteProcess::PostStepDoIt(    421       return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
421     }                                             422     }
422   }  // end of if(fOpticalSurface)                423   }  // end of if(fOpticalSurface)
423                                                   424 
424   //  DIELECTRIC-DIELECTRIC                       425   //  DIELECTRIC-DIELECTRIC
425   if(type == dielectric_dielectric)               426   if(type == dielectric_dielectric)
426   {                                               427   {
427     if(fFinish == polished || fFinish == groun    428     if(fFinish == polished || fFinish == ground)
428     {                                             429     {
429       if(fMaterial1 == fMaterial2)                430       if(fMaterial1 == fMaterial2)
430       {                                           431       {
431         fStatus = SameMaterial;                   432         fStatus = SameMaterial;
432         if(verboseLevel > 1)                      433         if(verboseLevel > 1)
433           BoundaryProcessVerbose();               434           BoundaryProcessVerbose();
434         return G4VDiscreteProcess::PostStepDoI    435         return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
435       }                                           436       }
436       MPT       = fMaterial2->GetMaterialPrope    437       MPT       = fMaterial2->GetMaterialPropertiesTable();
437       rIndexMPV = nullptr;                        438       rIndexMPV = nullptr;
438       if(MPT != nullptr)                          439       if(MPT != nullptr)
439       {                                           440       {
440         rIndexMPV = MPT->GetProperty(kRINDEX);    441         rIndexMPV = MPT->GetProperty(kRINDEX);
441       }                                           442       }
442       if(rIndexMPV != nullptr)                    443       if(rIndexMPV != nullptr)
443       {                                           444       {
444         fRindex2 = rIndexMPV->Value(fPhotonMom    445         fRindex2 = rIndexMPV->Value(fPhotonMomentum, idx_rindex2);
445       }                                           446       }
446       else                                        447       else
447       {                                           448       {
448         fStatus = NoRINDEX;                       449         fStatus = NoRINDEX;
449         if(verboseLevel > 1)                      450         if(verboseLevel > 1)
450           BoundaryProcessVerbose();               451           BoundaryProcessVerbose();
451         aParticleChange.ProposeLocalEnergyDepo    452         aParticleChange.ProposeLocalEnergyDeposit(fPhotonMomentum);
452         aParticleChange.ProposeTrackStatus(fSt    453         aParticleChange.ProposeTrackStatus(fStopAndKill);
453         return G4VDiscreteProcess::PostStepDoI    454         return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
454       }                                           455       }
455     }                                             456     }
456     if(fFinish == polishedbackpainted || fFini    457     if(fFinish == polishedbackpainted || fFinish == groundbackpainted)
457     {                                             458     {
458       DielectricDielectric();                     459       DielectricDielectric();
459     }                                             460     }
460     else                                          461     else
461     {                                             462     {
462       G4double rand = G4UniformRand();            463       G4double rand = G4UniformRand();
463       if(rand > fReflectivity + fTransmittance    464       if(rand > fReflectivity + fTransmittance)
464       {                                           465       {
465         DoAbsorption();                           466         DoAbsorption();
466       }                                           467       }
467       else if(rand > fReflectivity)               468       else if(rand > fReflectivity)
468       {                                           469       {
469         fStatus          = Transmission;          470         fStatus          = Transmission;
470         fNewMomentum     = fOldMomentum;          471         fNewMomentum     = fOldMomentum;
471         fNewPolarization = fOldPolarization;      472         fNewPolarization = fOldPolarization;
472       }                                           473       }
473       else                                        474       else
474       {                                           475       {
475         if(fFinish == polishedfrontpainted)       476         if(fFinish == polishedfrontpainted)
476         {                                         477         {
477           DoReflection();                         478           DoReflection();
478         }                                         479         }
479         else if(fFinish == groundfrontpainted)    480         else if(fFinish == groundfrontpainted)
480         {                                         481         {
481           fStatus = LambertianReflection;         482           fStatus = LambertianReflection;
482           DoReflection();                         483           DoReflection();
483         }                                         484         }
484         else                                      485         else
485         {                                         486         {
486           DielectricDielectric();                 487           DielectricDielectric();
487         }                                         488         }
488       }                                           489       }
489     }                                             490     }
490   }                                               491   }
491   else if(type == dielectric_metal)               492   else if(type == dielectric_metal)
492   {                                               493   {
493     DielectricMetal();                            494     DielectricMetal();
494   }                                               495   }
495   else if(type == dielectric_LUT)                 496   else if(type == dielectric_LUT)
496   {                                               497   {
497     DielectricLUT();                              498     DielectricLUT();
498   }                                               499   }
499   else if(type == dielectric_LUTDAVIS)            500   else if(type == dielectric_LUTDAVIS)
500   {                                               501   {
501     DielectricLUTDAVIS();                         502     DielectricLUTDAVIS();
502   }                                               503   }
503   else if(type == dielectric_dichroic)            504   else if(type == dielectric_dichroic)
504   {                                               505   {
505     DielectricDichroic();                         506     DielectricDichroic();
506   }                                               507   }
507   else if(type == coated)                         508   else if(type == coated)
508   {                                               509   {
509     CoatedDielectricDielectric();                 510     CoatedDielectricDielectric();
510   }                                               511   }
511   else                                            512   else
512   {                                               513   {
513     if(fNumBdryTypeWarnings <= 10)             << 514     G4ExceptionDescription ed;
514     {                                          << 515     ed << " PostStepDoIt(): Illegal boundary type." << G4endl;
515       ++fNumBdryTypeWarnings;                  << 516     G4Exception("G4OpBoundaryProcess", "OpBoun04", JustWarning, ed);
516       if(verboseLevel > 0)                     << 
517       {                                        << 
518         G4ExceptionDescription ed;             << 
519         ed << " PostStepDoIt(): Illegal bounda << 
520         if(fNumBdryTypeWarnings == 10)         << 
521         {                                      << 
522           ed << "** Boundary type warnings sto << 
523         }                                      << 
524         G4Exception("G4OpBoundaryProcess", "Op << 
525       }                                        << 
526     }                                          << 
527     return G4VDiscreteProcess::PostStepDoIt(aT    517     return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
528   }                                               518   }
529                                                   519 
530   fNewMomentum     = fNewMomentum.unit();         520   fNewMomentum     = fNewMomentum.unit();
531   fNewPolarization = fNewPolarization.unit();     521   fNewPolarization = fNewPolarization.unit();
532                                                   522 
533   if(verboseLevel > 1)                            523   if(verboseLevel > 1)
534   {                                               524   {
535     G4cout << " New Momentum Direction: " << f    525     G4cout << " New Momentum Direction: " << fNewMomentum << G4endl
536            << " New Polarization:       " << f    526            << " New Polarization:       " << fNewPolarization << G4endl;
537     BoundaryProcessVerbose();                     527     BoundaryProcessVerbose();
538   }                                               528   }
539                                                   529 
540   aParticleChange.ProposeMomentumDirection(fNe    530   aParticleChange.ProposeMomentumDirection(fNewMomentum);
541   aParticleChange.ProposePolarization(fNewPola    531   aParticleChange.ProposePolarization(fNewPolarization);
542                                                   532 
543   if(fStatus == FresnelRefraction || fStatus =    533   if(fStatus == FresnelRefraction || fStatus == Transmission)
544   {                                               534   {
545     // not all surface types check that fMater    535     // not all surface types check that fMaterial2 has an MPT
546     G4MaterialPropertiesTable* aMPT = fMateria    536     G4MaterialPropertiesTable* aMPT = fMaterial2->GetMaterialPropertiesTable();
547     G4MaterialPropertyVector* groupvel = nullp    537     G4MaterialPropertyVector* groupvel = nullptr;
548     if(aMPT != nullptr)                           538     if(aMPT != nullptr)
549     {                                             539     {
550       groupvel = aMPT->GetProperty(kGROUPVEL);    540       groupvel = aMPT->GetProperty(kGROUPVEL);
551     }                                             541     }
552     if(groupvel != nullptr)                       542     if(groupvel != nullptr)
553     {                                             543     {
554       aParticleChange.ProposeVelocity(            544       aParticleChange.ProposeVelocity(
555         groupvel->Value(fPhotonMomentum, idx_g    545         groupvel->Value(fPhotonMomentum, idx_groupvel));
556     }                                             546     }
557   }                                               547   }
558                                                   548 
559   if(fStatus == Detection && fInvokeSD)           549   if(fStatus == Detection && fInvokeSD)
560     InvokeSD(pStep);                              550     InvokeSD(pStep);
561   return G4VDiscreteProcess::PostStepDoIt(aTra    551   return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
562 }                                                 552 }
563                                                   553 
564 //....oooOO0OOooo........oooOO0OOooo........oo    554 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
565 void G4OpBoundaryProcess::BoundaryProcessVerbo    555 void G4OpBoundaryProcess::BoundaryProcessVerbose() const
566 {                                                 556 {
567   G4cout << " *** ";                              557   G4cout << " *** ";
568   if(fStatus == Undefined)                        558   if(fStatus == Undefined)
569     G4cout << "Undefined";                        559     G4cout << "Undefined";
570   else if(fStatus == Transmission)                560   else if(fStatus == Transmission)
571     G4cout << "Transmission";                     561     G4cout << "Transmission";
572   else if(fStatus == FresnelRefraction)           562   else if(fStatus == FresnelRefraction)
573     G4cout << "FresnelRefraction";                563     G4cout << "FresnelRefraction";
574   else if(fStatus == FresnelReflection)           564   else if(fStatus == FresnelReflection)
575     G4cout << "FresnelReflection";                565     G4cout << "FresnelReflection";
576   else if(fStatus == TotalInternalReflection)     566   else if(fStatus == TotalInternalReflection)
577     G4cout << "TotalInternalReflection";          567     G4cout << "TotalInternalReflection";
578   else if(fStatus == LambertianReflection)        568   else if(fStatus == LambertianReflection)
579     G4cout << "LambertianReflection";             569     G4cout << "LambertianReflection";
580   else if(fStatus == LobeReflection)              570   else if(fStatus == LobeReflection)
581     G4cout << "LobeReflection";                   571     G4cout << "LobeReflection";
582   else if(fStatus == SpikeReflection)             572   else if(fStatus == SpikeReflection)
583     G4cout << "SpikeReflection";                  573     G4cout << "SpikeReflection";
584   else if(fStatus == BackScattering)              574   else if(fStatus == BackScattering)
585     G4cout << "BackScattering";                   575     G4cout << "BackScattering";
586   else if(fStatus == PolishedLumirrorAirReflec    576   else if(fStatus == PolishedLumirrorAirReflection)
587     G4cout << "PolishedLumirrorAirReflection";    577     G4cout << "PolishedLumirrorAirReflection";
588   else if(fStatus == PolishedLumirrorGlueRefle    578   else if(fStatus == PolishedLumirrorGlueReflection)
589     G4cout << "PolishedLumirrorGlueReflection"    579     G4cout << "PolishedLumirrorGlueReflection";
590   else if(fStatus == PolishedAirReflection)       580   else if(fStatus == PolishedAirReflection)
591     G4cout << "PolishedAirReflection";            581     G4cout << "PolishedAirReflection";
592   else if(fStatus == PolishedTeflonAirReflecti    582   else if(fStatus == PolishedTeflonAirReflection)
593     G4cout << "PolishedTeflonAirReflection";      583     G4cout << "PolishedTeflonAirReflection";
