Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 ////////////////////////////////////////////// 26 //////////////////////////////////////////////////////////////////////// 27 // Optical Photon Boundary Process Class Imple 27 // Optical Photon Boundary Process Class Implementation 28 ////////////////////////////////////////////// 28 //////////////////////////////////////////////////////////////////////// 29 // 29 // 30 // File: G4OpBoundaryProcess.cc 30 // File: G4OpBoundaryProcess.cc 31 // Description: Discrete Process -- reflection 31 // Description: Discrete Process -- reflection/refraction at 32 // optical in 32 // optical interfaces 33 // Version: 1.1 33 // Version: 1.1 34 // Created: 1997-06-18 34 // Created: 1997-06-18 35 // Modified: 1998-05-25 - Correct parallel 35 // Modified: 1998-05-25 - Correct parallel component of polarization 36 // (thanks to: Stefa 36 // (thanks to: Stefano Magni + Giovanni Pieri) 37 // 1998-05-28 - NULL Rindex point 37 // 1998-05-28 - NULL Rindex pointer before reuse 38 // (thanks to: Stefa 38 // (thanks to: Stefano Magni) 39 // 1998-06-11 - delete *sint1 in 39 // 1998-06-11 - delete *sint1 in oblique reflection 40 // (thanks to: Giova 40 // (thanks to: Giovanni Pieri) 41 // 1998-06-19 - move from GetLoca 41 // 1998-06-19 - move from GetLocalExitNormal() to the new 42 // method: GetLocalE 42 // method: GetLocalExitNormal(&valid) to get 43 // the surface norma 43 // the surface normal in all cases 44 // 1998-11-07 - NULL OpticalSurfa 44 // 1998-11-07 - NULL OpticalSurface pointer before use 45 // comparison not sh 45 // comparison not sharp for: std::abs(cost1) < 1.0 46 // remove sin1, sin2 46 // remove sin1, sin2 in lines 556,567 47 // (thanks to Stefan 47 // (thanks to Stefano Magni) 48 // 1999-10-10 - Accommodate chang 48 // 1999-10-10 - Accommodate changes done in DoAbsorption by 49 // changing logic in 49 // changing logic in DielectricMetal 50 // 2001-10-18 - avoid Linux (gcc- 50 // 2001-10-18 - avoid Linux (gcc-2.95.2) warning about variables 51 // might be used uni 51 // might be used uninitialized in this function 52 // moved E2_perp, E2 52 // moved E2_perp, E2_parl and E2_total out of 'if' 53 // 2003-11-27 - Modified line 168 53 // 2003-11-27 - Modified line 168-9 to reflect changes made to 54 // G4OpticalSurface 54 // G4OpticalSurface class ( by Fan Lei) 55 // 2004-02-02 - Set theStatus = U 55 // 2004-02-02 - Set theStatus = Undefined at start of DoIt 56 // 2005-07-28 - add G4ProcessType 56 // 2005-07-28 - add G4ProcessType to constructor 57 // 2006-11-04 - add capability of 57 // 2006-11-04 - add capability of calculating the reflectivity 58 // off a metal surfa 58 // off a metal surface by way of a complex index 59 // of refraction - T 59 // of refraction - Thanks to Sehwook Lee and John 60 // Hauptman (Dept. o 60 // Hauptman (Dept. of Physics - Iowa State Univ.) 61 // 2009-11-10 - add capability of 61 // 2009-11-10 - add capability of simulating surface reflections 62 // with Look-Up-Tabl 62 // with Look-Up-Tables (LUT) containing measured 63 // optical reflectan 63 // optical reflectance for a variety of surface 64 // treatments - Than 64 // treatments - Thanks to Martin Janecek and 65 // William Moses (La 65 // William Moses (Lawrence Berkeley National Lab.) 66 // 2013-06-01 - add the capabilit 66 // 2013-06-01 - add the capability of simulating the transmission 67 // of a dichronic fi 67 // of a dichronic filter 68 // 2017-02-24 - add capability of 68 // 2017-02-24 - add capability of simulating surface reflections 69 // with Look-Up-Tabl 69 // with Look-Up-Tables (LUT) developed in DAVIS 70 // 70 // 71 // Author: Peter Gumplinger 71 // Author: Peter Gumplinger 72 // adopted from work by Werner Keil - April 72 // adopted from work by Werner Keil - April 2/96 73 // 73 // 74 ////////////////////////////////////////////// 74 //////////////////////////////////////////////////////////////////////// 75 75 76 #include "G4OpBoundaryProcess.hh" 76 #include "G4OpBoundaryProcess.hh" 77 77 78 #include "G4ios.hh" 78 #include "G4ios.hh" 79 #include "G4GeometryTolerance.hh" 79 #include "G4GeometryTolerance.hh" 80 #include "G4LogicalBorderSurface.hh" 80 #include "G4LogicalBorderSurface.hh" 81 #include "G4LogicalSkinSurface.hh" 81 #include "G4LogicalSkinSurface.hh" 82 #include "G4OpProcessSubType.hh" 82 #include "G4OpProcessSubType.hh" 83 #include "G4OpticalParameters.hh" 83 #include "G4OpticalParameters.hh" 84 #include "G4ParallelWorldProcess.hh" 84 #include "G4ParallelWorldProcess.hh" 85 #include "G4PhysicalConstants.hh" 85 #include "G4PhysicalConstants.hh" 86 #include "G4SystemOfUnits.hh" 86 #include "G4SystemOfUnits.hh" 87 #include "G4TransportationManager.hh" 87 #include "G4TransportationManager.hh" 88 #include "G4VSensitiveDetector.hh" 88 #include "G4VSensitiveDetector.hh" 89 89 90 //....oooOO0OOooo........oooOO0OOooo........oo 90 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 91 G4OpBoundaryProcess::G4OpBoundaryProcess(const 91 G4OpBoundaryProcess::G4OpBoundaryProcess(const G4String& processName, 92 G4Pro << 92 G4ProcessType type) 93 : G4VDiscreteProcess(processName, ptype) << 93 : G4VDiscreteProcess(processName, type) 94 { 94 { 95 Initialise(); 95 Initialise(); 96 96 97 if(verboseLevel > 0) 97 if(verboseLevel > 0) 98 { 98 { 99 G4cout << GetProcessName() << " is created 99 G4cout << GetProcessName() << " is created " << G4endl; 100 } 100 } 101 SetProcessSubType(fOpBoundary); 101 SetProcessSubType(fOpBoundary); 102 102 103 fStatus = Undefined; 103 fStatus = Undefined; 104 fModel = glisur; 104 fModel = glisur; 105 fFinish = polished; 105 fFinish = polished; 106 fReflectivity = 1.; 106 fReflectivity = 1.; 107 fEfficiency = 0.; 107 fEfficiency = 0.; 108 fTransmittance = 0.; 108 fTransmittance = 0.; 109 fSurfaceRoughness = 0.; 109 fSurfaceRoughness = 0.; 110 fProb_sl = 0.; 110 fProb_sl = 0.; 111 fProb_ss = 0.; 111 fProb_ss = 0.; 112 fProb_bs = 0.; 112 fProb_bs = 0.; 113 113 114 fRealRIndexMPV = nullptr; 114 fRealRIndexMPV = nullptr; 115 fImagRIndexMPV = nullptr; 115 fImagRIndexMPV = nullptr; 116 fMaterial1 = nullptr; 116 fMaterial1 = nullptr; 117 fMaterial2 = nullptr; 117 fMaterial2 = nullptr; 118 fOpticalSurface = nullptr; 118 fOpticalSurface = nullptr; 119 fCarTolerance = G4GeometryTolerance::GetIn 119 fCarTolerance = G4GeometryTolerance::GetInstance()->GetSurfaceTolerance(); 120 120 121 f_iTE = f_iTM = 0; 121 f_iTE = f_iTM = 0; 122 fPhotonMomentum = 0.; 122 fPhotonMomentum = 0.; 123 fRindex1 = fRindex2 = 1.; 123 fRindex1 = fRindex2 = 1.; 124 fSint1 = 0.; 124 fSint1 = 0.; 125 fDichroicVector = nullptr; 125 fDichroicVector = nullptr; 126 } 126 } 127 127 128 //....oooOO0OOooo........oooOO0OOooo........oo 128 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 129 G4OpBoundaryProcess::~G4OpBoundaryProcess() = << 129 G4OpBoundaryProcess::~G4OpBoundaryProcess() {} 130 130 131 //....oooOO0OOooo........oooOO0OOooo........oo 131 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 132 void G4OpBoundaryProcess::PreparePhysicsTable( 132 void G4OpBoundaryProcess::PreparePhysicsTable(const G4ParticleDefinition&) 133 { 133 { 134 Initialise(); 134 Initialise(); 135 } 135 } 136 136 137 //....oooOO0OOooo........oooOO0OOooo........oo 137 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 138 void G4OpBoundaryProcess::Initialise() 138 void G4OpBoundaryProcess::Initialise() 139 { 139 { 140 G4OpticalParameters* params = G4OpticalParam 140 G4OpticalParameters* params = G4OpticalParameters::Instance(); 141 SetInvokeSD(params->GetBoundaryInvokeSD()); 141 SetInvokeSD(params->GetBoundaryInvokeSD()); 142 SetVerboseLevel(params->GetBoundaryVerboseLe 142 SetVerboseLevel(params->GetBoundaryVerboseLevel()); 143 } 143 } 144 144 145 //....oooOO0OOooo........oooOO0OOooo........oo 145 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 146 G4VParticleChange* G4OpBoundaryProcess::PostSt 146 G4VParticleChange* G4OpBoundaryProcess::PostStepDoIt(const G4Track& aTrack, 147 147 const G4Step& aStep) 148 { 148 { 149 fStatus = Undefined; 149 fStatus = Undefined; 150 aParticleChange.Initialize(aTrack); 150 aParticleChange.Initialize(aTrack); 151 aParticleChange.ProposeVelocity(aTrack.GetVe 151 aParticleChange.ProposeVelocity(aTrack.GetVelocity()); 152 152 153 // Get hyperStep from G4ParallelWorldProces 153 // Get hyperStep from G4ParallelWorldProcess 154 // NOTE: PostSetpDoIt of this process to be 154 // NOTE: PostSetpDoIt of this process to be invoked after 155 // G4ParallelWorldProcess! 155 // G4ParallelWorldProcess! 156 const G4Step* pStep = &aStep; 156 const G4Step* pStep = &aStep; 157 const G4Step* hStep = G4ParallelWorldProcess 157 const G4Step* hStep = G4ParallelWorldProcess::GetHyperStep(); 158 if(hStep != nullptr) 158 if(hStep != nullptr) 159 pStep = hStep; 159 pStep = hStep; 160 160 161 if(pStep->GetPostStepPoint()->GetStepStatus( 161 if(pStep->GetPostStepPoint()->GetStepStatus() == fGeomBoundary) 162 { 162 { 163 fMaterial1 = pStep->GetPreStepPoint()->Get 163 fMaterial1 = pStep->GetPreStepPoint()->GetMaterial(); 164 fMaterial2 = pStep->GetPostStepPoint()->Ge 164 fMaterial2 = pStep->GetPostStepPoint()->GetMaterial(); 165 } 165 } 166 else 166 else 167 { 167 { 168 fStatus = NotAtBoundary; 168 fStatus = NotAtBoundary; 169 if(verboseLevel > 1) 169 if(verboseLevel > 1) 170 BoundaryProcessVerbose(); 170 BoundaryProcessVerbose(); 171 return G4VDiscreteProcess::PostStepDoIt(aT 171 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); 172 } 172 } 173 173 174 G4VPhysicalVolume* thePrePV = pStep->GetPre 174 G4VPhysicalVolume* thePrePV = pStep->GetPreStepPoint()->GetPhysicalVolume(); 175 G4VPhysicalVolume* thePostPV = pStep->GetPos 175 G4VPhysicalVolume* thePostPV = pStep->GetPostStepPoint()->GetPhysicalVolume(); 176 176 177 if(verboseLevel > 1) 177 if(verboseLevel > 1) 178 { 178 { 179 G4cout << " Photon at Boundary! " << G4end 179 G4cout << " Photon at Boundary! " << G4endl; 180 if(thePrePV != nullptr) 180 if(thePrePV != nullptr) 181 G4cout << " thePrePV: " << thePrePV->Ge 181 G4cout << " thePrePV: " << thePrePV->GetName() << G4endl; 182 if(thePostPV != nullptr) 182 if(thePostPV != nullptr) 183 G4cout << " thePostPV: " << thePostPV->G 183 G4cout << " thePostPV: " << thePostPV->GetName() << G4endl; 184 } 184 } 185 185 186 G4double stepLength = aTrack.GetStepLength() << 186 if(aTrack.GetStepLength() <= fCarTolerance) 187 if(stepLength <= fCarTolerance) << 188 { 187 { 189 fStatus = StepTooSmall; 188 fStatus = StepTooSmall; 190 if(verboseLevel > 1) 189 if(verboseLevel > 1) 191 BoundaryProcessVerbose(); 190 BoundaryProcessVerbose(); 192 191 193 G4MaterialPropertyVector* groupvel = nullp 192 G4MaterialPropertyVector* groupvel = nullptr; 194 G4MaterialPropertiesTable* aMPT = fMateria 193 G4MaterialPropertiesTable* aMPT = fMaterial2->GetMaterialPropertiesTable(); 195 if(aMPT != nullptr) 194 if(aMPT != nullptr) 196 { 195 { 197 groupvel = aMPT->GetProperty(kGROUPVEL); 196 groupvel = aMPT->GetProperty(kGROUPVEL); 198 } 197 } 199 << 200 if(groupvel != nullptr) 198 if(groupvel != nullptr) 201 { 199 { 202 aParticleChange.ProposeVelocity( 200 aParticleChange.ProposeVelocity( 203 groupvel->Value(fPhotonMomentum, idx_g 201 groupvel->Value(fPhotonMomentum, idx_groupvel)); 204 } 202 } 205 return G4VDiscreteProcess::PostStepDoIt(aT 203 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); 206 } 204 } 207 else if (stepLength <= 10.*fCarTolerance && << 208 { // see bug 2510 << 209 ++fNumSmallStepWarnings; << 210 if(verboseLevel > 0) << 211 { << 212 G4ExceptionDescription ed; << 213 ed << "G4OpBoundaryProcess: " << 214 << "Opticalphoton step length: " << s << 215 << "This is larger than the threshold << 216 "to set status StepTooSmall." << G << 217 << "Boundary scattering may be incorr << 218 if(fNumSmallStepWarnings == 10) << 219 { << 220 ed << G4endl << "*** Step size warning << 221 } << 222 G4Exception("G4OpBoundaryProcess", "OpBo << 223 } << 224 } << 225 205 226 const G4DynamicParticle* aParticle = aTrack. 206 const G4DynamicParticle* aParticle = aTrack.GetDynamicParticle(); 227 207 228 fPhotonMomentum = aParticle->GetTotalMoment 208 fPhotonMomentum = aParticle->GetTotalMomentum(); 229 fOldMomentum = aParticle->GetMomentumDir 209 fOldMomentum = aParticle->GetMomentumDirection(); 230 fOldPolarization = aParticle->GetPolarizatio 210 fOldPolarization = aParticle->GetPolarization(); 231 211 232 if(verboseLevel > 1) 212 if(verboseLevel > 1) 233 { 213 { 234 G4cout << " Old Momentum Direction: " << f 214 G4cout << " Old Momentum Direction: " << fOldMomentum << G4endl 235 << " Old Polarization: " << f 215 << " Old Polarization: " << fOldPolarization << G4endl; 236 } 216 } 237 217 238 G4ThreeVector theGlobalPoint = pStep->GetPos 218 G4ThreeVector theGlobalPoint = pStep->GetPostStepPoint()->GetPosition(); 239 G4bool valid; 219 G4bool valid; 240 220 241 // ID of Navigator which limits step 221 // ID of Navigator which limits step 242 G4int hNavId = G4ParallelWorldProcess::GetHy 222 G4int hNavId = G4ParallelWorldProcess::GetHypNavigatorID(); 243 auto iNav = G4TransportationManager::GetT 223 auto iNav = G4TransportationManager::GetTransportationManager() 244 ->GetActiveNavigatorsIterator( 224 ->GetActiveNavigatorsIterator(); 245 fGlobalNormal = (iNav[hNavId])->GetGlobalExi 225 fGlobalNormal = (iNav[hNavId])->GetGlobalExitNormal(theGlobalPoint, &valid); 246 226 247 if(valid) 227 if(valid) 248 { 228 { 249 fGlobalNormal = -fGlobalNormal; 229 fGlobalNormal = -fGlobalNormal; 250 } 230 } 251 else 231 else 252 { 232 { 253 G4ExceptionDescription ed; 233 G4ExceptionDescription ed; 254 ed << " G4OpBoundaryProcess/PostStepDoIt() 234 ed << " G4OpBoundaryProcess/PostStepDoIt(): " 255 << " The Navigator reports that it retu 235 << " The Navigator reports that it returned an invalid normal" << G4endl; 256 G4Exception( 236 G4Exception( 257 "G4OpBoundaryProcess::PostStepDoIt", "Op 237 "G4OpBoundaryProcess::PostStepDoIt", "OpBoun01", EventMustBeAborted, ed, 258 "Invalid Surface Normal - Geometry must 238 "Invalid Surface Normal - Geometry must return valid surface normal"); 259 } 239 } 260 240 261 if(fOldMomentum * fGlobalNormal > 0.0) 241 if(fOldMomentum * fGlobalNormal > 0.0) 262 { 242 { 263 #ifdef G4OPTICAL_DEBUG 243 #ifdef G4OPTICAL_DEBUG 264 G4ExceptionDescription ed; 244 G4ExceptionDescription ed; 265 ed << " G4OpBoundaryProcess/PostStepDoIt() 245 ed << " G4OpBoundaryProcess/PostStepDoIt(): fGlobalNormal points in a " 266 "wrong direction. " 246 "wrong direction. " 267 << G4endl 247 << G4endl 268 << " The momentum of the photon arriv 248 << " The momentum of the photon arriving at interface (oldMomentum)" 269 << " must exit the volume cross in th 249 << " must exit the volume cross in the step. " << G4endl 270 << " So it MUST have dot < 0 with the 250 << " So it MUST have dot < 0 with the normal that Exits the new " 271 "volume (globalNormal)." 