594   else if(fStatus == PolishedTiOAirReflection)    584   else if(fStatus == PolishedTiOAirReflection)
595     G4cout << "PolishedTiOAirReflection";         585     G4cout << "PolishedTiOAirReflection";
596   else if(fStatus == PolishedTyvekAirReflectio    586   else if(fStatus == PolishedTyvekAirReflection)
597     G4cout << "PolishedTyvekAirReflection";       587     G4cout << "PolishedTyvekAirReflection";
598   else if(fStatus == PolishedVM2000AirReflecti    588   else if(fStatus == PolishedVM2000AirReflection)
599     G4cout << "PolishedVM2000AirReflection";      589     G4cout << "PolishedVM2000AirReflection";
600   else if(fStatus == PolishedVM2000GlueReflect    590   else if(fStatus == PolishedVM2000GlueReflection)
601     G4cout << "PolishedVM2000GlueReflection";     591     G4cout << "PolishedVM2000GlueReflection";
602   else if(fStatus == EtchedLumirrorAirReflecti    592   else if(fStatus == EtchedLumirrorAirReflection)
603     G4cout << "EtchedLumirrorAirReflection";      593     G4cout << "EtchedLumirrorAirReflection";
604   else if(fStatus == EtchedLumirrorGlueReflect    594   else if(fStatus == EtchedLumirrorGlueReflection)
605     G4cout << "EtchedLumirrorGlueReflection";     595     G4cout << "EtchedLumirrorGlueReflection";
606   else if(fStatus == EtchedAirReflection)         596   else if(fStatus == EtchedAirReflection)
607     G4cout << "EtchedAirReflection";              597     G4cout << "EtchedAirReflection";
608   else if(fStatus == EtchedTeflonAirReflection    598   else if(fStatus == EtchedTeflonAirReflection)
609     G4cout << "EtchedTeflonAirReflection";        599     G4cout << "EtchedTeflonAirReflection";
610   else if(fStatus == EtchedTiOAirReflection)      600   else if(fStatus == EtchedTiOAirReflection)
611     G4cout << "EtchedTiOAirReflection";           601     G4cout << "EtchedTiOAirReflection";
612   else if(fStatus == EtchedTyvekAirReflection)    602   else if(fStatus == EtchedTyvekAirReflection)
613     G4cout << "EtchedTyvekAirReflection";         603     G4cout << "EtchedTyvekAirReflection";
614   else if(fStatus == EtchedVM2000AirReflection    604   else if(fStatus == EtchedVM2000AirReflection)
615     G4cout << "EtchedVM2000AirReflection";        605     G4cout << "EtchedVM2000AirReflection";
616   else if(fStatus == EtchedVM2000GlueReflectio    606   else if(fStatus == EtchedVM2000GlueReflection)
617     G4cout << "EtchedVM2000GlueReflection";       607     G4cout << "EtchedVM2000GlueReflection";
618   else if(fStatus == GroundLumirrorAirReflecti    608   else if(fStatus == GroundLumirrorAirReflection)
619     G4cout << "GroundLumirrorAirReflection";      609     G4cout << "GroundLumirrorAirReflection";
620   else if(fStatus == GroundLumirrorGlueReflect    610   else if(fStatus == GroundLumirrorGlueReflection)
621     G4cout << "GroundLumirrorGlueReflection";     611     G4cout << "GroundLumirrorGlueReflection";
622   else if(fStatus == GroundAirReflection)         612   else if(fStatus == GroundAirReflection)
623     G4cout << "GroundAirReflection";              613     G4cout << "GroundAirReflection";
624   else if(fStatus == GroundTeflonAirReflection    614   else if(fStatus == GroundTeflonAirReflection)
625     G4cout << "GroundTeflonAirReflection";        615     G4cout << "GroundTeflonAirReflection";
626   else if(fStatus == GroundTiOAirReflection)      616   else if(fStatus == GroundTiOAirReflection)
627     G4cout << "GroundTiOAirReflection";           617     G4cout << "GroundTiOAirReflection";
628   else if(fStatus == GroundTyvekAirReflection)    618   else if(fStatus == GroundTyvekAirReflection)
629     G4cout << "GroundTyvekAirReflection";         619     G4cout << "GroundTyvekAirReflection";
630   else if(fStatus == GroundVM2000AirReflection    620   else if(fStatus == GroundVM2000AirReflection)
631     G4cout << "GroundVM2000AirReflection";        621     G4cout << "GroundVM2000AirReflection";
632   else if(fStatus == GroundVM2000GlueReflectio    622   else if(fStatus == GroundVM2000GlueReflection)
633     G4cout << "GroundVM2000GlueReflection";       623     G4cout << "GroundVM2000GlueReflection";
634   else if(fStatus == Absorption)                  624   else if(fStatus == Absorption)
635     G4cout << "Absorption";                       625     G4cout << "Absorption";
636   else if(fStatus == Detection)                   626   else if(fStatus == Detection)
637     G4cout << "Detection";                        627     G4cout << "Detection";
638   else if(fStatus == NotAtBoundary)               628   else if(fStatus == NotAtBoundary)
639     G4cout << "NotAtBoundary";                    629     G4cout << "NotAtBoundary";
640   else if(fStatus == SameMaterial)                630   else if(fStatus == SameMaterial)
641     G4cout << "SameMaterial";                     631     G4cout << "SameMaterial";
642   else if(fStatus == StepTooSmall)                632   else if(fStatus == StepTooSmall)
643     G4cout << "StepTooSmall";                     633     G4cout << "StepTooSmall";
644   else if(fStatus == NoRINDEX)                    634   else if(fStatus == NoRINDEX)
645     G4cout << "NoRINDEX";                         635     G4cout << "NoRINDEX";
646   else if(fStatus == Dichroic)                    636   else if(fStatus == Dichroic)
647     G4cout << "Dichroic Transmission";            637     G4cout << "Dichroic Transmission";
648   else if(fStatus == CoatedDielectricReflectio    638   else if(fStatus == CoatedDielectricReflection)
649     G4cout << "Coated Dielectric Reflection";     639     G4cout << "Coated Dielectric Reflection";
650   else if(fStatus == CoatedDielectricRefractio    640   else if(fStatus == CoatedDielectricRefraction)
651     G4cout << "Coated Dielectric Refraction";     641     G4cout << "Coated Dielectric Refraction";
652   else if(fStatus == CoatedDielectricFrustrate    642   else if(fStatus == CoatedDielectricFrustratedTransmission)
653     G4cout << "Coated Dielectric Frustrated Tr    643     G4cout << "Coated Dielectric Frustrated Transmission";
654                                                   644 
655   G4cout << " ***" << G4endl;                     645   G4cout << " ***" << G4endl;
656 }                                                 646 }
657                                                   647 
658 //....oooOO0OOooo........oooOO0OOooo........oo    648 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
659 G4ThreeVector G4OpBoundaryProcess::GetFacetNor    649 G4ThreeVector G4OpBoundaryProcess::GetFacetNormal(
660   const G4ThreeVector& momentum, const G4Three    650   const G4ThreeVector& momentum, const G4ThreeVector& normal) const
661 {                                                 651 {
662   G4ThreeVector facetNormal;                      652   G4ThreeVector facetNormal;
663   if(fModel == unified || fModel == LUT || fMo    653   if(fModel == unified || fModel == LUT || fModel == DAVIS)
664   {                                               654   {
665     /* This function codes alpha to a random v    655     /* This function codes alpha to a random value taken from the
666     distribution p(alpha) = g(alpha; 0, sigma_    656     distribution p(alpha) = g(alpha; 0, sigma_alpha)*std::sin(alpha),
667     for alpha > 0 and alpha < 90, where g(alph    657     for alpha > 0 and alpha < 90, where g(alpha; 0, sigma_alpha) is a
668     gaussian distribution with mean 0 and stan    658     gaussian distribution with mean 0 and standard deviation sigma_alpha.  */
669                                                   659 
670     G4double sigma_alpha = 0.0;                   660     G4double sigma_alpha = 0.0;
671     if(fOpticalSurface)                           661     if(fOpticalSurface)
672       sigma_alpha = fOpticalSurface->GetSigmaA    662       sigma_alpha = fOpticalSurface->GetSigmaAlpha();
673     if(sigma_alpha == 0.0)                        663     if(sigma_alpha == 0.0)
674     {                                             664     {
675       return normal;                              665       return normal;
676     }                                             666     }
677                                                   667 
678     G4double f_max = std::min(1.0, 4. * sigma_    668     G4double f_max = std::min(1.0, 4. * sigma_alpha);
679     G4double alpha, phi, sinAlpha;                669     G4double alpha, phi, sinAlpha;
680                                                   670 
681     do                                            671     do
682     {  // Loop checking, 13-Aug-2015, Peter Gu    672     {  // Loop checking, 13-Aug-2015, Peter Gumplinger
683       do                                          673       do
684       {  // Loop checking, 13-Aug-2015, Peter     674       {  // Loop checking, 13-Aug-2015, Peter Gumplinger
685         alpha    = G4RandGauss::shoot(0.0, sig    675         alpha    = G4RandGauss::shoot(0.0, sigma_alpha);
686         sinAlpha = std::sin(alpha);               676         sinAlpha = std::sin(alpha);
687       } while(G4UniformRand() * f_max > sinAlp    677       } while(G4UniformRand() * f_max > sinAlpha || alpha >= halfpi);
688                                                   678 
689       phi = G4UniformRand() * twopi;              679       phi = G4UniformRand() * twopi;
690       facetNormal.set(sinAlpha * std::cos(phi)    680       facetNormal.set(sinAlpha * std::cos(phi), sinAlpha * std::sin(phi),
691                       std::cos(alpha));           681                       std::cos(alpha));
692       facetNormal.rotateUz(normal);               682       facetNormal.rotateUz(normal);
693     } while(momentum * facetNormal >= 0.0);       683     } while(momentum * facetNormal >= 0.0);
694   }                                               684   }
695   else                                            685   else
696   {                                               686   {
697     G4double polish = 1.0;                        687     G4double polish = 1.0;
698     if(fOpticalSurface)                           688     if(fOpticalSurface)
699       polish = fOpticalSurface->GetPolish();      689       polish = fOpticalSurface->GetPolish();
700     if(polish < 1.0)                              690     if(polish < 1.0)
701     {                                             691     {
702       do                                          692       do
703       {  // Loop checking, 13-Aug-2015, Peter     693       {  // Loop checking, 13-Aug-2015, Peter Gumplinger
704         G4ThreeVector smear;                      694         G4ThreeVector smear;
705         do                                        695         do
706         {  // Loop checking, 13-Aug-2015, Pete    696         {  // Loop checking, 13-Aug-2015, Peter Gumplinger
707           smear.setX(2. * G4UniformRand() - 1.    697           smear.setX(2. * G4UniformRand() - 1.);
708           smear.setY(2. * G4UniformRand() - 1.    698           smear.setY(2. * G4UniformRand() - 1.);
709           smear.setZ(2. * G4UniformRand() - 1.    699           smear.setZ(2. * G4UniformRand() - 1.);
710         } while(smear.mag2() > 1.0);              700         } while(smear.mag2() > 1.0);
711         facetNormal = normal + (1. - polish) *    701         facetNormal = normal + (1. - polish) * smear;
712       } while(momentum * facetNormal >= 0.0);     702       } while(momentum * facetNormal >= 0.0);
713       facetNormal = facetNormal.unit();           703       facetNormal = facetNormal.unit();
714     }                                             704     }
715     else                                          705     else
716     {                                             706     {
717       facetNormal = normal;                       707       facetNormal = normal;
718     }                                             708     }
719   }                                               709   }
720   return facetNormal;                             710   return facetNormal;
721 }                                                 711 }
722                                                   712 
723 //....oooOO0OOooo........oooOO0OOooo........oo    713 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
724 void G4OpBoundaryProcess::DielectricMetal()       714 void G4OpBoundaryProcess::DielectricMetal()
725 {                                                 715 {
726   G4int n = 0;                                    716   G4int n = 0;
727   G4double rand;                                  717   G4double rand;
728   G4ThreeVector A_trans;                          718   G4ThreeVector A_trans;
729                                                   719 
730   do                                              720   do
731   {                                               721   {
732     ++n;                                          722     ++n;
733     rand = G4UniformRand();                       723     rand = G4UniformRand();
734     if(rand > fReflectivity && n == 1)            724     if(rand > fReflectivity && n == 1)
735     {                                             725     {
736       if(rand > fReflectivity + fTransmittance    726       if(rand > fReflectivity + fTransmittance)
737       {                                           727       {
738         DoAbsorption();                           728         DoAbsorption();
739       }                                           729       }
740       else                                        730       else
741       {                                           731       {
742         fStatus          = Transmission;          732         fStatus          = Transmission;
743         fNewMomentum     = fOldMomentum;          733         fNewMomentum     = fOldMomentum;
744         fNewPolarization = fOldPolarization;      734         fNewPolarization = fOldPolarization;
745       }                                           735       }
746       break;                                      736       break;
747     }                                             737     }
748     else                                          738     else
749     {                                             739     {
750       if(fRealRIndexMPV && fImagRIndexMPV)        740       if(fRealRIndexMPV && fImagRIndexMPV)
751       {                                           741       {
752         if(n > 1)                                 742         if(n > 1)
753         {                                         743         {
754           CalculateReflectivity();                744           CalculateReflectivity();
755           if(!G4BooleanRand(fReflectivity))       745           if(!G4BooleanRand(fReflectivity))