251 "volume (globalNormal)." 272 << G4endl << " >> The dot product of 252 << G4endl << " >> The dot product of oldMomentum and global Normal is " 273 << fOldMomentum * fGlobalNormal << G4en 253 << fOldMomentum * fGlobalNormal << G4endl 274 << " Old Momentum (during step) 254 << " Old Momentum (during step) = " << fOldMomentum << G4endl 275 << " Global Normal (Exiting New Vol 255 << " Global Normal (Exiting New Vol) = " << fGlobalNormal << G4endl 276 << G4endl; 256 << G4endl; 277 G4Exception("G4OpBoundaryProcess::PostStep 257 G4Exception("G4OpBoundaryProcess::PostStepDoIt", "OpBoun02", 278 EventMustBeAborted, // Or Jus 258 EventMustBeAborted, // Or JustWarning to see if it happens 279 // repeat 259 // repeatedly on one ray 280 ed, 260 ed, 281 "Invalid Surface Normal - Geom 261 "Invalid Surface Normal - Geometry must return valid surface " 282 "normal pointing in the right 262 "normal pointing in the right direction"); 283 #else 263 #else 284 fGlobalNormal = -fGlobalNormal; 264 fGlobalNormal = -fGlobalNormal; 285 #endif 265 #endif 286 } 266 } 287 267 288 G4MaterialPropertyVector* rIndexMPV = nullpt 268 G4MaterialPropertyVector* rIndexMPV = nullptr; 289 G4MaterialPropertiesTable* MPT = fMaterial1- 269 G4MaterialPropertiesTable* MPT = fMaterial1->GetMaterialPropertiesTable(); 290 if(MPT != nullptr) 270 if(MPT != nullptr) 291 { 271 { 292 rIndexMPV = MPT->GetProperty(kRINDEX); 272 rIndexMPV = MPT->GetProperty(kRINDEX); 293 } 273 } 294 if(rIndexMPV != nullptr) 274 if(rIndexMPV != nullptr) 295 { 275 { 296 fRindex1 = rIndexMPV->Value(fPhotonMomentu 276 fRindex1 = rIndexMPV->Value(fPhotonMomentum, idx_rindex1); 297 } 277 } 298 else 278 else 299 { 279 { 300 fStatus = NoRINDEX; 280 fStatus = NoRINDEX; 301 if(verboseLevel > 1) 281 if(verboseLevel > 1) 302 BoundaryProcessVerbose(); 282 BoundaryProcessVerbose(); 303 aParticleChange.ProposeLocalEnergyDeposit( 283 aParticleChange.ProposeLocalEnergyDeposit(fPhotonMomentum); 304 aParticleChange.ProposeTrackStatus(fStopAn 284 aParticleChange.ProposeTrackStatus(fStopAndKill); 305 return G4VDiscreteProcess::PostStepDoIt(aT 285 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); 306 } 286 } 307 287 308 fReflectivity = 1.; 288 fReflectivity = 1.; 309 fEfficiency = 0.; 289 fEfficiency = 0.; 310 fTransmittance = 0.; 290 fTransmittance = 0.; 311 fSurfaceRoughness = 0.; 291 fSurfaceRoughness = 0.; 312 fModel = glisur; 292 fModel = glisur; 313 fFinish = polished; 293 fFinish = polished; 314 G4SurfaceType type = dielectric_dielectric; 294 G4SurfaceType type = dielectric_dielectric; 315 295 316 rIndexMPV = nullptr; 296 rIndexMPV = nullptr; 317 fOpticalSurface = nullptr; 297 fOpticalSurface = nullptr; 318 298 319 G4LogicalSurface* surface = 299 G4LogicalSurface* surface = 320 G4LogicalBorderSurface::GetSurface(thePreP 300 G4LogicalBorderSurface::GetSurface(thePrePV, thePostPV); 321 if(surface == nullptr) 301 if(surface == nullptr) 322 { 302 { 323 if(thePostPV->GetMotherLogical() == thePre 303 if(thePostPV->GetMotherLogical() == thePrePV->GetLogicalVolume()) 324 { 304 { 325 surface = G4LogicalSkinSurface::GetSurfa 305 surface = G4LogicalSkinSurface::GetSurface(thePostPV->GetLogicalVolume()); 326 if(surface == nullptr) 306 if(surface == nullptr) 327 { 307 { 328 surface = 308 surface = 329 G4LogicalSkinSurface::GetSurface(the 309 G4LogicalSkinSurface::GetSurface(thePrePV->GetLogicalVolume()); 330 } 310 } 331 } 311 } 332 else 312 else 333 { 313 { 334 surface = G4LogicalSkinSurface::GetSurfa 314 surface = G4LogicalSkinSurface::GetSurface(thePrePV->GetLogicalVolume()); 335 if(surface == nullptr) 315 if(surface == nullptr) 336 { 316 { 337 surface = 317 surface = 338 G4LogicalSkinSurface::GetSurface(the 318 G4LogicalSkinSurface::GetSurface(thePostPV->GetLogicalVolume()); 339 } 319 } 340 } 320 } 341 } 321 } 342 322 343 if(surface != nullptr) 323 if(surface != nullptr) 344 { 324 { 345 fOpticalSurface = 325 fOpticalSurface = 346 dynamic_cast<G4OpticalSurface*>(surface- 326 dynamic_cast<G4OpticalSurface*>(surface->GetSurfaceProperty()); 347 } 327 } 348 if(fOpticalSurface != nullptr) 328 if(fOpticalSurface != nullptr) 349 { 329 { 350 type = fOpticalSurface->GetType(); 330 type = fOpticalSurface->GetType(); 351 fModel = fOpticalSurface->GetModel(); 331 fModel = fOpticalSurface->GetModel(); 352 fFinish = fOpticalSurface->GetFinish(); 332 fFinish = fOpticalSurface->GetFinish(); 353 333 354 G4MaterialPropertiesTable* sMPT = 334 G4MaterialPropertiesTable* sMPT = 355 fOpticalSurface->GetMaterialPropertiesTa 335 fOpticalSurface->GetMaterialPropertiesTable(); 356 if(sMPT != nullptr) 336 if(sMPT != nullptr) 357 { 337 { 358 if(fFinish == polishedbackpainted || fFi 338 if(fFinish == polishedbackpainted || fFinish == groundbackpainted) 359 { 339 { 360 rIndexMPV = sMPT->GetProperty(kRINDEX) 340 rIndexMPV = sMPT->GetProperty(kRINDEX); 361 if(rIndexMPV != nullptr) 341 if(rIndexMPV != nullptr) 362 { 342 { 363 fRindex2 = rIndexMPV->Value(fPhotonM 343 fRindex2 = rIndexMPV->Value(fPhotonMomentum, idx_rindex_surface); 364 } 344 } 365 else 345 else 366 { 346 { 367 fStatus = NoRINDEX; 347 fStatus = NoRINDEX; 368 if(verboseLevel > 1) 348 if(verboseLevel > 1) 369 BoundaryProcessVerbose(); 349 BoundaryProcessVerbose(); 370 aParticleChange.ProposeLocalEnergyDe 350 aParticleChange.ProposeLocalEnergyDeposit(fPhotonMomentum); 371 aParticleChange.ProposeTrackStatus(f 351 aParticleChange.ProposeTrackStatus(fStopAndKill); 372 return G4VDiscreteProcess::PostStepD 352 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); 373 } 353 } 374 } 354 } 375 355 376 fRealRIndexMPV = sMPT->GetProperty(kREAL 356 fRealRIndexMPV = sMPT->GetProperty(kREALRINDEX); 377 fImagRIndexMPV = sMPT->GetProperty(kIMAG 357 fImagRIndexMPV = sMPT->GetProperty(kIMAGINARYRINDEX); 378 f_iTE = f_iTM = 1; 358 f_iTE = f_iTM = 1; 379 359 380 G4MaterialPropertyVector* pp; 360 G4MaterialPropertyVector* pp; 381 if((pp = sMPT->GetProperty(kREFLECTIVITY 361 if((pp = sMPT->GetProperty(kREFLECTIVITY))) 382 { 362 { 383 fReflectivity = pp->Value(fPhotonMomen 363 fReflectivity = pp->Value(fPhotonMomentum, idx_reflect); 384 } 364 } 385 else if(fRealRIndexMPV && fImagRIndexMPV 365 else if(fRealRIndexMPV && fImagRIndexMPV) 386 { 366 { 387 CalculateReflectivity(); 367 CalculateReflectivity(); 388 } 368 } 389 369 390 if((pp = sMPT->GetProperty(kEFFICIENCY)) 370 if((pp = sMPT->GetProperty(kEFFICIENCY))) 391 { 371 { 392 fEfficiency = pp->Value(fPhotonMomentu 372 fEfficiency = pp->Value(fPhotonMomentum, idx_eff); 393 } 373 } 394 if((pp = sMPT->GetProperty(kTRANSMITTANC 374 if((pp = sMPT->GetProperty(kTRANSMITTANCE))) 395 { 375 { 396 fTransmittance = pp->Value(fPhotonMome 376 fTransmittance = pp->Value(fPhotonMomentum, idx_trans); 397 } 377 } 398 if(sMPT->ConstPropertyExists(kSURFACEROU 378 if(sMPT->ConstPropertyExists(kSURFACEROUGHNESS)) 399 { 379 { 400 fSurfaceRoughness = sMPT->GetConstProp 380 fSurfaceRoughness = sMPT->GetConstProperty(kSURFACEROUGHNESS); 401 } 381 } 402 382 403 if(fModel == unified) 383 if(fModel == unified) 404 { 384 { 405 fProb_sl = (pp = sMPT->GetProperty(kSP 385 fProb_sl = (pp = sMPT->GetProperty(kSPECULARLOBECONSTANT)) 406 ? pp->Value(fPhotonMoment 386 ? pp->Value(fPhotonMomentum, idx_lobe) 