756           {                                       746           {
757             DoAbsorption();                       747             DoAbsorption();
758             break;                                748             break;
759           }                                       749           }
760         }                                         750         }
761       }                                           751       }
762       if(fModel == glisur || fFinish == polish    752       if(fModel == glisur || fFinish == polished)
763       {                                           753       {
764         DoReflection();                           754         DoReflection();
765       }                                           755       }
766       else                                        756       else
767       {                                           757       {
768         if(n == 1)                                758         if(n == 1)
769           ChooseReflection();                     759           ChooseReflection();
770         if(fStatus == LambertianReflection)       760         if(fStatus == LambertianReflection)
771         {                                         761         {
772           DoReflection();                         762           DoReflection();
773         }                                         763         }
774         else if(fStatus == BackScattering)        764         else if(fStatus == BackScattering)
775         {                                         765         {
776           fNewMomentum     = -fOldMomentum;       766           fNewMomentum     = -fOldMomentum;
777           fNewPolarization = -fOldPolarization    767           fNewPolarization = -fOldPolarization;
778         }                                         768         }
779         else                                      769         else
780         {                                         770         {
781           if(fStatus == LobeReflection)           771           if(fStatus == LobeReflection)
782           {                                       772           {
783             if(!fRealRIndexMPV || !fImagRIndex    773             if(!fRealRIndexMPV || !fImagRIndexMPV)
784             {                                     774             {
785               fFacetNormal = GetFacetNormal(fO    775               fFacetNormal = GetFacetNormal(fOldMomentum, fGlobalNormal);
786             }                                     776             }
787             // else                               777             // else
788             //  case of complex rindex needs t    778             //  case of complex rindex needs to be implemented
789           }                                       779           }
790           fNewMomentum =                          780           fNewMomentum =
791             fOldMomentum - 2. * fOldMomentum *    781             fOldMomentum - 2. * fOldMomentum * fFacetNormal * fFacetNormal;
792                                                   782 
793           if(f_iTE > 0 && f_iTM > 0)              783           if(f_iTE > 0 && f_iTM > 0)
794           {                                       784           {
795             fNewPolarization =                    785             fNewPolarization =
796               -fOldPolarization +                 786               -fOldPolarization +
797               (2. * fOldPolarization * fFacetN    787               (2. * fOldPolarization * fFacetNormal * fFacetNormal);
798           }                                       788           }
799           else if(f_iTE > 0)                      789           else if(f_iTE > 0)
800           {                                       790           {
801             A_trans = (fSint1 > 0.0) ? fOldMom    791             A_trans = (fSint1 > 0.0) ? fOldMomentum.cross(fFacetNormal).unit()
802                                      : fOldPol    792                                      : fOldPolarization;
803             fNewPolarization = -A_trans;          793             fNewPolarization = -A_trans;
804           }                                       794           }
805           else if(f_iTM > 0)                      795           else if(f_iTM > 0)
806           {                                       796           {
807             fNewPolarization =                    797             fNewPolarization =
808               -fNewMomentum.cross(A_trans).uni    798               -fNewMomentum.cross(A_trans).unit();  // = -A_paral
809           }                                       799           }
810         }                                         800         }
811       }                                           801       }
812       fOldMomentum     = fNewMomentum;            802       fOldMomentum     = fNewMomentum;
813       fOldPolarization = fNewPolarization;        803       fOldPolarization = fNewPolarization;
814     }                                             804     }
815     // Loop checking, 13-Aug-2015, Peter Gumpl    805     // Loop checking, 13-Aug-2015, Peter Gumplinger
816   } while(fNewMomentum * fGlobalNormal < 0.0);    806   } while(fNewMomentum * fGlobalNormal < 0.0);
817 }                                                 807 }
818                                                   808 
819 //....oooOO0OOooo........oooOO0OOooo........oo    809 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
820 void G4OpBoundaryProcess::DielectricLUT()         810 void G4OpBoundaryProcess::DielectricLUT()
821 {                                                 811 {
822   G4int thetaIndex, phiIndex;                     812   G4int thetaIndex, phiIndex;
823   G4double angularDistVal, thetaRad, phiRad;      813   G4double angularDistVal, thetaRad, phiRad;
824   G4ThreeVector perpVectorTheta, perpVectorPhi    814   G4ThreeVector perpVectorTheta, perpVectorPhi;
825                                                   815 
826   fStatus = G4OpBoundaryProcessStatus(            816   fStatus = G4OpBoundaryProcessStatus(
827     G4int(fFinish) + (G4int(NoRINDEX) - G4int(    817     G4int(fFinish) + (G4int(NoRINDEX) - G4int(groundbackpainted)));
828                                                   818 
829   G4int thetaIndexMax = fOpticalSurface->GetTh    819   G4int thetaIndexMax = fOpticalSurface->GetThetaIndexMax();
830   G4int phiIndexMax   = fOpticalSurface->GetPh    820   G4int phiIndexMax   = fOpticalSurface->GetPhiIndexMax();
831                                                   821 
832   G4double rand;                                  822   G4double rand;
833                                                   823 
834   do                                              824   do
835   {                                               825   {
836     rand = G4UniformRand();                       826     rand = G4UniformRand();
837     if(rand > fReflectivity)                      827     if(rand > fReflectivity)
838     {                                             828     {
839       if(rand > fReflectivity + fTransmittance    829       if(rand > fReflectivity + fTransmittance)
840       {                                           830       {
841         DoAbsorption();                           831         DoAbsorption();
842       }                                           832       }
843       else                                        833       else
844       {                                           834       {
845         fStatus          = Transmission;          835         fStatus          = Transmission;
846         fNewMomentum     = fOldMomentum;          836         fNewMomentum     = fOldMomentum;
847         fNewPolarization = fOldPolarization;      837         fNewPolarization = fOldPolarization;
848       }                                           838       }
849       break;                                      839       break;
850     }                                             840     }
851     else                                          841     else
852     {                                             842     {
853       // Calculate Angle between Normal and Ph    843       // Calculate Angle between Normal and Photon Momentum
854       G4double anglePhotonToNormal = fOldMomen    844       G4double anglePhotonToNormal = fOldMomentum.angle(-fGlobalNormal);
855       // Round to closest integer: LBNL model     845       // Round to closest integer: LBNL model array has 91 values
856       G4int angleIncident = (G4int)std::lrint(    846       G4int angleIncident = (G4int)std::lrint(anglePhotonToNormal / CLHEP::deg);
857                                                   847 
858       // Take random angles THETA and PHI,        848       // Take random angles THETA and PHI,
859       // and see if below Probability - if not    849       // and see if below Probability - if not - Redo
860       do                                          850       do
861       {                                           851       {
862         thetaIndex = (G4int)G4RandFlat::shootI    852         thetaIndex = (G4int)G4RandFlat::shootInt(thetaIndexMax - 1);
863         phiIndex   = (G4int)G4RandFlat::shootI    853         phiIndex   = (G4int)G4RandFlat::shootInt(phiIndexMax - 1);
864         // Find probability with the new indec    854         // Find probability with the new indeces from LUT
865         angularDistVal = fOpticalSurface->GetA    855         angularDistVal = fOpticalSurface->GetAngularDistributionValue(
866           angleIncident, thetaIndex, phiIndex)    856           angleIncident, thetaIndex, phiIndex);
867         // Loop checking, 13-Aug-2015, Peter G    857         // Loop checking, 13-Aug-2015, Peter Gumplinger
868       } while(!G4BooleanRand(angularDistVal));    858       } while(!G4BooleanRand(angularDistVal));
869                                                   859 
870       thetaRad = G4double(-90 + 4 * thetaIndex    860       thetaRad = G4double(-90 + 4 * thetaIndex) * pi / 180.;
871       phiRad   = G4double(-90 + 5 * phiIndex)     861       phiRad   = G4double(-90 + 5 * phiIndex) * pi / 180.;
872       // Rotate Photon Momentum in Theta, then    862       // Rotate Photon Momentum in Theta, then in Phi
873       fNewMomentum = -fOldMomentum;               863       fNewMomentum = -fOldMomentum;
874                                                   864 
875       perpVectorTheta = fNewMomentum.cross(fGl    865       perpVectorTheta = fNewMomentum.cross(fGlobalNormal);
876       if(perpVectorTheta.mag() < fCarTolerance    866       if(perpVectorTheta.mag() < fCarTolerance)
877       {                                           867       {
878         perpVectorTheta = fNewMomentum.orthogo    868         perpVectorTheta = fNewMomentum.orthogonal();
879       }                                           869       }
880       fNewMomentum =                              870       fNewMomentum =
881         fNewMomentum.rotate(anglePhotonToNorma    871         fNewMomentum.rotate(anglePhotonToNormal - thetaRad, perpVectorTheta);
882       perpVectorPhi = perpVectorTheta.cross(fN    872       perpVectorPhi = perpVectorTheta.cross(fNewMomentum);
883       fNewMomentum  = fNewMomentum.rotate(-phi    873       fNewMomentum  = fNewMomentum.rotate(-phiRad, perpVectorPhi);
884                                                   874 
885       // Rotate Polarization too:                 875       // Rotate Polarization too:
886       fFacetNormal     = (fNewMomentum - fOldM    876       fFacetNormal     = (fNewMomentum - fOldMomentum).unit();
887       fNewPolarization = -fOldPolarization +      877       fNewPolarization = -fOldPolarization +
888                          (2. * fOldPolarizatio    878                          (2. * fOldPolarization * fFacetNormal * fFacetNormal);
889     }                                             879     }
890     // Loop checking, 13-Aug-2015, Peter Gumpl    880     // Loop checking, 13-Aug-2015, Peter Gumplinger
891   } while(fNewMomentum * fGlobalNormal <= 0.0)    881   } while(fNewMomentum * fGlobalNormal <= 0.0);
892 }                                                 882 }
893                                                   883 
894 //....oooOO0OOooo........oooOO0OOooo........oo    884 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
895 void G4OpBoundaryProcess::DielectricLUTDAVIS()    885 void G4OpBoundaryProcess::DielectricLUTDAVIS()
896 {                                                 886 {
897   G4int angindex, random, angleIncident;          887   G4int angindex, random, angleIncident;
898   G4double reflectivityValue, elevation, azimu    888   G4double reflectivityValue, elevation, azimuth;
899   G4double anglePhotonToNormal;                   889   G4double anglePhotonToNormal;
900                                                   890 
901   G4int lutbin  = fOpticalSurface->GetLUTbins(    891   G4int lutbin  = fOpticalSurface->GetLUTbins();
902   G4double rand = G4UniformRand();                892   G4double rand = G4UniformRand();
903                                                   893 
904   G4double sinEl;                                 894   G4double sinEl;
905   G4ThreeVector u, vNorm, w;                      895   G4ThreeVector u, vNorm, w;
906                                                   896 
907   do                                              897   do
908   {                                               898   {
909     anglePhotonToNormal = fOldMomentum.angle(-    899     anglePhotonToNormal = fOldMomentum.angle(-fGlobalNormal);
910                                                   900 
911     // Davis model has 90 reflection bins: rou    901     // Davis model has 90 reflection bins: round down
912     // don't allow angleIncident to be 90 for     902     // don't allow angleIncident to be 90 for anglePhotonToNormal close to 90
913     angleIncident = std::min(                     903     angleIncident = std::min(
914       static_cast<G4int>(std::floor(anglePhoto    904       static_cast<G4int>(std::floor(anglePhotonToNormal / CLHEP::deg)), 89);
915     reflectivityValue = fOpticalSurface->GetRe    905     reflectivityValue = fOpticalSurface->GetReflectivityLUTValue(angleIncident);
916                                                   906 
917     if(rand > reflectivityValue)                  907     if(rand > reflectivityValue)
918     {                                             908     {
919       if(fEfficiency > 0.)                        909       if(fEfficiency > 0.)
920       {                                           910       {
921         DoAbsorption();                           911         DoAbsorption();
922         break;                                    912         break;
923       }                                           913       }
924       else                                        914       else
925       {                                           915       {
926         fStatus = Transmission;                   916         fStatus = Transmission;
927                                                   917 
928         if(angleIncident <= 0.01)                 918         if(angleIncident <= 0.01)
929         {                                         919         {
930           fNewMomentum = fOldMomentum;            920           fNewMomentum = fOldMomentum;
931           break;                                  921           break;
932         }                                         922         }
933                                                   923 
934         do                                        924         do
935         {                                         925         {
936           random = (G4int)G4RandFlat::shootInt    926           random = (G4int)G4RandFlat::shootInt(1, lutbin + 1);
937           angindex =                              927           angindex =
938             (((random * 2) - 1)) + angleIncide    928             (((random * 2) - 1)) + angleIncident * lutbin * 2 + 3640000;
939                                                   929 
940           azimuth =                               930           azimuth =
941             fOpticalSurface->GetAngularDistrib    931             fOpticalSurface->GetAngularDistributionValueLUT(angindex - 1);
942           elevation = fOpticalSurface->GetAngu    932           elevation = fOpticalSurface->GetAngularDistributionValueLUT(angindex);
943         } while(elevation == 0. && azimuth ==     933         } while(elevation == 0. && azimuth == 0.);
944                                                   934 
945         sinEl = std::sin(elevation);              935         sinEl = std::sin(elevation);
946         vNorm = (fGlobalNormal.cross(fOldMomen    936         vNorm = (fGlobalNormal.cross(fOldMomentum)).unit();
947         u     = vNorm.cross(fGlobalNormal) * (    937         u     = vNorm.cross(fGlobalNormal) * (sinEl * std::cos(azimuth));
948         vNorm *= (sinEl * std::sin(azimuth));     938         vNorm *= (sinEl * std::sin(azimuth));
949         // fGlobalNormal shouldn't be modified    939         // fGlobalNormal shouldn't be modified here
950         w            = (fGlobalNormal *= std::    940         w            = (fGlobalNormal *= std::cos(elevation));
951         fNewMomentum = u + vNorm + w;             941         fNewMomentum = u + vNorm + w;
952                                                   942 
953         // Rotate Polarization too:               943         // Rotate Polarization too:
954         fFacetNormal     = (fNewMomentum - fOl    944         fFacetNormal     = (fNewMomentum - fOldMomentum).unit();
955         fNewPolarization = -fOldPolarization +    945         fNewPolarization = -fOldPolarization + (2. * fOldPolarization *
956                                                   946                                                 fFacetNormal * fFacetNormal);
957       }                                           947       }
958     }                                             948     }
959     else                                          949     else
960     {                                             950     {
961       fStatus = LobeReflection;                   951       fStatus = LobeReflection;
962                                                   952 
963       if(angleIncident == 0)                      953       if(angleIncident == 0)
964       {                                           954       {
965         fNewMomentum = -fOldMomentum;             955         fNewMomentum = -fOldMomentum;
966         break;                                    956         break;
967       }                                           957       }
968                                                   958 
969       do                                          959       do
970       {                                           960       {
971         random   = (G4int)G4RandFlat::shootInt    961         random   = (G4int)G4RandFlat::shootInt(1, lutbin + 1);
972         angindex = (((random * 2) - 1)) + (ang    962         angindex = (((random * 2) - 1)) + (angleIncident - 1) * lutbin * 2;
973                                                   963 
974         azimuth = fOpticalSurface->GetAngularD    964         azimuth = fOpticalSurface->GetAngularDistributionValueLUT(angindex - 1);
975         elevation = fOpticalSurface->GetAngula    965         elevation = fOpticalSurface->GetAngularDistributionValueLUT(angindex);
976       } while(elevation == 0. && azimuth == 0.    966       } while(elevation == 0. && azimuth == 0.);
977                                                   967 
978       sinEl = std::sin(elevation);                968       sinEl = std::sin(elevation);
979       vNorm = (fGlobalNormal.cross(fOldMomentu    969       vNorm = (fGlobalNormal.cross(fOldMomentum)).unit();
980       u     = vNorm.cross(fGlobalNormal) * (si    970       u     = vNorm.cross(fGlobalNormal) * (sinEl * std::cos(azimuth));
981       vNorm *= (sinEl * std::sin(azimuth));       971       vNorm *= (sinEl * std::sin(azimuth));
982       // fGlobalNormal shouldn't be modified h    972       // fGlobalNormal shouldn't be modified here
983       w = (fGlobalNormal *= std::cos(elevation    973       w = (fGlobalNormal *= std::cos(elevation));
984                                                   974 
985       fNewMomentum = u + vNorm + w;               975       fNewMomentum = u + vNorm + w;
986                                                   976 
987       // Rotate Polarization too: (needs revis    977       // Rotate Polarization too: (needs revision)
988       fNewPolarization = fOldPolarization;        978       fNewPolarization = fOldPolarization;
989     }                                             979     }
990   } while(fNewMomentum * fGlobalNormal <= 0.0)    980   } while(fNewMomentum * fGlobalNormal <= 0.0);
991 }                                                 981 }
992                                                   982 
993 //....oooOO0OOooo........oooOO0OOooo........oo    983 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
994 void G4OpBoundaryProcess::DielectricDichroic()    984 void G4OpBoundaryProcess::DielectricDichroic()
995 {                                                 985 {
996   // Calculate Angle between Normal and Photon    986   // Calculate Angle between Normal and Photon Momentum
997   G4double anglePhotonToNormal = fOldMomentum.    987   G4double anglePhotonToNormal = fOldMomentum.angle(-fGlobalNormal);
998                                                   988 
999   // Round it to closest integer                  989   // Round it to closest integer
1000   G4double angleIncident = std::floor(180. /     990   G4double angleIncident = std::floor(180. / pi * anglePhotonToNormal + 0.5);
1001                                                  991 
1002   if(!fDichroicVector)                           992   if(!fDichroicVector)
1003   {                                              993   {
1004     if(fOpticalSurface)                          994     if(fOpticalSurface)
1005       fDichroicVector = fOpticalSurface->GetD    995       fDichroicVector = fOpticalSurface->GetDichroicVector();
1006   }                                              996   }
1007                                                  997 
1008   if(fDichroicVector)                            998   if(fDichroicVector)
1009   {                                              999   {
1010     G4double wavelength = h_Planck * c_light     1000     G4double wavelength = h_Planck * c_light / fPhotonMomentum;
1011     fTransmittance      = fDichroicVector->Va    1001     fTransmittance      = fDichroicVector->Value(wavelength / nm, angleIncident,
1012                                             i    1002                                             idx_dichroicX, idx_dichroicY) *
1013                      perCent;                    1003                      perCent;
1014     //   G4cout << "wavelength: " << std::flo    1004     //   G4cout << "wavelength: " << std::floor(wavelength/nm)
1015     //                            << "nm" <<     1005     //                            << "nm" << G4endl;
1016     //   G4cout << "Incident angle: " << angl    1006     //   G4cout << "Incident angle: " << angleIncident << "deg" << G4endl;
1017     //   G4cout << "Transmittance: "             1007     //   G4cout << "Transmittance: "
1018     //          << std::floor(fTransmittance/    1008     //          << std::floor(fTransmittance/perCent) << "%" << G4endl;
1019   }                                              1009   }
1020   else                                           1010   else
1021   {                                              1011   {
1022     G4ExceptionDescription ed;                   1012     G4ExceptionDescription ed;
1023     ed << " G4OpBoundaryProcess/DielectricDic    1013     ed << " G4OpBoundaryProcess/DielectricDichroic(): "
1024        << " The dichroic surface has no G4Phy    1014        << " The dichroic surface has no G4Physics2DVector" << G4endl;
1025     G4Exception("G4OpBoundaryProcess::Dielect    1015     G4Exception("G4OpBoundaryProcess::DielectricDichroic", "OpBoun03",
1026                 FatalException, ed,              1016                 FatalException, ed,
1027                 "A dichroic surface must have    1017                 "A dichroic surface must have an associated G4Physics2DVector");
1028   }                                              1018   }
1029                                                  1019 
1030   if(!G4BooleanRand(fTransmittance))             1020   if(!G4BooleanRand(fTransmittance))
1031   {  // Not transmitted, so reflect              1021   {  // Not transmitted, so reflect
1032     if(fModel == glisur || fFinish == polishe    1022     if(fModel == glisur || fFinish == polished)
1033     {                                            1023     {
1034       DoReflection();                            1024       DoReflection();
1035     }                                            1025     }
1036     else                                         1026     else
1037     {                                            1027     {
1038       ChooseReflection();                        1028       ChooseReflection();
1039       if(fStatus == LambertianReflection)        1029       if(fStatus == LambertianReflection)
1040       {                                          1030       {
1041         DoReflection();                          1031         DoReflection();
1042       }                                          1032       }
1043       else if(fStatus == BackScattering)         1033       else if(fStatus == BackScattering)
1044       {                                          1034       {
1045         fNewMomentum     = -fOldMomentum;        1035         fNewMomentum     = -fOldMomentum;
1046         fNewPolarization = -fOldPolarization;    1036         fNewPolarization = -fOldPolarization;
1047       }                                          1037       }
1048       else                                       1038       else
1049       {                                          1039       {
1050         G4double PdotN, EdotN;                   1040         G4double PdotN, EdotN;
1051         do                                       1041         do
1052         {                                        1042         {
1053           if(fStatus == LobeReflection)          1043           if(fStatus == LobeReflection)
1054           {                                      1044           {
1055             fFacetNormal = GetFacetNormal(fOl    1045             fFacetNormal = GetFacetNormal(fOldMomentum, fGlobalNormal);
1056           }                                      1046           }
1057           PdotN        = fOldMomentum * fFace    1047           PdotN        = fOldMomentum * fFacetNormal;
1058           fNewMomentum = fOldMomentum - (2. *    1048           fNewMomentum = fOldMomentum - (2. * PdotN) * fFacetNormal;
1059           // Loop checking, 13-Aug-2015, Pete    1049           // Loop checking, 13-Aug-2015, Peter Gumplinger
1060         } while(fNewMomentum * fGlobalNormal     1050         } while(fNewMomentum * fGlobalNormal <= 0.0);
1061                                                  1051 
1062         EdotN            = fOldPolarization *    1052         EdotN            = fOldPolarization * fFacetNormal;
1063         fNewPolarization = -fOldPolarization     1053         fNewPolarization = -fOldPolarization + (2. * EdotN) * fFacetNormal;
1064       }                                          1054       }
1065     }                                            1055     }
1066   }                                              1056   }
1067   else                                           1057   else
1068   {                                              1058   {
1069     fStatus          = Dichroic;                 1059     fStatus          = Dichroic;
1070     fNewMomentum     = fOldMomentum;             1060     fNewMomentum     = fOldMomentum;
1071     fNewPolarization = fOldPolarization;         1061     fNewPolarization = fOldPolarization;
1072   }                                              1062   }
1073 }                                                1063 }
1074                                                  1064 
1075 //....oooOO0OOooo........oooOO0OOooo........o    1065 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
1076 void G4OpBoundaryProcess::DielectricDielectri    1066 void G4OpBoundaryProcess::DielectricDielectric()
1077 {                                                1067 {
1078   G4bool inside = false;                         1068   G4bool inside = false;
1079   G4bool swap   = false;                         1069   G4bool swap   = false;
1080                                                  1070 
1081   if(fFinish == polished)                        1071   if(fFinish == polished)
1082   {                                              1072   {
1083     fFacetNormal = fGlobalNormal;                1073     fFacetNormal = fGlobalNormal;
1084   }                                              1074   }
1085   else                                           1075   else
1086   {                                              1076   {
1087     fFacetNormal = GetFacetNormal(fOldMomentu    1077     fFacetNormal = GetFacetNormal(fOldMomentum, fGlobalNormal);
1088   }                                              1078   }
1089   G4double cost1 = -fOldMomentum * fFacetNorm    1079   G4double cost1 = -fOldMomentum * fFacetNormal;
1090   G4double cost2 = 0.;                           1080   G4double cost2 = 0.;
1091   G4double sint2 = 0.;                           1081   G4double sint2 = 0.;
1092                                                  1082 
1093   G4bool surfaceRoughnessCriterionPass = true    1083   G4bool surfaceRoughnessCriterionPass = true;
1094   if(fSurfaceRoughness != 0. && fRindex1 > fR    1084   if(fSurfaceRoughness != 0. && fRindex1 > fRindex2)
1095   {                                              1085   {
1096     G4double wavelength                = h_Pl    1086     G4double wavelength                = h_Planck * c_light / fPhotonMomentum;
1097     G4double surfaceRoughnessCriterion = std:    1087     G4double surfaceRoughnessCriterion = std::exp(-std::pow(
1098       (4. * pi * fSurfaceRoughness * fRindex1    1088       (4. * pi * fSurfaceRoughness * fRindex1 * cost1 / wavelength), 2));
1099     surfaceRoughnessCriterionPass = G4Boolean    1089     surfaceRoughnessCriterionPass = G4BooleanRand(surfaceRoughnessCriterion);
1100   }                                              1090   }
1101                                                  1091 
1102 leap:                                            1092 leap:
1103                                                  1093 
1104   G4bool through = false;                        1094   G4bool through = false;
1105   G4bool done    = false;                        1095   G4bool done    = false;
1106                                                  1096 
1107   G4ThreeVector A_trans, A_paral, E1pp, E1pl;    1097   G4ThreeVector A_trans, A_paral, E1pp, E1pl;
1108   G4double E1_perp, E1_parl;                     1098   G4double E1_perp, E1_parl;