407 : 0.; 387 : 0.; 408 fProb_ss = (pp = sMPT->GetProperty(kSP 388 fProb_ss = (pp = sMPT->GetProperty(kSPECULARSPIKECONSTANT)) 409 ? pp->Value(fPhotonMoment 389 ? pp->Value(fPhotonMomentum, idx_spike) 410 : 0.; 390 : 0.; 411 fProb_bs = (pp = sMPT->GetProperty(kBA 391 fProb_bs = (pp = sMPT->GetProperty(kBACKSCATTERCONSTANT)) 412 ? pp->Value(fPhotonMoment 392 ? pp->Value(fPhotonMomentum, idx_back) 413 : 0.; 393 : 0.; 414 } 394 } 415 } // end of if(sMPT) 395 } // end of if(sMPT) 416 else if(fFinish == polishedbackpainted || 396 else if(fFinish == polishedbackpainted || fFinish == groundbackpainted) 417 { 397 { 418 aParticleChange.ProposeLocalEnergyDeposi 398 aParticleChange.ProposeLocalEnergyDeposit(fPhotonMomentum); 419 aParticleChange.ProposeTrackStatus(fStop 399 aParticleChange.ProposeTrackStatus(fStopAndKill); 420 return G4VDiscreteProcess::PostStepDoIt( 400 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); 421 } 401 } 422 } // end of if(fOpticalSurface) 402 } // end of if(fOpticalSurface) 423 403 424 // DIELECTRIC-DIELECTRIC 404 // DIELECTRIC-DIELECTRIC 425 if(type == dielectric_dielectric) 405 if(type == dielectric_dielectric) 426 { 406 { 427 if(fFinish == polished || fFinish == groun 407 if(fFinish == polished || fFinish == ground) 428 { 408 { 429 if(fMaterial1 == fMaterial2) 409 if(fMaterial1 == fMaterial2) 430 { 410 { 431 fStatus = SameMaterial; 411 fStatus = SameMaterial; 432 if(verboseLevel > 1) 412 if(verboseLevel > 1) 433 BoundaryProcessVerbose(); 413 BoundaryProcessVerbose(); 434 return G4VDiscreteProcess::PostStepDoI 414 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); 435 } 415 } 436 MPT = fMaterial2->GetMaterialPrope << 416 MPT = fMaterial2->GetMaterialPropertiesTable(); 437 rIndexMPV = nullptr; 417 rIndexMPV = nullptr; 438 if(MPT != nullptr) 418 if(MPT != nullptr) 439 { 419 { 440 rIndexMPV = MPT->GetProperty(kRINDEX); 420 rIndexMPV = MPT->GetProperty(kRINDEX); 441 } 421 } 442 if(rIndexMPV != nullptr) 422 if(rIndexMPV != nullptr) 443 { 423 { 444 fRindex2 = rIndexMPV->Value(fPhotonMom 424 fRindex2 = rIndexMPV->Value(fPhotonMomentum, idx_rindex2); 445 } 425 } 446 else 426 else 447 { 427 { 448 fStatus = NoRINDEX; 428 fStatus = NoRINDEX; 449 if(verboseLevel > 1) 429 if(verboseLevel > 1) 450 BoundaryProcessVerbose(); 430 BoundaryProcessVerbose(); 451 aParticleChange.ProposeLocalEnergyDepo 431 aParticleChange.ProposeLocalEnergyDeposit(fPhotonMomentum); 452 aParticleChange.ProposeTrackStatus(fSt 432 aParticleChange.ProposeTrackStatus(fStopAndKill); 453 return G4VDiscreteProcess::PostStepDoI 433 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); 454 } 434 } 455 } 435 } 456 if(fFinish == polishedbackpainted || fFini 436 if(fFinish == polishedbackpainted || fFinish == groundbackpainted) 457 { 437 { 458 DielectricDielectric(); 438 DielectricDielectric(); 459 } 439 } 460 else 440 else 461 { 441 { 462 G4double rand = G4UniformRand(); 442 G4double rand = G4UniformRand(); 463 if(rand > fReflectivity + fTransmittance 443 if(rand > fReflectivity + fTransmittance) 464 { 444 { 465 DoAbsorption(); 445 DoAbsorption(); 466 } 446 } 467 else if(rand > fReflectivity) 447 else if(rand > fReflectivity) 468 { 448 { 469 fStatus = Transmission; 449 fStatus = Transmission; 470 fNewMomentum = fOldMomentum; 450 fNewMomentum = fOldMomentum; 471 fNewPolarization = fOldPolarization; 451 fNewPolarization = fOldPolarization; 472 } 452 } 473 else 453 else 474 { 454 { 475 if(fFinish == polishedfrontpainted) 455 if(fFinish == polishedfrontpainted) 476 { 456 { 477 DoReflection(); 457 DoReflection(); 478 } 458 } 479 else if(fFinish == groundfrontpainted) 459 else if(fFinish == groundfrontpainted) 480 { 460 { 481 fStatus = LambertianReflection; 461 fStatus = LambertianReflection; 482 DoReflection(); 462 DoReflection(); 483 } 463 } 484 else 464 else 485 { 465 { 486 DielectricDielectric(); 466 DielectricDielectric(); 487 } 467 } 488 } 468 } 489 } 469 } 490 } 470 } 491 else if(type == dielectric_metal) 471 else if(type == dielectric_metal) 492 { 472 { 493 DielectricMetal(); 473 DielectricMetal(); 494 } 474 } 495 else if(type == dielectric_LUT) 475 else if(type == dielectric_LUT) 496 { 476 { 497 DielectricLUT(); 477 DielectricLUT(); 498 } 478 } 499 else if(type == dielectric_LUTDAVIS) 479 else if(type == dielectric_LUTDAVIS) 500 { 480 { 501 DielectricLUTDAVIS(); 481 DielectricLUTDAVIS(); 502 } 482 } 503 else if(type == dielectric_dichroic) 483 else if(type == dielectric_dichroic) 504 { 484 { 505 DielectricDichroic(); 485 DielectricDichroic(); 506 } 486 } 507 else if(type == coated) << 508 { << 509 CoatedDielectricDielectric(); << 510 } << 511 else 487 else 512 { 488 { 513 if(fNumBdryTypeWarnings <= 10) << 489 G4ExceptionDescription ed; 514 { << 490 ed << " PostStepDoIt(): Illegal boundary type." << G4endl; 515 ++fNumBdryTypeWarnings; << 491 G4Exception("G4OpBoundaryProcess", "OpBoun04", JustWarning, ed); 516 if(verboseLevel > 0) << 517 { << 518 G4ExceptionDescription ed; << 519 ed << " PostStepDoIt(): Illegal bounda << 520 if(fNumBdryTypeWarnings == 10) << 521 { << 522 ed << "** Boundary type warnings sto << 523 } << 524 G4Exception("G4OpBoundaryProcess", "Op << 525 } << 526 } << 527 return G4VDiscreteProcess::PostStepDoIt(aT 492 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); 528 } 493 } 529 494 530 fNewMomentum = fNewMomentum.unit(); 495 fNewMomentum = fNewMomentum.unit(); 531 fNewPolarization = fNewPolarization.unit(); 496 fNewPolarization = fNewPolarization.unit(); 532 497 533 if(verboseLevel > 1) 498 if(verboseLevel > 1) 534 { 499 { 535 G4cout << " New Momentum Direction: " << f 500 G4cout << " New Momentum Direction: " << fNewMomentum << G4endl 536 << " New Polarization: " << f 501 << " New Polarization: " << fNewPolarization << G4endl; 537 BoundaryProcessVerbose(); 502 BoundaryProcessVerbose(); 538 } 503 } 539 504 540 aParticleChange.ProposeMomentumDirection(fNe 505 aParticleChange.ProposeMomentumDirection(fNewMomentum); 541 aParticleChange.ProposePolarization(fNewPola 506 aParticleChange.ProposePolarization(fNewPolarization); 542 507 543 if(fStatus == FresnelRefraction || fStatus = 508 if(fStatus == FresnelRefraction || fStatus == Transmission) 544 { 509 { 545 // not all surface types check that fMater 510 // not all surface types check that fMaterial2 has an MPT 546 G4MaterialPropertiesTable* aMPT = fMateria 511 G4MaterialPropertiesTable* aMPT = fMaterial2->GetMaterialPropertiesTable(); 547 G4MaterialPropertyVector* groupvel = nullp 512 G4MaterialPropertyVector* groupvel = nullptr; 548 if(aMPT != nullptr) 513 if(aMPT != nullptr) 549 { 514 { 550 groupvel = aMPT->GetProperty(kGROUPVEL); 515 groupvel = aMPT->GetProperty(kGROUPVEL); 551 } 516 } 552 if(groupvel != nullptr) 517 if(groupvel != nullptr) 553 { 518 { 554 aParticleChange.ProposeVelocity( 519 aParticleChange.ProposeVelocity( 555 groupvel->Value(fPhotonMomentum, idx_g 520 groupvel->Value(fPhotonMomentum, idx_groupvel)); 556 } 521 } 557 } 522 } 558 523 559 if(fStatus == Detection && fInvokeSD) 524 if(fStatus == Detection && fInvokeSD) 560 InvokeSD(pStep); 525 InvokeSD(pStep); 561 return G4VDiscreteProcess::PostStepDoIt(aTra 526 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); 562 } 527 } 563 528 564 //....oooOO0OOooo........oooOO0OOooo........oo 529 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 565 void G4OpBoundaryProcess::BoundaryProcessVerbo 530 void G4OpBoundaryProcess::BoundaryProcessVerbose() const 566 { 531 { 567 G4cout << " *** "; 532 G4cout << " *** "; 568 if(fStatus == Undefined) 533 if(fStatus == Undefined) 569 G4cout << "Undefined"; 534 G4cout << "Undefined"; 570 else if(fStatus == Transmission) 535 else if(fStatus == Transmission) 571 G4cout << "Transmission"; 536 G4cout << "Transmission"; 572 else if(fStatus == FresnelRefraction) 537 else if(fStatus == FresnelRefraction) 573 G4cout << "FresnelRefraction"; 538 G4cout << "FresnelRefraction"; 574 else if(fStatus == FresnelReflection) 539 else if(fStatus == FresnelReflection) 575 G4cout << "FresnelReflection"; 540 G4cout << "FresnelReflection"; 576 else if(fStatus == TotalInternalReflection) 541 else if(fStatus == TotalInternalReflection) 577 G4cout << "TotalInternalReflection"; 542 G4cout << "TotalInternalReflection"; 578 else if(fStatus == LambertianReflection) 543 else if(fStatus == LambertianReflection) 579 G4cout << "LambertianReflection"; 544 G4cout << "LambertianReflection"; 580 else if(fStatus == LobeReflection) 545 else if(fStatus == LobeReflection) 581 G4cout << "LobeReflection"; 546 G4cout << "LobeReflection"; 582 else if(fStatus == SpikeReflection) 547 else if(fStatus == SpikeReflection) 583 G4cout << "SpikeReflection"; 548 G4cout << "SpikeReflection"; 584 else if(fStatus == BackScattering) 549 else if(fStatus == BackScattering) 585 G4cout << "BackScattering"; 550 G4cout << "BackScattering"; 586 else if(fStatus == PolishedLumirrorAirReflec 551 else if(fStatus == PolishedLumirrorAirReflection) 587 G4cout << "PolishedLumirrorAirReflection"; 552 G4cout << "PolishedLumirrorAirReflection"; 588 else if(fStatus == PolishedLumirrorGlueRefle 553 else if(fStatus == PolishedLumirrorGlueReflection) 589 G4cout << "PolishedLumirrorGlueReflection" 554 G4cout << "PolishedLumirrorGlueReflection"; 590 else if(fStatus == PolishedAirReflection) 555 else if(fStatus == PolishedAirReflection) 591 G4cout << "PolishedAirReflection"; 556 G4cout << "PolishedAirReflection"; 592 else if(fStatus == PolishedTeflonAirReflecti 557 else if(fStatus == PolishedTeflonAirReflection) 593 G4cout << "PolishedTeflonAirReflection"; 558 G4cout << "PolishedTeflonAirReflection"; 594 else if(fStatus == PolishedTiOAirReflection) 559 else if(fStatus == PolishedTiOAirReflection) 595 G4cout << "PolishedTiOAirReflection"; 560 G4cout << "PolishedTiOAirReflection"; 596 else if(fStatus == PolishedTyvekAirReflectio 561 else if(fStatus == PolishedTyvekAirReflection) 597 G4cout << "PolishedTyvekAirReflection"; 562 G4cout << "PolishedTyvekAirReflection"; 598 else if(fStatus == PolishedVM2000AirReflecti 563 else if(fStatus == PolishedVM2000AirReflection) 599 G4cout << "PolishedVM2000AirReflection"; 564 G4cout << "PolishedVM2000AirReflection"; 600 else if(fStatus == PolishedVM2000GlueReflect 565 else if(fStatus == PolishedVM2000GlueReflection) 601 G4cout << "PolishedVM2000GlueReflection"; 566 G4cout << "PolishedVM2000GlueReflection"; 602 else if(fStatus == EtchedLumirrorAirReflecti 567 else if(fStatus == EtchedLumirrorAirReflection) 603 G4cout << "EtchedLumirrorAirReflection"; 568 G4cout << "EtchedLumirrorAirReflection"; 604 else if(fStatus == EtchedLumirrorGlueReflect 569 else if(fStatus == EtchedLumirrorGlueReflection) 605 G4cout << "EtchedLumirrorGlueReflection"; 570 G4cout << "EtchedLumirrorGlueReflection"; 606 else if(fStatus == EtchedAirReflection) 571 else if(fStatus == EtchedAirReflection) 607 G4cout << "EtchedAirReflection"; 572 G4cout << "EtchedAirReflection"; 608 else if(fStatus == EtchedTeflonAirReflection 573 else if(fStatus == EtchedTeflonAirReflection) 609 G4cout << "EtchedTeflonAirReflection"; 574 G4cout << "EtchedTeflonAirReflection"; 610 else if(fStatus == EtchedTiOAirReflection) 575 else if(fStatus == EtchedTiOAirReflection) 611 G4cout << "EtchedTiOAirReflection"; 576 G4cout << "EtchedTiOAirReflection"; 612 else if(fStatus == EtchedTyvekAirReflection) 577 else if(fStatus == EtchedTyvekAirReflection) 613 G4cout << "EtchedTyvekAirReflection"; 578 G4cout << "EtchedTyvekAirReflection"; 614 else if(fStatus == EtchedVM2000AirReflection 579 else if(fStatus == EtchedVM2000AirReflection) 615 G4cout << "EtchedVM2000AirReflection"; 580 G4cout << "EtchedVM2000AirReflection"; 616 else if(fStatus == EtchedVM2000GlueReflectio 581 else if(fStatus == EtchedVM2000GlueReflection) 617 G4cout << "EtchedVM2000GlueReflection"; 582 G4cout << "EtchedVM2000GlueReflection"; 618 else if(fStatus == GroundLumirrorAirReflecti 583 else if(fStatus == GroundLumirrorAirReflection) 619 G4cout << "GroundLumirrorAirReflection"; 584 G4cout << "GroundLumirrorAirReflection"; 620 else if(fStatus == GroundLumirrorGlueReflect 585 else if(fStatus == GroundLumirrorGlueReflection) 621 G4cout << "GroundLumirrorGlueReflection"; 586 G4cout << "GroundLumirrorGlueReflection"; 622 else if(fStatus == GroundAirReflection) 587 else if(fStatus == GroundAirReflection) 623 G4cout << "GroundAirReflection"; 588 G4cout << "GroundAirReflection"; 624 else if(fStatus == GroundTeflonAirReflection 589 else if(fStatus == GroundTeflonAirReflection) 625 G4cout << "GroundTeflonAirReflection"; 590 G4cout << "GroundTeflonAirReflection"; 626 else if(fStatus == GroundTiOAirReflection) 591 else if(fStatus == GroundTiOAirReflection) 627 G4cout << "GroundTiOAirReflection"; 592 G4cout << "GroundTiOAirReflection"; 628 else if(fStatus == GroundTyvekAirReflection) 593 else if(fStatus == GroundTyvekAirReflection) 629 G4cout << "GroundTyvekAirReflection"; 594 G4cout << "GroundTyvekAirReflection"; 630 else if(fStatus == GroundVM2000AirReflection 595 else if(fStatus == GroundVM2000AirReflection) 631 G4cout << "GroundVM2000AirReflection"; 596 G4cout << "GroundVM2000AirReflection"; 632 else if(fStatus == GroundVM2000GlueReflectio 597 else if(fStatus == GroundVM2000GlueReflection) 633 G4cout << "GroundVM2000GlueReflection"; 598 G4cout << "GroundVM2000GlueReflection"; 634 else if(fStatus == Absorption) 599 else if(fStatus == Absorption) 635 G4cout << "Absorption"; 600 G4cout << "Absorption"; 636 else if(fStatus == Detection) 601 else if(fStatus == Detection) 637 G4cout << "Detection"; 602 G4cout << "Detection"; 638 else if(fStatus == NotAtBoundary) 603 else if(fStatus == NotAtBoundary) 639 G4cout << "NotAtBoundary"; 604 G4cout << "NotAtBoundary"; 640 else if(fStatus == SameMaterial) 605 else if(fStatus == SameMaterial) 641 G4cout << "SameMaterial"; 606 G4cout << "SameMaterial"; 642 else if(fStatus == StepTooSmall) 607 else if(fStatus == StepTooSmall) 643 G4cout << "StepTooSmall"; 608 G4cout << "StepTooSmall"; 644 else if(fStatus == NoRINDEX) 609 else if(fStatus == NoRINDEX) 645 G4cout << "NoRINDEX"; 610 G4cout << "NoRINDEX"; 646 else if(fStatus == Dichroic) 611 else if(fStatus == Dichroic) 647 G4cout << "Dichroic Transmission"; 612 G4cout << "Dichroic Transmission"; 648 else if(fStatus == CoatedDielectricReflectio << 649 G4cout << "Coated Dielectric Reflection"; << 650 else if(fStatus == CoatedDielectricRefractio << 651 G4cout << "Coated Dielectric Refraction"; << 652 else if(fStatus == CoatedDielectricFrustrate << 653 G4cout << "Coated Dielectric Frustrated Tr << 654 << 655 G4cout << " ***" << G4endl; 613 G4cout << " ***" << G4endl; 656 } 614 } 657 615 658 //....oooOO0OOooo........oooOO0OOooo........oo 616 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 