1109   G4double s1, s2, E2_perp, E2_parl, E2_total    1099   G4double s1, s2, E2_perp, E2_parl, E2_total, transCoeff;
1110   G4double E2_abs, C_parl, C_perp;               1100   G4double E2_abs, C_parl, C_perp;
1111   G4double alpha;                                1101   G4double alpha;
1112                                                  1102 
1113   do                                             1103   do
1114   {                                              1104   {
1115     if(through)                                  1105     if(through)
1116     {                                            1106     {
1117       swap          = !swap;                     1107       swap          = !swap;
1118       through       = false;                     1108       through       = false;
1119       fGlobalNormal = -fGlobalNormal;            1109       fGlobalNormal = -fGlobalNormal;
1120       G4SwapPtr(fMaterial1, fMaterial2);         1110       G4SwapPtr(fMaterial1, fMaterial2);
1121       G4SwapObj(&fRindex1, &fRindex2);           1111       G4SwapObj(&fRindex1, &fRindex2);
1122     }                                            1112     }
1123                                                  1113 
1124     if(fFinish == polished)                      1114     if(fFinish == polished)
1125     {                                            1115     {
1126       fFacetNormal = fGlobalNormal;              1116       fFacetNormal = fGlobalNormal;
1127     }                                            1117     }
1128     else                                         1118     else
1129     {                                            1119     {
1130       fFacetNormal = GetFacetNormal(fOldMomen    1120       fFacetNormal = GetFacetNormal(fOldMomentum, fGlobalNormal);
1131     }                                            1121     }
1132                                                  1122 
1133     cost1 = -fOldMomentum * fFacetNormal;        1123     cost1 = -fOldMomentum * fFacetNormal;
1134     if(std::abs(cost1) < 1.0 - fCarTolerance)    1124     if(std::abs(cost1) < 1.0 - fCarTolerance)
1135     {                                            1125     {
1136       fSint1 = std::sqrt(1. - cost1 * cost1);    1126       fSint1 = std::sqrt(1. - cost1 * cost1);
1137       sint2  = fSint1 * fRindex1 / fRindex2;     1127       sint2  = fSint1 * fRindex1 / fRindex2;  // *** Snell's Law ***
1138       // this isn't a sine as we might expect    1128       // this isn't a sine as we might expect from the name; can be > 1
1139     }                                            1129     }
1140     else                                         1130     else
1141     {                                            1131     {
1142       fSint1 = 0.0;                              1132       fSint1 = 0.0;
1143       sint2  = 0.0;                              1133       sint2  = 0.0;
1144     }                                            1134     }
1145                                                  1135 
1146     // TOTAL INTERNAL REFLECTION                 1136     // TOTAL INTERNAL REFLECTION
1147     if(sint2 >= 1.0)                             1137     if(sint2 >= 1.0)
1148     {                                            1138     {
1149       swap = false;                              1139       swap = false;
1150                                                  1140 
1151       fStatus = TotalInternalReflection;         1141       fStatus = TotalInternalReflection;
1152       if(!surfaceRoughnessCriterionPass)         1142       if(!surfaceRoughnessCriterionPass)
1153         fStatus = LambertianReflection;          1143         fStatus = LambertianReflection;
1154       if(fModel == unified && fFinish != poli    1144       if(fModel == unified && fFinish != polished)
1155         ChooseReflection();                      1145         ChooseReflection();
1156       if(fStatus == LambertianReflection)        1146       if(fStatus == LambertianReflection)
1157       {                                          1147       {
1158         DoReflection();                          1148         DoReflection();
1159       }                                          1149       }
1160       else if(fStatus == BackScattering)         1150       else if(fStatus == BackScattering)
1161       {                                          1151       {
1162         fNewMomentum     = -fOldMomentum;        1152         fNewMomentum     = -fOldMomentum;
1163         fNewPolarization = -fOldPolarization;    1153         fNewPolarization = -fOldPolarization;
1164       }                                          1154       }
1165       else                                       1155       else
1166       {                                          1156       {
1167         fNewMomentum =                           1157         fNewMomentum =
1168           fOldMomentum - 2. * fOldMomentum *     1158           fOldMomentum - 2. * fOldMomentum * fFacetNormal * fFacetNormal;
1169         fNewPolarization = -fOldPolarization     1159         fNewPolarization = -fOldPolarization + (2. * fOldPolarization *
1170                                                  1160                                                 fFacetNormal * fFacetNormal);
1171       }                                          1161       }
1172     }                                            1162     }
1173     // NOT TIR                                   1163     // NOT TIR
1174     else if(sint2 < 1.0)                         1164     else if(sint2 < 1.0)
1175     {                                            1165     {
1176       // Calculate amplitude for transmission    1166       // Calculate amplitude for transmission (Q = P x N)
1177       if(cost1 > 0.0)                            1167       if(cost1 > 0.0)
1178       {                                          1168       {
1179         cost2 = std::sqrt(1. - sint2 * sint2)    1169         cost2 = std::sqrt(1. - sint2 * sint2);
1180       }                                          1170       }
1181       else                                       1171       else
1182       {                                          1172       {
1183         cost2 = -std::sqrt(1. - sint2 * sint2    1173         cost2 = -std::sqrt(1. - sint2 * sint2);
1184       }                                          1174       }
1185                                                  1175 
1186       if(fSint1 > 0.0)                           1176       if(fSint1 > 0.0)
1187       {                                          1177       {
1188         A_trans = (fOldMomentum.cross(fFacetN    1178         A_trans = (fOldMomentum.cross(fFacetNormal)).unit();
1189         E1_perp = fOldPolarization * A_trans;    1179         E1_perp = fOldPolarization * A_trans;
1190         E1pp    = E1_perp * A_trans;             1180         E1pp    = E1_perp * A_trans;
1191         E1pl    = fOldPolarization - E1pp;       1181         E1pl    = fOldPolarization - E1pp;
1192         E1_parl = E1pl.mag();                    1182         E1_parl = E1pl.mag();
1193       }                                          1183       }
1194       else                                       1184       else
1195       {                                          1185       {
1196         A_trans = fOldPolarization;              1186         A_trans = fOldPolarization;
1197         // Here we Follow Jackson's conventio    1187         // Here we Follow Jackson's conventions and set the parallel
1198         // component = 1 in case of a ray per    1188         // component = 1 in case of a ray perpendicular to the surface
1199         E1_perp = 0.0;                           1189         E1_perp = 0.0;
1200         E1_parl = 1.0;                           1190         E1_parl = 1.0;
1201       }                                          1191       }
1202                                                  1192 
1203       s1       = fRindex1 * cost1;               1193       s1       = fRindex1 * cost1;
1204       E2_perp  = 2. * s1 * E1_perp / (fRindex    1194       E2_perp  = 2. * s1 * E1_perp / (fRindex1 * cost1 + fRindex2 * cost2);
1205       E2_parl  = 2. * s1 * E1_parl / (fRindex    1195       E2_parl  = 2. * s1 * E1_parl / (fRindex2 * cost1 + fRindex1 * cost2);
1206       E2_total = E2_perp * E2_perp + E2_parl     1196       E2_total = E2_perp * E2_perp + E2_parl * E2_parl;
1207       s2       = fRindex2 * cost2 * E2_total;    1197       s2       = fRindex2 * cost2 * E2_total;
1208                                                  1198 
1209       // D.Sawkey, 24 May 24                  << 1199       if(fTransmittance > 0.)
1210       // Transmittance has already been taken << 1200         transCoeff = fTransmittance;
1211       // For e.g. specular surfaces, the rati << 1201       else if(cost1 != 0.0)
1212       // reflection should be given by the ma << 
1213       // TRANSMITTANCE                        << 
1214       //if(fTransmittance > 0.)               << 
1215       //  transCoeff = fTransmittance;        << 
1216       //else if(cost1 != 0.0)                 << 
1217       if(cost1 != 0.0)                        << 
1218         transCoeff = s2 / s1;                    1202         transCoeff = s2 / s1;
1219       else                                       1203       else
1220         transCoeff = 0.0;                        1204         transCoeff = 0.0;
1221                                                  1205 
1222       // NOT TIR: REFLECTION                     1206       // NOT TIR: REFLECTION
1223       if(!G4BooleanRand(transCoeff))             1207       if(!G4BooleanRand(transCoeff))
1224       {                                          1208       {
1225         swap    = false;                         1209         swap    = false;
1226         fStatus = FresnelReflection;             1210         fStatus = FresnelReflection;
1227                                                  1211 
1228         if(!surfaceRoughnessCriterionPass)       1212         if(!surfaceRoughnessCriterionPass)
1229           fStatus = LambertianReflection;        1213           fStatus = LambertianReflection;
1230         if(fModel == unified && fFinish != po    1214         if(fModel == unified && fFinish != polished)
1231           ChooseReflection();                    1215           ChooseReflection();
1232         if(fStatus == LambertianReflection)      1216         if(fStatus == LambertianReflection)
1233         {                                        1217         {
1234           DoReflection();                        1218           DoReflection();
1235         }                                        1219         }
1236         else if(fStatus == BackScattering)       1220         else if(fStatus == BackScattering)
1237         {                                        1221         {
1238           fNewMomentum     = -fOldMomentum;      1222           fNewMomentum     = -fOldMomentum;
1239           fNewPolarization = -fOldPolarizatio    1223           fNewPolarization = -fOldPolarization;
1240         }                                        1224         }
1241         else                                     1225         else
1242         {                                        1226         {
1243           fNewMomentum =                         1227           fNewMomentum =
1244             fOldMomentum - 2. * fOldMomentum     1228             fOldMomentum - 2. * fOldMomentum * fFacetNormal * fFacetNormal;
1245           if(fSint1 > 0.0)                       1229           if(fSint1 > 0.0)
1246           {  // incident ray oblique             1230           {  // incident ray oblique
1247             E2_parl  = fRindex2 * E2_parl / f    1231             E2_parl  = fRindex2 * E2_parl / fRindex1 - E1_parl;
1248             E2_perp  = E2_perp - E1_perp;        1232             E2_perp  = E2_perp - E1_perp;
1249             E2_total = E2_perp * E2_perp + E2    1233             E2_total = E2_perp * E2_perp + E2_parl * E2_parl;
1250             A_paral  = (fNewMomentum.cross(A_    1234             A_paral  = (fNewMomentum.cross(A_trans)).unit();
1251             E2_abs   = std::sqrt(E2_total);      1235             E2_abs   = std::sqrt(E2_total);
1252             C_parl   = E2_parl / E2_abs;         1236             C_parl   = E2_parl / E2_abs;
1253             C_perp   = E2_perp / E2_abs;         1237             C_perp   = E2_perp / E2_abs;
1254                                                  1238 
1255             fNewPolarization = C_parl * A_par    1239             fNewPolarization = C_parl * A_paral + C_perp * A_trans;
1256           }                                      1240           }
1257           else                                   1241           else
1258           {  // incident ray perpendicular       1242           {  // incident ray perpendicular
1259             if(fRindex2 > fRindex1)              1243             if(fRindex2 > fRindex1)
1260             {                                    1244             {
1261               fNewPolarization = -fOldPolariz    1245               fNewPolarization = -fOldPolarization;
1262             }                                    1246             }
1263             else                                 1247             else
1264             {                                    1248             {
1265               fNewPolarization = fOldPolariza    1249               fNewPolarization = fOldPolarization;
1266             }                                    1250             }
1267           }                                      1251           }
1268         }                                        1252         }
1269       }                                          1253       }
1270       // NOT TIR: TRANSMISSION                   1254       // NOT TIR: TRANSMISSION
1271       else                                       1255       else
1272       {                                          1256       {
1273         inside  = !inside;                       1257         inside  = !inside;
1274         through = true;                          1258         through = true;
1275         fStatus = FresnelRefraction;             1259         fStatus = FresnelRefraction;
1276                                                  1260 
1277         if(fSint1 > 0.0)                         1261         if(fSint1 > 0.0)
1278         {  // incident ray oblique               1262         {  // incident ray oblique
1279           alpha        = cost1 - cost2 * (fRi    1263           alpha        = cost1 - cost2 * (fRindex2 / fRindex1);
1280           fNewMomentum = (fOldMomentum + alph    1264           fNewMomentum = (fOldMomentum + alpha * fFacetNormal).unit();
1281           A_paral      = (fNewMomentum.cross(    1265           A_paral      = (fNewMomentum.cross(A_trans)).unit();
1282           E2_abs       = std::sqrt(E2_total);    1266           E2_abs       = std::sqrt(E2_total);
1283           C_parl       = E2_parl / E2_abs;       1267           C_parl       = E2_parl / E2_abs;
1284           C_perp       = E2_perp / E2_abs;       1268           C_perp       = E2_perp / E2_abs;
1285                                                  1269 
1286           fNewPolarization = C_parl * A_paral    1270           fNewPolarization = C_parl * A_paral + C_perp * A_trans;
1287         }                                        1271         }
1288         else                                     1272         else
1289         {  // incident ray perpendicular         1273         {  // incident ray perpendicular
1290           fNewMomentum     = fOldMomentum;       1274           fNewMomentum     = fOldMomentum;
1291           fNewPolarization = fOldPolarization    1275           fNewPolarization = fOldPolarization;
1292         }                                        1276         }
1293       }                                          1277       }
1294     }                                            1278     }
1295                                                  1279 
1296     fOldMomentum     = fNewMomentum.unit();      1280     fOldMomentum     = fNewMomentum.unit();
1297     fOldPolarization = fNewPolarization.unit(    1281     fOldPolarization = fNewPolarization.unit();
1298                                                  1282 
1299     if(fStatus == FresnelRefraction)             1283     if(fStatus == FresnelRefraction)
1300     {                                            1284     {
1301       done = (fNewMomentum * fGlobalNormal <=    1285       done = (fNewMomentum * fGlobalNormal <= 0.0);
1302     }                                            1286     }
1303     else                                         1287     else
1304     {                                            1288     {