659 G4ThreeVector G4OpBoundaryProcess::GetFacetNor 617 G4ThreeVector G4OpBoundaryProcess::GetFacetNormal( 660 const G4ThreeVector& momentum, const G4Three 618 const G4ThreeVector& momentum, const G4ThreeVector& normal) const 661 { 619 { 662 G4ThreeVector facetNormal; 620 G4ThreeVector facetNormal; 663 if(fModel == unified || fModel == LUT || fMo 621 if(fModel == unified || fModel == LUT || fModel == DAVIS) 664 { 622 { 665 /* This function codes alpha to a random v 623 /* This function codes alpha to a random value taken from the 666 distribution p(alpha) = g(alpha; 0, sigma_ 624 distribution p(alpha) = g(alpha; 0, sigma_alpha)*std::sin(alpha), 667 for alpha > 0 and alpha < 90, where g(alph 625 for alpha > 0 and alpha < 90, where g(alpha; 0, sigma_alpha) is a 668 gaussian distribution with mean 0 and stan 626 gaussian distribution with mean 0 and standard deviation sigma_alpha. */ 669 627 670 G4double sigma_alpha = 0.0; 628 G4double sigma_alpha = 0.0; 671 if(fOpticalSurface) 629 if(fOpticalSurface) 672 sigma_alpha = fOpticalSurface->GetSigmaA 630 sigma_alpha = fOpticalSurface->GetSigmaAlpha(); 673 if(sigma_alpha == 0.0) 631 if(sigma_alpha == 0.0) 674 { 632 { 675 return normal; 633 return normal; 676 } 634 } 677 635 678 G4double f_max = std::min(1.0, 4. * sigma_ 636 G4double f_max = std::min(1.0, 4. * sigma_alpha); 679 G4double alpha, phi, sinAlpha; 637 G4double alpha, phi, sinAlpha; 680 638 681 do 639 do 682 { // Loop checking, 13-Aug-2015, Peter Gu 640 { // Loop checking, 13-Aug-2015, Peter Gumplinger 683 do 641 do 684 { // Loop checking, 13-Aug-2015, Peter 642 { // Loop checking, 13-Aug-2015, Peter Gumplinger 685 alpha = G4RandGauss::shoot(0.0, sig 643 alpha = G4RandGauss::shoot(0.0, sigma_alpha); 686 sinAlpha = std::sin(alpha); 644 sinAlpha = std::sin(alpha); 687 } while(G4UniformRand() * f_max > sinAlp 645 } while(G4UniformRand() * f_max > sinAlpha || alpha >= halfpi); 688 646 689 phi = G4UniformRand() * twopi; 647 phi = G4UniformRand() * twopi; 690 facetNormal.set(sinAlpha * std::cos(phi) 648 facetNormal.set(sinAlpha * std::cos(phi), sinAlpha * std::sin(phi), 691 std::cos(alpha)); 649 std::cos(alpha)); 692 facetNormal.rotateUz(normal); 650 facetNormal.rotateUz(normal); 693 } while(momentum * facetNormal >= 0.0); 651 } while(momentum * facetNormal >= 0.0); 694 } 652 } 695 else 653 else 696 { 654 { 697 G4double polish = 1.0; 655 G4double polish = 1.0; 698 if(fOpticalSurface) 656 if(fOpticalSurface) 699 polish = fOpticalSurface->GetPolish(); 657 polish = fOpticalSurface->GetPolish(); 700 if(polish < 1.0) 658 if(polish < 1.0) 701 { 659 { 702 do 660 do 703 { // Loop checking, 13-Aug-2015, Peter 661 { // Loop checking, 13-Aug-2015, Peter Gumplinger 704 G4ThreeVector smear; 662 G4ThreeVector smear; 705 do 663 do 706 { // Loop checking, 13-Aug-2015, Pete 664 { // Loop checking, 13-Aug-2015, Peter Gumplinger 707 smear.setX(2. * G4UniformRand() - 1. 665 smear.setX(2. * G4UniformRand() - 1.); 708 smear.setY(2. * G4UniformRand() - 1. 666 smear.setY(2. * G4UniformRand() - 1.); 709 smear.setZ(2. * G4UniformRand() - 1. 667 smear.setZ(2. * G4UniformRand() - 1.); 710 } while(smear.mag2() > 1.0); 668 } while(smear.mag2() > 1.0); 711 facetNormal = normal + (1. - polish) * 669 facetNormal = normal + (1. - polish) * smear; 712 } while(momentum * facetNormal >= 0.0); 670 } while(momentum * facetNormal >= 0.0); 713 facetNormal = facetNormal.unit(); 671 facetNormal = facetNormal.unit(); 714 } 672 } 715 else 673 else 716 { 674 { 717 facetNormal = normal; 675 facetNormal = normal; 718 } 676 } 719 } 677 } 720 return facetNormal; 678 return facetNormal; 721 } 679 } 722 680 723 //....oooOO0OOooo........oooOO0OOooo........oo 681 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 724 void G4OpBoundaryProcess::DielectricMetal() 682 void G4OpBoundaryProcess::DielectricMetal() 725 { 683 { 726 G4int n = 0; 684 G4int n = 0; 727 G4double rand; 685 G4double rand; 728 G4ThreeVector A_trans; 686 G4ThreeVector A_trans; 729 687 730 do 688 do 731 { 689 { 732 ++n; 690 ++n; 733 rand = G4UniformRand(); 691 rand = G4UniformRand(); 734 if(rand > fReflectivity && n == 1) 692 if(rand > fReflectivity && n == 1) 735 { 693 { 736 if(rand > fReflectivity + fTransmittance 694 if(rand > fReflectivity + fTransmittance) 737 { 695 { 738 DoAbsorption(); 696 DoAbsorption(); 739 } 697 } 740 else 698 else 741 { 699 { 742 fStatus = Transmission; 700 fStatus = Transmission; 743 fNewMomentum = fOldMomentum; 701 fNewMomentum = fOldMomentum; 744 fNewPolarization = fOldPolarization; 702 fNewPolarization = fOldPolarization; 745 } 703 } 746 break; 704 break; 747 } 705 } 748 else 706 else 749 { 707 { 750 if(fRealRIndexMPV && fImagRIndexMPV) 708 if(fRealRIndexMPV && fImagRIndexMPV) 751 { 709 { 752 if(n > 1) 710 if(n > 1) 753 { 711 { 754 CalculateReflectivity(); 712 CalculateReflectivity(); 755 if(!G4BooleanRand(fReflectivity)) 713 if(!G4BooleanRand(fReflectivity)) 756 { 714 { 757 DoAbsorption(); 715 DoAbsorption(); 758 break; 716 break; 759 } 717 } 760 } 718 } 761 } 719 } 762 if(fModel == glisur || fFinish == polish 720 if(fModel == glisur || fFinish == polished) 763 { 721 { 764 DoReflection(); 722 DoReflection(); 765 } 723 } 766 else 724 else 767 { 725 { 768 if(n == 1) 726 if(n == 1) 769 ChooseReflection(); 727 ChooseReflection(); 770 if(fStatus == LambertianReflection) 728 if(fStatus == LambertianReflection) 771 { 729 { 772 DoReflection(); 730 DoReflection(); 773 } 731 } 774 else if(fStatus == BackScattering) 732 else if(fStatus == BackScattering) 775 { 733 { 776 fNewMomentum = -fOldMomentum; 734 fNewMomentum = -fOldMomentum; 777 fNewPolarization = -fOldPolarization 735 fNewPolarization = -fOldPolarization; 778 } 736 } 779 else 737 else 780 { 738 { 781 if(fStatus == LobeReflection) 739 if(fStatus == LobeReflection) 782 { 740 { 783 if(!fRealRIndexMPV || !fImagRIndex 741 if(!fRealRIndexMPV || !fImagRIndexMPV) 784 { 742 { 785 fFacetNormal = GetFacetNormal(fO 743 fFacetNormal = GetFacetNormal(fOldMomentum, fGlobalNormal); 786 } 744 } 787 // else << 745 //else 788 // case of complex rindex needs t 746 // case of complex rindex needs to be implemented 789 } 747 } 790 fNewMomentum = 748 fNewMomentum = 791 fOldMomentum - 2. * fOldMomentum * 749 fOldMomentum - 2. * fOldMomentum * fFacetNormal * fFacetNormal; 792 750 793 if(f_iTE > 0 && f_iTM > 0) 751 if(f_iTE > 0 && f_iTM > 0) 794 { 752 { 795 fNewPolarization = 753 fNewPolarization = 796 -fOldPolarization + 754 -fOldPolarization + 797 (2. * fOldPolarization * fFacetN 755 (2. * fOldPolarization * fFacetNormal * fFacetNormal); 798 } 756 } 799 else if(f_iTE > 0) 757 else if(f_iTE > 0) 800 { 758 { 801 A_trans = (fSint1 > 0.0) ? fOldMom 759 A_trans = (fSint1 > 0.0) ? fOldMomentum.cross(fFacetNormal).unit() 802 : fOldPol 760 : fOldPolarization; 803 fNewPolarization = -A_trans; 761 fNewPolarization = -A_trans; 804 } 762 } 805 else if(f_iTM > 0) 763 else if(f_iTM > 0) 806 { 764 { 807 fNewPolarization = 765 fNewPolarization = 808 -fNewMomentum.cross(A_trans).uni 766 -fNewMomentum.cross(A_trans).unit(); // = -A_paral 809 } 767 } 810 } 768 } 811 } 769 } 812 fOldMomentum = fNewMomentum; 770 fOldMomentum = fNewMomentum; 813 fOldPolarization = fNewPolarization; 771 fOldPolarization = fNewPolarization; 814 } 772 } 815 // Loop checking, 13-Aug-2015, Peter Gumpl 773 // Loop checking, 13-Aug-2015, Peter Gumplinger 