1305       done = (fNewMomentum * fGlobalNormal >=    1289       done = (fNewMomentum * fGlobalNormal >= -fCarTolerance);
1306     }                                            1290     }
1307     // Loop checking, 13-Aug-2015, Peter Gump    1291     // Loop checking, 13-Aug-2015, Peter Gumplinger
1308   } while(!done);                                1292   } while(!done);
1309                                                  1293 
1310   if(inside && !swap)                            1294   if(inside && !swap)
1311   {                                              1295   {
1312     if(fFinish == polishedbackpainted || fFin    1296     if(fFinish == polishedbackpainted || fFinish == groundbackpainted)
1313     {                                            1297     {
1314       G4double rand = G4UniformRand();           1298       G4double rand = G4UniformRand();
1315       if(rand > fReflectivity + fTransmittanc    1299       if(rand > fReflectivity + fTransmittance)
1316       {                                          1300       {
1317         DoAbsorption();                          1301         DoAbsorption();
1318       }                                          1302       }
1319       else if(rand > fReflectivity)              1303       else if(rand > fReflectivity)
1320       {                                          1304       {
1321         fStatus          = Transmission;         1305         fStatus          = Transmission;
1322         fNewMomentum     = fOldMomentum;         1306         fNewMomentum     = fOldMomentum;
1323         fNewPolarization = fOldPolarization;     1307         fNewPolarization = fOldPolarization;
1324       }                                          1308       }
1325       else                                       1309       else
1326       {                                          1310       {
1327         if(fStatus != FresnelRefraction)         1311         if(fStatus != FresnelRefraction)
1328         {                                        1312         {
1329           fGlobalNormal = -fGlobalNormal;        1313           fGlobalNormal = -fGlobalNormal;
1330         }                                        1314         }
1331         else                                     1315         else
1332         {                                        1316         {
1333           swap = !swap;                          1317           swap = !swap;
1334           G4SwapPtr(fMaterial1, fMaterial2);     1318           G4SwapPtr(fMaterial1, fMaterial2);
1335           G4SwapObj(&fRindex1, &fRindex2);       1319           G4SwapObj(&fRindex1, &fRindex2);
1336         }                                        1320         }
1337         if(fFinish == groundbackpainted)         1321         if(fFinish == groundbackpainted)
1338           fStatus = LambertianReflection;        1322           fStatus = LambertianReflection;
1339                                                  1323 
1340         DoReflection();                          1324         DoReflection();
1341                                                  1325 
1342         fGlobalNormal = -fGlobalNormal;          1326         fGlobalNormal = -fGlobalNormal;
1343         fOldMomentum  = fNewMomentum;            1327         fOldMomentum  = fNewMomentum;
1344                                                  1328 
1345         goto leap;                               1329         goto leap;
1346       }                                          1330       }
1347     }                                            1331     }
1348   }                                              1332   }
1349 }                                                1333 }
1350                                                  1334 
1351 //....oooOO0OOooo........oooOO0OOooo........o    1335 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
1352 G4double G4OpBoundaryProcess::GetMeanFreePath    1336 G4double G4OpBoundaryProcess::GetMeanFreePath(const G4Track&, G4double,
1353                                                  1337                                               G4ForceCondition* condition)
1354 {                                                1338 {
1355   *condition = Forced;                           1339   *condition = Forced;
1356   return DBL_MAX;                                1340   return DBL_MAX;
1357 }                                                1341 }
1358                                                  1342 
1359 //....oooOO0OOooo........oooOO0OOooo........o    1343 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
1360 G4double G4OpBoundaryProcess::GetIncidentAngl    1344 G4double G4OpBoundaryProcess::GetIncidentAngle()
1361 {                                                1345 {
1362   return pi - std::acos(fOldMomentum * fFacet    1346   return pi - std::acos(fOldMomentum * fFacetNormal /
1363                         (fOldMomentum.mag() *    1347                         (fOldMomentum.mag() * fFacetNormal.mag()));
1364 }                                                1348 }
1365                                                  1349 
1366 //....oooOO0OOooo........oooOO0OOooo........o    1350 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
1367 G4double G4OpBoundaryProcess::GetReflectivity    1351 G4double G4OpBoundaryProcess::GetReflectivity(G4double E1_perp,
1368                                                  1352                                               G4double E1_parl,
1369                                                  1353                                               G4double incidentangle,
1370                                                  1354                                               G4double realRindex,
1371                                                  1355                                               G4double imaginaryRindex)
1372 {                                                1356 {
1373   G4complex reflectivity, reflectivity_TE, re    1357   G4complex reflectivity, reflectivity_TE, reflectivity_TM;
1374   G4complex N1(fRindex1, 0.), N2(realRindex,     1358   G4complex N1(fRindex1, 0.), N2(realRindex, imaginaryRindex);
1375   G4complex cosPhi;                              1359   G4complex cosPhi;
1376                                                  1360 
1377   G4complex u(1., 0.);  // unit number 1         1361   G4complex u(1., 0.);  // unit number 1
1378                                                  1362 
1379   G4complex numeratorTE;  // E1_perp=1 E1_par    1363   G4complex numeratorTE;  // E1_perp=1 E1_parl=0 -> TE polarization
1380   G4complex numeratorTM;  // E1_parl=1 E1_per    1364   G4complex numeratorTM;  // E1_parl=1 E1_perp=0 -> TM polarization
1381   G4complex denominatorTE, denominatorTM;        1365   G4complex denominatorTE, denominatorTM;
1382   G4complex rTM, rTE;                            1366   G4complex rTM, rTE;
1383                                                  1367 
1384   G4MaterialPropertiesTable* MPT = fMaterial1    1368   G4MaterialPropertiesTable* MPT = fMaterial1->GetMaterialPropertiesTable();
1385   G4MaterialPropertyVector* ppR  = MPT->GetPr    1369   G4MaterialPropertyVector* ppR  = MPT->GetProperty(kREALRINDEX);
1386   G4MaterialPropertyVector* ppI  = MPT->GetPr    1370   G4MaterialPropertyVector* ppI  = MPT->GetProperty(kIMAGINARYRINDEX);
1387   if(ppR && ppI)                                 1371   if(ppR && ppI)
1388   {                                              1372   {
1389     G4double rRindex = ppR->Value(fPhotonMome    1373     G4double rRindex = ppR->Value(fPhotonMomentum, idx_rrindex);
1390     G4double iRindex = ppI->Value(fPhotonMome    1374     G4double iRindex = ppI->Value(fPhotonMomentum, idx_irindex);
1391     N1               = G4complex(rRindex, iRi    1375     N1               = G4complex(rRindex, iRindex);
1392   }                                              1376   }
1393                                                  1377 
1394   // Following two equations, rTM and rTE, ar    1378   // Following two equations, rTM and rTE, are from: "Introduction To Modern
1395   // Optics" written by Fowles                   1379   // Optics" written by Fowles
1396   cosPhi = std::sqrt(u - ((std::sin(incidenta    1380   cosPhi = std::sqrt(u - ((std::sin(incidentangle) * std::sin(incidentangle)) *
1397                           (N1 * N1) / (N2 * N    1381                           (N1 * N1) / (N2 * N2)));
1398                                                  1382 
1399   numeratorTE   = N1 * std::cos(incidentangle    1383   numeratorTE   = N1 * std::cos(incidentangle) - N2 * cosPhi;
1400   denominatorTE = N1 * std::cos(incidentangle    1384   denominatorTE = N1 * std::cos(incidentangle) + N2 * cosPhi;
1401   rTE           = numeratorTE / denominatorTE    1385   rTE           = numeratorTE / denominatorTE;
1402                                                  1386 
1403   numeratorTM   = N2 * std::cos(incidentangle    1387   numeratorTM   = N2 * std::cos(incidentangle) - N1 * cosPhi;
1404   denominatorTM = N2 * std::cos(incidentangle    1388   denominatorTM = N2 * std::cos(incidentangle) + N1 * cosPhi;
1405   rTM           = numeratorTM / denominatorTM    1389   rTM           = numeratorTM / denominatorTM;
1406                                                  1390 
1407   // This is my (PG) calculaton for reflectiv    1391   // This is my (PG) calculaton for reflectivity on a metallic surface
1408   // depending on the fraction of TE and TM p    1392   // depending on the fraction of TE and TM polarization
1409   // when TE polarization, E1_parl=0 and E1_p    1393   // when TE polarization, E1_parl=0 and E1_perp=1, R=abs(rTE)^2 and
1410   // when TM polarization, E1_parl=1 and E1_p    1394   // when TM polarization, E1_parl=1 and E1_perp=0, R=abs(rTM)^2
1411                                                  1395 
1412   reflectivity_TE = (rTE * conj(rTE)) * (E1_p    1396   reflectivity_TE = (rTE * conj(rTE)) * (E1_perp * E1_perp) /
1413                     (E1_perp * E1_perp + E1_p    1397                     (E1_perp * E1_perp + E1_parl * E1_parl);
1414   reflectivity_TM = (rTM * conj(rTM)) * (E1_p    1398   reflectivity_TM = (rTM * conj(rTM)) * (E1_parl * E1_parl) /
1415                     (E1_perp * E1_perp + E1_p    1399                     (E1_perp * E1_perp + E1_parl * E1_parl);
1416   reflectivity = reflectivity_TE + reflectivi    1400   reflectivity = reflectivity_TE + reflectivity_TM;
1417                                                  1401 
1418   do                                             1402   do
1419   {                                              1403   {
1420     if(G4UniformRand() * real(reflectivity) >    1404     if(G4UniformRand() * real(reflectivity) > real(reflectivity_TE))
1421     {                                            1405     {
1422       f_iTE = -1;                                1406       f_iTE = -1;
1423     }                                            1407     }
1424     else                                         1408     else
1425     {                                            1409     {
1426       f_iTE = 1;                                 1410       f_iTE = 1;
1427     }                                            1411     }
1428     if(G4UniformRand() * real(reflectivity) >    1412     if(G4UniformRand() * real(reflectivity) > real(reflectivity_TM))
1429     {                                            1413     {
1430       f_iTM = -1;                                1414       f_iTM = -1;
1431     }                                            1415     }
1432     else                                         1416     else
1433     {                                            1417     {
1434       f_iTM = 1;                                 1418       f_iTM = 1;
1435     }                                            1419     }
1436     // Loop checking, 13-Aug-2015, Peter Gump    1420     // Loop checking, 13-Aug-2015, Peter Gumplinger
1437   } while(f_iTE < 0 && f_iTM < 0);               1421   } while(f_iTE < 0 && f_iTM < 0);
1438                                                  1422 
1439   return real(reflectivity);                     1423   return real(reflectivity);
1440 }                                                1424 }
1441                                                  1425 
1442 //....oooOO0OOooo........oooOO0OOooo........o    1426 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
1443 void G4OpBoundaryProcess::CalculateReflectivi    1427 void G4OpBoundaryProcess::CalculateReflectivity()
1444 {                                                1428 {
1445   G4double realRindex = fRealRIndexMPV->Value    1429   G4double realRindex = fRealRIndexMPV->Value(fPhotonMomentum, idx_rrindex);
1446   G4double imaginaryRindex =                     1430   G4double imaginaryRindex =
1447     fImagRIndexMPV->Value(fPhotonMomentum, id    1431     fImagRIndexMPV->Value(fPhotonMomentum, idx_irindex);
1448                                                  1432 
1449   // calculate FacetNormal                       1433   // calculate FacetNormal
1450   if(fFinish == ground)                          1434   if(fFinish == ground)
1451   {                                              1435   {
1452     fFacetNormal = GetFacetNormal(fOldMomentu    1436     fFacetNormal = GetFacetNormal(fOldMomentum, fGlobalNormal);
1453   }                                              1437   }
1454   else                                           1438   else
1455   {                                              1439   {
1456     fFacetNormal = fGlobalNormal;                1440     fFacetNormal = fGlobalNormal;
1457   }                                              1441   }
1458                                                  1442 
1459   G4double cost1 = -fOldMomentum * fFacetNorm    1443   G4double cost1 = -fOldMomentum * fFacetNormal;
1460   if(std::abs(cost1) < 1.0 - fCarTolerance)      1444   if(std::abs(cost1) < 1.0 - fCarTolerance)
1461   {                                              1445   {
1462     fSint1 = std::sqrt(1. - cost1 * cost1);      1446     fSint1 = std::sqrt(1. - cost1 * cost1);
1463   }                                              1447   }
1464   else                                           1448   else
1465   {                                              1449   {
1466     fSint1 = 0.0;                                1450     fSint1 = 0.0;
1467   }                                              1451   }
1468                                                  1452 
1469   G4ThreeVector A_trans, A_paral, E1pp, E1pl;    1453   G4ThreeVector A_trans, A_paral, E1pp, E1pl;
1470   G4double E1_perp, E1_parl;                     1454   G4double E1_perp, E1_parl;
1471                                                  1455 
1472   if(fSint1 > 0.0)                               1456   if(fSint1 > 0.0)
1473   {                                              1457   {
1474     A_trans = (fOldMomentum.cross(fFacetNorma    1458     A_trans = (fOldMomentum.cross(fFacetNormal)).unit();
1475     E1_perp = fOldPolarization * A_trans;        1459     E1_perp = fOldPolarization * A_trans;
1476     E1pp    = E1_perp * A_trans;                 1460     E1pp    = E1_perp * A_trans;
1477     E1pl    = fOldPolarization - E1pp;           1461     E1pl    = fOldPolarization - E1pp;
1478     E1_parl = E1pl.mag();                        1462     E1_parl = E1pl.mag();
1479   }                                              1463   }
1480   else                                           1464   else
1481   {                                              1465   {
1482     A_trans = fOldPolarization;                  1466     A_trans = fOldPolarization;
1483     // Here we Follow Jackson's conventions a    1467     // Here we Follow Jackson's conventions and we set the parallel
1484     // component = 1 in case of a ray perpend    1468     // component = 1 in case of a ray perpendicular to the surface
1485     E1_perp = 0.0;                               1469     E1_perp = 0.0;
1486     E1_parl = 1.0;                               1470     E1_parl = 1.0;
1487   }                                              1471   }
1488                                                  1472 
1489   G4double incidentangle = GetIncidentAngle()    1473   G4double incidentangle = GetIncidentAngle();
1490                                                  1474 
1491   // calculate the reflectivity depending on     1475   // calculate the reflectivity depending on incident angle,
1492   // polarization and complex refractive         1476   // polarization and complex refractive
1493   fReflectivity = GetReflectivity(E1_perp, E1    1477   fReflectivity = GetReflectivity(E1_perp, E1_parl, incidentangle, realRindex,
1494                                   imaginaryRi    1478                                   imaginaryRindex);
1495 }                                                1479 }
1496                                                  1480 
1497 //....oooOO0OOooo........oooOO0OOooo........o    1481 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
1498 G4bool G4OpBoundaryProcess::InvokeSD(const G4    1482 G4bool G4OpBoundaryProcess::InvokeSD(const G4Step* pStep)
1499 {                                                1483 {
1500   G4Step aStep = *pStep;                         1484   G4Step aStep = *pStep;
1501   aStep.AddTotalEnergyDeposit(fPhotonMomentum    1485   aStep.AddTotalEnergyDeposit(fPhotonMomentum);
1502                                                  1486 
1503   G4VSensitiveDetector* sd = aStep.GetPostSte    1487   G4VSensitiveDetector* sd = aStep.GetPostStepPoint()->GetSensitiveDetector();
1504   if(sd != nullptr)                              1488   if(sd != nullptr)
1505     return sd->Hit(&aStep);                      1489     return sd->Hit(&aStep);
1506   else                                           1490   else
1507     return false;                                1491     return false;
1508 }                                                1492 }
1509                                                  1493 
1510 //....oooOO0OOooo........oooOO0OOooo........o    1494 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
1511 inline void G4OpBoundaryProcess::SetInvokeSD(    1495 inline void G4OpBoundaryProcess::SetInvokeSD(G4bool flag)
1512 {                                                1496 {
1513   fInvokeSD = flag;                              1497   fInvokeSD = flag;
1514   G4OpticalParameters::Instance()->SetBoundar    1498   G4OpticalParameters::Instance()->SetBoundaryInvokeSD(fInvokeSD);
1515 }                                                1499 }
1516                                                  1500 
1517 //....oooOO0OOooo........oooOO0OOooo........o    1501 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
1518 void G4OpBoundaryProcess::SetVerboseLevel(G4i    1502 void G4OpBoundaryProcess::SetVerboseLevel(G4int verbose)
1519 {                                                1503 {
1520   verboseLevel = verbose;                        1504   verboseLevel = verbose;
1521   G4OpticalParameters::Instance()->SetBoundar    1505   G4OpticalParameters::Instance()->SetBoundaryVerboseLevel(verboseLevel);
1522 }                                                1506 }
1523                                                  1507 
1524 //....oooOO0OOooo........oooOO0OOooo........o    1508 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
1525 void G4OpBoundaryProcess::CoatedDielectricDie    1509 void G4OpBoundaryProcess::CoatedDielectricDielectric()
1526 {                                                1510 {
1527   G4MaterialPropertyVector* pp = nullptr;        1511   G4MaterialPropertyVector* pp = nullptr;
1528                                                  1512 
1529   G4MaterialPropertiesTable* MPT = fMaterial2    1513   G4MaterialPropertiesTable* MPT = fMaterial2->GetMaterialPropertiesTable();
1530   if((pp = MPT->GetProperty(kRINDEX)))           1514   if((pp = MPT->GetProperty(kRINDEX)))
1531   {                                              1515   {
1532     fRindex2 = pp->Value(fPhotonMomentum, idx    1516     fRindex2 = pp->Value(fPhotonMomentum, idx_rindex2);
1533   }                                              1517   }
1534                                                  1518 
1535   MPT = fOpticalSurface->GetMaterialPropertie    1519   MPT = fOpticalSurface->GetMaterialPropertiesTable();
1536   if((pp = MPT->GetProperty(kCOATEDRINDEX)))     1520   if((pp = MPT->GetProperty(kCOATEDRINDEX)))
1537   {                                              1521   {
1538     fCoatedRindex = pp->Value(fPhotonMomentum    1522     fCoatedRindex = pp->Value(fPhotonMomentum, idx_coatedrindex);
1539   }                                              1523   }
1540   if(MPT->ConstPropertyExists(kCOATEDTHICKNES    1524   if(MPT->ConstPropertyExists(kCOATEDTHICKNESS))
1541   {                                              1525   {
1542     fCoatedThickness = MPT->GetConstProperty(    1526     fCoatedThickness = MPT->GetConstProperty(kCOATEDTHICKNESS);
1543   }                                              1527   }
1544   if(MPT->ConstPropertyExists(kCOATEDFRUSTRAT    1528   if(MPT->ConstPropertyExists(kCOATEDFRUSTRATEDTRANSMISSION))
1545   {                                              1529   {
1546     fCoatedFrustratedTransmission =              1530     fCoatedFrustratedTransmission =
1547       (G4bool)MPT->GetConstProperty(kCOATEDFR    1531       (G4bool)MPT->GetConstProperty(kCOATEDFRUSTRATEDTRANSMISSION);
1548   }                                              1532   }
1549                                                  1533 
1550   G4double sintTL;                               1534   G4double sintTL;
1551   G4double wavelength = h_Planck * c_light /     1535   G4double wavelength = h_Planck * c_light / fPhotonMomentum;
1552   G4double PdotN;                                1536   G4double PdotN;
1553   G4double E1_perp, E1_parl;                     1537   G4double E1_perp, E1_parl;
1554   G4double s1, E2_perp, E2_parl, E2_total, tr    1538   G4double s1, E2_perp, E2_parl, E2_total, transCoeff;
1555   G4double E2_abs, C_parl, C_perp;               1539   G4double E2_abs, C_parl, C_perp;
1556   G4double alpha;                                1540   G4double alpha;
1557   G4ThreeVector A_trans, A_paral, E1pp, E1pl;    1541   G4ThreeVector A_trans, A_paral, E1pp, E1pl;
1558   //G4bool Inside  = false;                      1542   //G4bool Inside  = false;
1559   //G4bool Swap    = false;                      1543   //G4bool Swap    = false;
1560   G4bool through = false;                        1544   G4bool through = false;
1561   G4bool done    = false;                        1545   G4bool done    = false;
1562                                                  1546 
1563   do {                                           1547   do {
1564     if (through)                                 1548     if (through)
1565     {                                            1549     {
1566       //Swap = !Swap;                            1550       //Swap = !Swap;
1567       through = false;                           1551       through = false;
1568       fGlobalNormal = -fGlobalNormal;            1552       fGlobalNormal = -fGlobalNormal;
1569       G4SwapPtr(fMaterial1, fMaterial2);         1553       G4SwapPtr(fMaterial1, fMaterial2);
1570       G4SwapObj(&fRindex1, &fRindex2);           1554       G4SwapObj(&fRindex1, &fRindex2);
1571     }                                            1555     }
1572                                                  1556 
1573     if(fFinish == polished)                      1557     if(fFinish == polished)
1574     {                                            1558     {
1575       fFacetNormal = fGlobalNormal;              1559       fFacetNormal = fGlobalNormal;
1576     }                                            1560     }
1577     else                                         1561     else
1578     {                                            1562     {
1579       fFacetNormal = GetFacetNormal(fOldMomen    1563       fFacetNormal = GetFacetNormal(fOldMomentum, fGlobalNormal);
1580     }                                            1564     }
1581                                                  1565 
1582     PdotN = fOldMomentum * fFacetNormal;         1566     PdotN = fOldMomentum * fFacetNormal;
1583     G4double cost1 = -PdotN;                     1567     G4double cost1 = -PdotN;
1584     G4double sint2, cost2 = 0.;                  1568     G4double sint2, cost2 = 0.;
1585                                                  1569 
1586     if (std::abs(cost1) < 1.0 - fCarTolerance    1570     if (std::abs(cost1) < 1.0 - fCarTolerance)
1587     {                                            1571     {
1588       fSint1 = std::sqrt(1. - cost1 * cost1);    1572       fSint1 = std::sqrt(1. - cost1 * cost1);
1589       sint2 = fSint1 * fRindex1 / fRindex2;      1573       sint2 = fSint1 * fRindex1 / fRindex2;
1590       sintTL = fSint1 * fRindex1 / fCoatedRin    1574       sintTL = fSint1 * fRindex1 / fCoatedRindex;
1591     } else                                       1575     } else
1592     {                                            1576     {
1593       fSint1 = 0.0;                              1577       fSint1 = 0.0;
1594       sint2 = 0.0;                               1578       sint2 = 0.0;
1595       sintTL = 0.0;                              1579       sintTL = 0.0;
1596     }                                            1580     }
1597                                                  1581 
1598     if (fSint1 > 0.0)                            1582     if (fSint1 > 0.0)
1599     {                                            1583     {
1600       A_trans = fOldMomentum.cross(fFacetNorm    1584       A_trans = fOldMomentum.cross(fFacetNormal);
1601       A_trans = A_trans.unit();                  1585       A_trans = A_trans.unit();
1602       E1_perp = fOldPolarization * A_trans;      1586       E1_perp = fOldPolarization * A_trans;
1603       E1pp = E1_perp * A_trans;                  1587       E1pp = E1_perp * A_trans;
1604       E1pl = fOldPolarization - E1pp;            1588       E1pl = fOldPolarization - E1pp;
1605       E1_parl = E1pl.mag();                      1589       E1_parl = E1pl.mag();
1606     }                                            1590     }
1607     else                                         1591     else
1608     {                                            1592     {
1609       A_trans = fOldPolarization;                1593       A_trans = fOldPolarization;
1610       E1_perp = 0.0;                             1594       E1_perp = 0.0;
1611       E1_parl = 1.0;                             1595       E1_parl = 1.0;
1612     }                                            1596     }
1613                                                  1597 
1614     s1 = fRindex1 * cost1;                       1598     s1 = fRindex1 * cost1;
1615                                                  1599 
1616     if (cost1 > 0.0)                             1600     if (cost1 > 0.0)
1617     {                                            1601     {
1618       cost2 = std::sqrt(1. - sint2 * sint2);     1602       cost2 = std::sqrt(1. - sint2 * sint2);
1619     }                                            1603     }
1620     else                                         1604     else
1621     {                                            1605     {
1622       cost2 = -std::sqrt(1. - sint2 * sint2);    1606       cost2 = -std::sqrt(1. - sint2 * sint2);
1623     }                                            1607     }
1624                                                  1608 
1625     transCoeff = 0.0;                            1609     transCoeff = 0.0;
1626                                                  1610 
1627     if (sintTL >= 1.0)                           1611     if (sintTL >= 1.0)
1628     { // --> Angle > Angle Limit                 1612     { // --> Angle > Angle Limit
1629       //Swap = false;                            1613       //Swap = false;
1630     }                                            1614     }
1631     E2_perp = 2. * s1 * E1_perp / (fRindex1 *    1615     E2_perp = 2. * s1 * E1_perp / (fRindex1 * cost1 + fRindex2 * cost2);
1632     E2_parl = 2. * s1 * E1_parl / (fRindex2 *    1616     E2_parl = 2. * s1 * E1_parl / (fRindex2 * cost1 + fRindex1 * cost2);
1633     E2_total = E2_perp * E2_perp + E2_parl *     1617     E2_total = E2_perp * E2_perp + E2_parl * E2_parl;
1634                                                  1618 
1635     transCoeff = 1. - GetReflectivityThroughT    1619     transCoeff = 1. - GetReflectivityThroughThinLayer(
1636                         sintTL, E1_perp, E1_p    1620                         sintTL, E1_perp, E1_parl, wavelength, cost1, cost2);
1637     if (!G4BooleanRand(transCoeff))              1621     if (!G4BooleanRand(transCoeff))
1638     {                                            1622     {
1639       if(verboseLevel > 2)                       1623       if(verboseLevel > 2)
1640         G4cout << "Reflection from " << fMate    1624         G4cout << "Reflection from " << fMaterial1->GetName() << " to "
1641                << fMaterial2->GetName() << G4    1625                << fMaterial2->GetName() << G4endl;
1642                                                  1626 
1643       //Swap = false;                            1627       //Swap = false;
1644                                                  1628 
1645       if (sintTL >= 1.0)                         1629       if (sintTL >= 1.0)
1646       {                                          1630       {
1647         fStatus = TotalInternalReflection;       1631         fStatus = TotalInternalReflection;
1648       }                                          1632       }
1649       else                                       1633       else
1650       {                                          1634       {
1651         fStatus = CoatedDielectricReflection;    1635         fStatus = CoatedDielectricReflection;
1652       }                                          1636       }
1653                                                  1637 
1654       PdotN = fOldMomentum * fFacetNormal;       1638       PdotN = fOldMomentum * fFacetNormal;
1655       fNewMomentum = fOldMomentum - (2. * Pdo    1639       fNewMomentum = fOldMomentum - (2. * PdotN) * fFacetNormal;
1656                                                  1640 
1657       if (fSint1 > 0.0) {   // incident ray o    1641       if (fSint1 > 0.0) {   // incident ray oblique
1658                                                  1642 
1659         E2_parl = fRindex2 * E2_parl / fRinde    1643         E2_parl = fRindex2 * E2_parl / fRindex1 - E1_parl;
1660         E2_perp = E2_perp - E1_perp;             1644         E2_perp = E2_perp - E1_perp;
1661         E2_total = E2_perp * E2_perp + E2_par    1645         E2_total = E2_perp * E2_perp + E2_parl * E2_parl;
1662         A_paral = fNewMomentum.cross(A_trans)    1646         A_paral = fNewMomentum.cross(A_trans);
1663         A_paral = A_paral.unit();                1647         A_paral = A_paral.unit();
1664         E2_abs = std::sqrt(E2_total);            1648         E2_abs = std::sqrt(E2_total);
1665         C_parl = E2_parl / E2_abs;               1649         C_parl = E2_parl / E2_abs;
1666         C_perp = E2_perp / E2_abs;               1650         C_perp = E2_perp / E2_abs;
1667                                                  1651 
1668         fNewPolarization = C_parl * A_paral +    1652         fNewPolarization = C_parl * A_paral + C_perp * A_trans;
1669                                                  1653 
1670       }                                          1654       }
1671       else                                       1655       else
1672       {               // incident ray perpend    1656       {               // incident ray perpendicular
1673         if (fRindex2 > fRindex1)                 1657         if (fRindex2 > fRindex1)
1674         {                                        1658         {
1675           fNewPolarization = -fOldPolarizatio    1659           fNewPolarization = -fOldPolarization;
1676         }                                        1660         }
1677         else                                     1661         else
1678         {                                        1662         {
1679           fNewPolarization = fOldPolarization    1663           fNewPolarization = fOldPolarization;
1680         }                                        1664         }
1681       }                                          1665       }
1682                                                  1666 
1683     } else { // photon gets transmitted          1667     } else { // photon gets transmitted
1684       if (verboseLevel > 2)                      1668       if (verboseLevel > 2)
1685         G4cout << "Transmission from " << fMa    1669         G4cout << "Transmission from " << fMaterial1->GetName() << " to "
1686                << fMaterial2->GetName() << G4    1670                << fMaterial2->GetName() << G4endl;
1687                                                  1671 
1688       //Inside = !Inside;                        1672       //Inside = !Inside;
1689       through = true;                            1673       through = true;
1690                                                  1674 
1691       if (fEfficiency > 0.)                      1675       if (fEfficiency > 0.)