816 } while(fNewMomentum * fGlobalNormal < 0.0); 774 } while(fNewMomentum * fGlobalNormal < 0.0); 817 } 775 } 818 776 819 //....oooOO0OOooo........oooOO0OOooo........oo 777 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 820 void G4OpBoundaryProcess::DielectricLUT() 778 void G4OpBoundaryProcess::DielectricLUT() 821 { 779 { 822 G4int thetaIndex, phiIndex; 780 G4int thetaIndex, phiIndex; 823 G4double angularDistVal, thetaRad, phiRad; 781 G4double angularDistVal, thetaRad, phiRad; 824 G4ThreeVector perpVectorTheta, perpVectorPhi 782 G4ThreeVector perpVectorTheta, perpVectorPhi; 825 783 826 fStatus = G4OpBoundaryProcessStatus( 784 fStatus = G4OpBoundaryProcessStatus( 827 G4int(fFinish) + (G4int(NoRINDEX) - G4int( 785 G4int(fFinish) + (G4int(NoRINDEX) - G4int(groundbackpainted))); 828 786 829 G4int thetaIndexMax = fOpticalSurface->GetTh 787 G4int thetaIndexMax = fOpticalSurface->GetThetaIndexMax(); 830 G4int phiIndexMax = fOpticalSurface->GetPh 788 G4int phiIndexMax = fOpticalSurface->GetPhiIndexMax(); 831 789 832 G4double rand; 790 G4double rand; 833 791 834 do 792 do 835 { 793 { 836 rand = G4UniformRand(); 794 rand = G4UniformRand(); 837 if(rand > fReflectivity) 795 if(rand > fReflectivity) 838 { 796 { 839 if(rand > fReflectivity + fTransmittance 797 if(rand > fReflectivity + fTransmittance) 840 { 798 { 841 DoAbsorption(); 799 DoAbsorption(); 842 } 800 } 843 else 801 else 844 { 802 { 845 fStatus = Transmission; 803 fStatus = Transmission; 846 fNewMomentum = fOldMomentum; 804 fNewMomentum = fOldMomentum; 847 fNewPolarization = fOldPolarization; 805 fNewPolarization = fOldPolarization; 848 } 806 } 849 break; 807 break; 850 } 808 } 851 else 809 else 852 { 810 { 853 // Calculate Angle between Normal and Ph 811 // Calculate Angle between Normal and Photon Momentum 854 G4double anglePhotonToNormal = fOldMomen 812 G4double anglePhotonToNormal = fOldMomentum.angle(-fGlobalNormal); 855 // Round to closest integer: LBNL model 813 // Round to closest integer: LBNL model array has 91 values 856 G4int angleIncident = (G4int)std::lrint( << 814 G4int angleIncident = std::lrint(anglePhotonToNormal / CLHEP::deg); 857 815 858 // Take random angles THETA and PHI, 816 // Take random angles THETA and PHI, 859 // and see if below Probability - if not 817 // and see if below Probability - if not - Redo 860 do 818 do 861 { 819 { 862 thetaIndex = (G4int)G4RandFlat::shootI << 820 thetaIndex = G4RandFlat::shootInt(thetaIndexMax - 1); 863 phiIndex = (G4int)G4RandFlat::shootI << 821 phiIndex = G4RandFlat::shootInt(phiIndexMax - 1); 864 // Find probability with the new indec 822 // Find probability with the new indeces from LUT 865 angularDistVal = fOpticalSurface->GetA 823 angularDistVal = fOpticalSurface->GetAngularDistributionValue( 866 angleIncident, thetaIndex, phiIndex) 824 angleIncident, thetaIndex, phiIndex); 867 // Loop checking, 13-Aug-2015, Peter G 825 // Loop checking, 13-Aug-2015, Peter Gumplinger 868 } while(!G4BooleanRand(angularDistVal)); 826 } while(!G4BooleanRand(angularDistVal)); 869 827 870 thetaRad = G4double(-90 + 4 * thetaIndex 828 thetaRad = G4double(-90 + 4 * thetaIndex) * pi / 180.; 871 phiRad = G4double(-90 + 5 * phiIndex) 829 phiRad = G4double(-90 + 5 * phiIndex) * pi / 180.; 872 // Rotate Photon Momentum in Theta, then 830 // Rotate Photon Momentum in Theta, then in Phi 873 fNewMomentum = -fOldMomentum; 831 fNewMomentum = -fOldMomentum; 874 832 875 perpVectorTheta = fNewMomentum.cross(fGl 833 perpVectorTheta = fNewMomentum.cross(fGlobalNormal); 876 if(perpVectorTheta.mag() < fCarTolerance 834 if(perpVectorTheta.mag() < fCarTolerance) 877 { 835 { 878 perpVectorTheta = fNewMomentum.orthogo 836 perpVectorTheta = fNewMomentum.orthogonal(); 879 } 837 } 880 fNewMomentum = 838 fNewMomentum = 881 fNewMomentum.rotate(anglePhotonToNorma 839 fNewMomentum.rotate(anglePhotonToNormal - thetaRad, perpVectorTheta); 882 perpVectorPhi = perpVectorTheta.cross(fN 840 perpVectorPhi = perpVectorTheta.cross(fNewMomentum); 883 fNewMomentum = fNewMomentum.rotate(-phi 841 fNewMomentum = fNewMomentum.rotate(-phiRad, perpVectorPhi); 884 842 885 // Rotate Polarization too: 843 // Rotate Polarization too: 886 fFacetNormal = (fNewMomentum - fOldM 844 fFacetNormal = (fNewMomentum - fOldMomentum).unit(); 887 fNewPolarization = -fOldPolarization + 845 fNewPolarization = -fOldPolarization + 888 (2. * fOldPolarizatio 846 (2. * fOldPolarization * fFacetNormal * fFacetNormal); 889 } 847 } 890 // Loop checking, 13-Aug-2015, Peter Gumpl 848 // Loop checking, 13-Aug-2015, Peter Gumplinger 891 } while(fNewMomentum * fGlobalNormal <= 0.0) 849 } while(fNewMomentum * fGlobalNormal <= 0.0); 892 } 850 } 893 851 894 //....oooOO0OOooo........oooOO0OOooo........oo 852 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 895 void G4OpBoundaryProcess::DielectricLUTDAVIS() 853 void G4OpBoundaryProcess::DielectricLUTDAVIS() 896 { 854 { 897 G4int angindex, random, angleIncident; 855 G4int angindex, random, angleIncident; 898 G4double reflectivityValue, elevation, azimu 856 G4double reflectivityValue, elevation, azimuth; 899 G4double anglePhotonToNormal; 857 G4double anglePhotonToNormal; 900 858 901 G4int lutbin = fOpticalSurface->GetLUTbins( 859 G4int lutbin = fOpticalSurface->GetLUTbins(); 902 G4double rand = G4UniformRand(); 860 G4double rand = G4UniformRand(); 903 861 904 G4double sinEl; 862 G4double sinEl; 905 G4ThreeVector u, vNorm, w; 863 G4ThreeVector u, vNorm, w; 906 864 907 do 865 do 908 { 866 { 909 anglePhotonToNormal = fOldMomentum.angle(- 867 anglePhotonToNormal = fOldMomentum.angle(-fGlobalNormal); 910 868 911 // Davis model has 90 reflection bins: rou 869 // Davis model has 90 reflection bins: round down 912 // don't allow angleIncident to be 90 for 870 // don't allow angleIncident to be 90 for anglePhotonToNormal close to 90 913 angleIncident = std::min( << 871 angleIncident = std::min(static_cast<G4int>( 914 static_cast<G4int>(std::floor(anglePhoto << 872 std::floor(anglePhotonToNormal / CLHEP::deg)), 89); 915 reflectivityValue = fOpticalSurface->GetRe 873 reflectivityValue = fOpticalSurface->GetReflectivityLUTValue(angleIncident); 916 874 917 if(rand > reflectivityValue) 875 if(rand > reflectivityValue) 918 { 876 { 919 if(fEfficiency > 0.) 877 if(fEfficiency > 0.) 