1692       {                                          1676       {
1693         DoAbsorption();                          1677         DoAbsorption();
1694         return;                                  1678         return;
1695       }                                          1679       }
1696       else                                       1680       else
1697       {                                          1681       {
1698         if (sintTL >= 1.0)                       1682         if (sintTL >= 1.0)
1699         {                                        1683         {
1700           fStatus = CoatedDielectricFrustrate    1684           fStatus = CoatedDielectricFrustratedTransmission;
1701         }                                        1685         }
1702         else                                     1686         else
1703         {                                        1687         {
1704           fStatus = CoatedDielectricRefractio    1688           fStatus = CoatedDielectricRefraction;
1705         }                                        1689         }
1706                                                  1690 
1707         if (fSint1 > 0.0) {      // incident     1691         if (fSint1 > 0.0) {      // incident ray oblique
1708                                                  1692 
1709           alpha = cost1 - cost2 * (fRindex2 /    1693           alpha = cost1 - cost2 * (fRindex2 / fRindex1);
1710           fNewMomentum = fOldMomentum + alpha    1694           fNewMomentum = fOldMomentum + alpha * fFacetNormal;
1711           fNewMomentum = fNewMomentum.unit();    1695           fNewMomentum = fNewMomentum.unit();
1712           A_paral = fNewMomentum.cross(A_tran    1696           A_paral = fNewMomentum.cross(A_trans);
1713           A_paral = A_paral.unit();              1697           A_paral = A_paral.unit();
1714           E2_abs = std::sqrt(E2_total);          1698           E2_abs = std::sqrt(E2_total);
1715           C_parl = E2_parl / E2_abs;             1699           C_parl = E2_parl / E2_abs;
1716           C_perp = E2_perp / E2_abs;             1700           C_perp = E2_perp / E2_abs;
1717                                                  1701 
1718           fNewPolarization = C_parl * A_paral    1702           fNewPolarization = C_parl * A_paral + C_perp * A_trans;
1719                                                  1703 
1720         }                                        1704         }
1721         else                                     1705         else
1722         {                  // incident ray pe    1706         {                  // incident ray perpendicular
1723           fNewMomentum = fOldMomentum;           1707           fNewMomentum = fOldMomentum;
1724           fNewPolarization = fOldPolarization    1708           fNewPolarization = fOldPolarization;
1725         }                                        1709         }
1726       }                                          1710       }
1727     }                                            1711     }
1728                                                  1712 
1729     fOldMomentum = fNewMomentum.unit();          1713     fOldMomentum = fNewMomentum.unit();
1730     fOldPolarization = fNewPolarization.unit(    1714     fOldPolarization = fNewPolarization.unit();
1731     if ((fStatus == CoatedDielectricFrustrate    1715     if ((fStatus == CoatedDielectricFrustratedTransmission) ||
1732         (fStatus == CoatedDielectricRefractio    1716         (fStatus == CoatedDielectricRefraction))
1733     {                                            1717     {
1734       done = (fNewMomentum * fGlobalNormal <=    1718       done = (fNewMomentum * fGlobalNormal <= 0.0);
1735     }                                            1719     }
1736     else                                         1720     else
1737     {                                            1721     {
1738       done = (fNewMomentum * fGlobalNormal >=    1722       done = (fNewMomentum * fGlobalNormal >= -fCarTolerance);
1739     }                                            1723     }
1740                                                  1724 
1741   } while (!done);                               1725   } while (!done);
1742 }                                                1726 }
1743                                                  1727 
1744 //....oooOO0OOooo........oooOO0OOooo........o    1728 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
1745 G4double G4OpBoundaryProcess::GetReflectivity    1729 G4double G4OpBoundaryProcess::GetReflectivityThroughThinLayer(G4double sinTL,
1746                    G4double E1_perp,             1730                    G4double E1_perp,
1747                    G4double E1_parl,             1731                    G4double E1_parl,
1748                    G4double wavelength, G4dou    1732                    G4double wavelength, G4double cost1, G4double cost2) {
1749   G4complex Reflectivity, Reflectivity_TE, Re    1733   G4complex Reflectivity, Reflectivity_TE, Reflectivity_TM;
1750   G4double gammaTL, costTL;                      1734   G4double gammaTL, costTL;
1751                                                  1735 
1752   G4complex i(0, 1);                             1736   G4complex i(0, 1);
1753   G4complex rTM, rTE;                            1737   G4complex rTM, rTE;
1754   G4complex r1toTL, rTLto2;                      1738   G4complex r1toTL, rTLto2;
1755   G4double k0 = 2 * pi / wavelength;             1739   G4double k0 = 2 * pi / wavelength;
1756                                                  1740 
1757   // Angle > Angle limit                         1741   // Angle > Angle limit
1758   if (sinTL >= 1.0) {                            1742   if (sinTL >= 1.0) {
1759     if (fCoatedFrustratedTransmission) { //Fr    1743     if (fCoatedFrustratedTransmission) { //Frustrated transmission
1760                                                  1744 
1761       if (cost1 > 0.0)                           1745       if (cost1 > 0.0)
1762       {                                          1746       {
1763         gammaTL = std::sqrt(fRindex1 * fRinde    1747         gammaTL = std::sqrt(fRindex1 * fRindex1 * fSint1 * fSint1 -
1764                    fCoatedRindex * fCoatedRin    1748                    fCoatedRindex * fCoatedRindex);
1765       }                                          1749       }
1766       else                                       1750       else
1767       {                                          1751       {
1768         gammaTL = -std::sqrt(fRindex1 * fRind    1752         gammaTL = -std::sqrt(fRindex1 * fRindex1 * fSint1 * fSint1 -
1769                    fCoatedRindex * fCoatedRin    1753                    fCoatedRindex * fCoatedRindex);
1770       }                                          1754       }
1771                                                  1755 
1772       // TE                                      1756       // TE
1773       r1toTL = (fRindex1 * cost1 - i * gammaT    1757       r1toTL = (fRindex1 * cost1 - i * gammaTL) / (fRindex1 * cost1 + i * gammaTL);
1774       rTLto2 = (i * gammaTL - fRindex2 * cost    1758       rTLto2 = (i * gammaTL - fRindex2 * cost2) / (i * gammaTL + fRindex2 * cost2);
1775       if (cost1 != 0.0)                          1759       if (cost1 != 0.0)
1776       {                                          1760       {
1777         rTE = (r1toTL + rTLto2 * std::exp(-2     1761         rTE = (r1toTL + rTLto2 * std::exp(-2 * k0 * fCoatedThickness * gammaTL)) /
1778                  (1.0 + r1toTL * rTLto2 * std    1762                  (1.0 + r1toTL * rTLto2 * std::exp(-2 * k0 * fCoatedThickness * gammaTL));
1779       }                                          1763       }
1780       // TM                                      1764       // TM
1781       r1toTL = (fRindex1 * i * gammaTL - fCoa    1765       r1toTL = (fRindex1 * i * gammaTL - fCoatedRindex * fCoatedRindex * cost1) /
1782                   (fRindex1 * i * gammaTL + f    1766                   (fRindex1 * i * gammaTL + fCoatedRindex * fCoatedRindex * cost1);
1783       rTLto2 = (fCoatedRindex * fCoatedRindex    1767       rTLto2 = (fCoatedRindex * fCoatedRindex * cost2 - fRindex2 * i * gammaTL) /
1784                   (fCoatedRindex * fCoatedRin    1768                   (fCoatedRindex * fCoatedRindex * cost2 + fRindex2 * i * gammaTL);
1785       if (cost1 != 0.0)                          1769       if (cost1 != 0.0)
1786       {                                          1770       {
1787         rTM = (r1toTL + rTLto2 * std::exp(-2     1771         rTM = (r1toTL + rTLto2 * std::exp(-2 * k0 * fCoatedThickness * gammaTL)) /
1788                  (1.0 + r1toTL * rTLto2 * std    1772                  (1.0 + r1toTL * rTLto2 * std::exp(-2 * k0 * fCoatedThickness * gammaTL));
1789       }                                          1773       }
1790     }                                            1774     }
1791     else                                         1775     else
1792     { //Total reflection                         1776     { //Total reflection
1793       return(1.);                                1777       return(1.);
1794     }                                            1778     }
1795   }                                              1779   }
1796                                                  1780 
1797   // Angle <= Angle limit                        1781   // Angle <= Angle limit
1798   else //if (sinTL < 1.0)                        1782   else //if (sinTL < 1.0)
1799   {                                              1783   {
1800     if (cost1 > 0.0)                             1784     if (cost1 > 0.0)
1801     {                                            1785     {
1802       costTL = std::sqrt(1. - sinTL * sinTL);    1786       costTL = std::sqrt(1. - sinTL * sinTL);
1803     }                                            1787     }
1804     else                                         1788     else
1805     {                                            1789     {
1806       costTL = -std::sqrt(1. - sinTL * sinTL)    1790       costTL = -std::sqrt(1. - sinTL * sinTL);
1807     }                                            1791     }
1808     // TE                                        1792     // TE
1809     r1toTL = (fRindex1 * cost1 - fCoatedRinde    1793     r1toTL = (fRindex1 * cost1 - fCoatedRindex * costTL) / (fRindex1 * cost1 + fCoatedRindex * costTL);
1810     rTLto2 = (fCoatedRindex * costTL - fRinde    1794     rTLto2 = (fCoatedRindex * costTL - fRindex2 * cost2) / (fCoatedRindex * costTL + fRindex2 * cost2);
1811     if (cost1 != 0.0)                            1795     if (cost1 != 0.0)
1812     {                                            1796     {
1813       rTE = (r1toTL + rTLto2 * std::exp(2.0 *    1797       rTE = (r1toTL + rTLto2 * std::exp(2.0 * i * k0 * fCoatedRindex * fCoatedThickness * costTL)) /
1814             (1.0 + r1toTL * rTLto2 * std::exp    1798             (1.0 + r1toTL * rTLto2 * std::exp(2.0 * i * k0 * fCoatedRindex * fCoatedThickness * costTL));
1815     }                                            1799     }
1816     // TM                                        1800     // TM
1817     r1toTL = (fRindex1 * costTL - fCoatedRind    1801     r1toTL = (fRindex1 * costTL - fCoatedRindex * cost1) / (fRindex1 * costTL + fCoatedRindex * cost1);
1818     rTLto2 = (fCoatedRindex * cost2 - fRindex    1802     rTLto2 = (fCoatedRindex * cost2 - fRindex2 * costTL) / (fCoatedRindex * cost2 + fRindex2 * costTL);
1819     if (cost1 != 0.0)                            1803     if (cost1 != 0.0)
1820     {                                            1804     {
1821       rTM = (r1toTL + rTLto2 * std::exp(2.0 *    1805       rTM = (r1toTL + rTLto2 * std::exp(2.0 * i * k0 * fCoatedRindex * fCoatedThickness * costTL)) /
1822             (1.0 + r1toTL * rTLto2 * std::exp    1806             (1.0 + r1toTL * rTLto2 * std::exp(2.0 * i * k0 * fCoatedRindex * fCoatedThickness * costTL));
1823     }                                            1807     }
1824   }                                              1808   }
1825                                                  1809 
1826   Reflectivity_TE = (rTE * conj(rTE)) * (E1_p    1810   Reflectivity_TE = (rTE * conj(rTE)) * (E1_perp * E1_perp) / (E1_perp * E1_perp + E1_parl * E1_parl);
1827   Reflectivity_TM = (rTM * conj(rTM)) * (E1_p    1811   Reflectivity_TM = (rTM * conj(rTM)) * (E1_parl * E1_parl) / (E1_perp * E1_perp + E1_parl * E1_parl);
1828   Reflectivity = Reflectivity_TE + Reflectivi    1812   Reflectivity = Reflectivity_TE + Reflectivity_TM;
1829                                                  1813 
1830   return real(Reflectivity);                     1814   return real(Reflectivity);
1831 }                                                1815 }
1832                                                  1816