920 { 878 { 921 DoAbsorption(); 879 DoAbsorption(); 922 break; 880 break; 923 } 881 } 924 else 882 else 925 { 883 { 926 fStatus = Transmission; 884 fStatus = Transmission; 927 885 928 if(angleIncident <= 0.01) 886 if(angleIncident <= 0.01) 929 { 887 { 930 fNewMomentum = fOldMomentum; 888 fNewMomentum = fOldMomentum; 931 break; 889 break; 932 } 890 } 933 891 934 do 892 do 935 { 893 { 936 random = (G4int)G4RandFlat::shootInt << 894 random = G4RandFlat::shootInt(1, lutbin + 1); 937 angindex = 895 angindex = 938 (((random * 2) - 1)) + angleIncide 896 (((random * 2) - 1)) + angleIncident * lutbin * 2 + 3640000; 939 897 940 azimuth = 898 azimuth = 941 fOpticalSurface->GetAngularDistrib 899 fOpticalSurface->GetAngularDistributionValueLUT(angindex - 1); 942 elevation = fOpticalSurface->GetAngu 900 elevation = fOpticalSurface->GetAngularDistributionValueLUT(angindex); 943 } while(elevation == 0. && azimuth == 901 } while(elevation == 0. && azimuth == 0.); 944 902 945 sinEl = std::sin(elevation); 903 sinEl = std::sin(elevation); 946 vNorm = (fGlobalNormal.cross(fOldMomen 904 vNorm = (fGlobalNormal.cross(fOldMomentum)).unit(); 947 u = vNorm.cross(fGlobalNormal) * ( 905 u = vNorm.cross(fGlobalNormal) * (sinEl * std::cos(azimuth)); 948 vNorm *= (sinEl * std::sin(azimuth)); 906 vNorm *= (sinEl * std::sin(azimuth)); 949 // fGlobalNormal shouldn't be modified 907 // fGlobalNormal shouldn't be modified here 950 w = (fGlobalNormal *= std:: 908 w = (fGlobalNormal *= std::cos(elevation)); 951 fNewMomentum = u + vNorm + w; 909 fNewMomentum = u + vNorm + w; 952 910 953 // Rotate Polarization too: 911 // Rotate Polarization too: 954 fFacetNormal = (fNewMomentum - fOl 912 fFacetNormal = (fNewMomentum - fOldMomentum).unit(); 955 fNewPolarization = -fOldPolarization + 913 fNewPolarization = -fOldPolarization + (2. * fOldPolarization * 956 914 fFacetNormal * fFacetNormal); 957 } 915 } 958 } 916 } 959 else 917 else 960 { 918 { 961 fStatus = LobeReflection; 919 fStatus = LobeReflection; 962 920 963 if(angleIncident == 0) 921 if(angleIncident == 0) 964 { 922 { 965 fNewMomentum = -fOldMomentum; 923 fNewMomentum = -fOldMomentum; 966 break; 924 break; 967 } 925 } 968 926 969 do 927 do 970 { 928 { 971 random = (G4int)G4RandFlat::shootInt << 929 random = G4RandFlat::shootInt(1, lutbin + 1); 972 angindex = (((random * 2) - 1)) + (ang 930 angindex = (((random * 2) - 1)) + (angleIncident - 1) * lutbin * 2; 973 931 974 azimuth = fOpticalSurface->GetAngularD 932 azimuth = fOpticalSurface->GetAngularDistributionValueLUT(angindex - 1); 975 elevation = fOpticalSurface->GetAngula 933 elevation = fOpticalSurface->GetAngularDistributionValueLUT(angindex); 976 } while(elevation == 0. && azimuth == 0. 934 } while(elevation == 0. && azimuth == 0.); 977 935 978 sinEl = std::sin(elevation); 936 sinEl = std::sin(elevation); 979 vNorm = (fGlobalNormal.cross(fOldMomentu 937 vNorm = (fGlobalNormal.cross(fOldMomentum)).unit(); 980 u = vNorm.cross(fGlobalNormal) * (si 938 u = vNorm.cross(fGlobalNormal) * (sinEl * std::cos(azimuth)); 981 vNorm *= (sinEl * std::sin(azimuth)); 939 vNorm *= (sinEl * std::sin(azimuth)); 982 // fGlobalNormal shouldn't be modified h 940 // fGlobalNormal shouldn't be modified here 983 w = (fGlobalNormal *= std::cos(elevation 941 w = (fGlobalNormal *= std::cos(elevation)); 984 942 985 fNewMomentum = u + vNorm + w; 943 fNewMomentum = u + vNorm + w; 986 944 987 // Rotate Polarization too: (needs revis 945 // Rotate Polarization too: (needs revision) 988 fNewPolarization = fOldPolarization; 946 fNewPolarization = fOldPolarization; 989 } 947 } 990 } while(fNewMomentum * fGlobalNormal <= 0.0) 948 } while(fNewMomentum * fGlobalNormal <= 0.0); 991 } 949 } 992 950 993 //....oooOO0OOooo........oooOO0OOooo........oo 951 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 994 void G4OpBoundaryProcess::DielectricDichroic() 952 void G4OpBoundaryProcess::DielectricDichroic() 995 { 953 { 996 // Calculate Angle between Normal and Photon 954 // Calculate Angle between Normal and Photon Momentum 997 G4double anglePhotonToNormal = fOldMomentum. 955 G4double anglePhotonToNormal = fOldMomentum.angle(-fGlobalNormal); 998 956 999 // Round it to closest integer 957 // Round it to closest integer 1000 G4double angleIncident = std::floor(180. / 958 G4double angleIncident = std::floor(180. / pi * anglePhotonToNormal + 0.5); 1001 959 1002 if(!fDichroicVector) 960 if(!fDichroicVector) 1003 { 961 { 1004 if(fOpticalSurface) 962 if(fOpticalSurface) 1005 fDichroicVector = fOpticalSurface->GetD 963 fDichroicVector = fOpticalSurface->GetDichroicVector(); 1006 } 964 } 1007 965 1008 if(fDichroicVector) 966 if(fDichroicVector) 1009 { 967 { 1010 G4double wavelength = h_Planck * c_light 968 G4double wavelength = h_Planck * c_light / fPhotonMomentum; 1011 fTransmittance = fDichroicVector->Va 969 fTransmittance = fDichroicVector->Value(wavelength / nm, angleIncident, 1012 i 970 idx_dichroicX, idx_dichroicY) * 1013 perCent; 971 perCent; 1014 // G4cout << "wavelength: " << std::flo 972 // G4cout << "wavelength: " << std::floor(wavelength/nm) 1015 // << "nm" << 973 // << "nm" << G4endl; 1016 // G4cout << "Incident angle: " << angl 974 // G4cout << "Incident angle: " << angleIncident << "deg" << G4endl; 1017 // G4cout << "Transmittance: " 975 // G4cout << "Transmittance: " 1018 // << std::floor(fTransmittance/ 976 // << std::floor(fTransmittance/perCent) << "%" << G4endl; 1019 } 977 } 1020 else 978 else 1021 { 979 { 1022 G4ExceptionDescription ed; 980 G4ExceptionDescription ed; 1023 ed << " G4OpBoundaryProcess/DielectricDic 981 ed << " G4OpBoundaryProcess/DielectricDichroic(): " 1024 << " The dichroic surface has no G4Phy 982 << " The dichroic surface has no G4Physics2DVector" << G4endl; 1025 G4Exception("G4OpBoundaryProcess::Dielect 983 G4Exception("G4OpBoundaryProcess::DielectricDichroic", "OpBoun03", 1026 FatalException, ed, 984 FatalException, ed, 1027 "A dichroic surface must have 985 "A dichroic surface must have an associated G4Physics2DVector"); 1028 } 986 } 1029 987 1030 if(!G4BooleanRand(fTransmittance)) 988 if(!G4BooleanRand(fTransmittance)) 1031 { // Not transmitted, so reflect 989 { // Not transmitted, so reflect 1032 if(fModel == glisur || fFinish == polishe 990 if(fModel == glisur || fFinish == polished) 1033 { 991 { 1034 DoReflection(); 992 DoReflection(); 1035 } 993 } 1036 else 994 else 1037 { 995 { 1038 ChooseReflection(); 996 ChooseReflection(); 1039 if(fStatus == LambertianReflection) 997 if(fStatus == LambertianReflection) 1040 { 998 { 1041 DoReflection(); 999 DoReflection(); 1042 } 1000 } 1043 else if(fStatus == BackScattering) 1001 else if(fStatus == BackScattering) 1044 { 1002 { 1045 fNewMomentum = -fOldMomentum; 1003 fNewMomentum = -fOldMomentum; 1046 fNewPolarization = -fOldPolarization; 1004 fNewPolarization = -fOldPolarization; 1047 } 1005 } 1048 else 1006 else 1049 { 1007 { 1050 G4double PdotN, EdotN; 1008 G4double PdotN, EdotN; 1051 do 1009 do 1052 { 1010 { 1053 if(fStatus == LobeReflection) 1011 if(fStatus == LobeReflection) 1054 { 1012 { 1055 fFacetNormal = GetFacetNormal(fOl 1013 fFacetNormal = GetFacetNormal(fOldMomentum, fGlobalNormal); 1056 } 1014 } 1057 PdotN = fOldMomentum * fFace 1015 PdotN = fOldMomentum * fFacetNormal; 1058 fNewMomentum = fOldMomentum - (2. * 1016 fNewMomentum = fOldMomentum - (2. * PdotN) * fFacetNormal; 1059 // Loop checking, 13-Aug-2015, Pete 1017 // Loop checking, 13-Aug-2015, Peter Gumplinger 1060 } while(fNewMomentum * fGlobalNormal 1018 } while(fNewMomentum * fGlobalNormal <= 0.0); 1061 1019 1062 EdotN = fOldPolarization * 1020 EdotN = fOldPolarization * fFacetNormal; 1063 fNewPolarization = -fOldPolarization 1021 fNewPolarization = -fOldPolarization + (2. * EdotN) * fFacetNormal; 1064 } 1022 } 1065 } 1023 } 1066 } 1024 } 1067 else 1025 else 1068 { 1026 { 1069 fStatus = Dichroic; 1027 fStatus = Dichroic; 1070 fNewMomentum = fOldMomentum; 1028 fNewMomentum = fOldMomentum; 1071 fNewPolarization = fOldPolarization; 1029 fNewPolarization = fOldPolarization; 1072 } 1030 } 1073 } 1031 } 1074 1032 1075 //....oooOO0OOooo........oooOO0OOooo........o 1033 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 1076 void G4OpBoundaryProcess::DielectricDielectri 1034 void G4OpBoundaryProcess::DielectricDielectric() 1077 { 1035 { 1078 G4bool inside = false; 1036 G4bool inside = false; 1079 G4bool swap = false; 1037 G4bool swap = false; 1080 1038 1081 if(fFinish == polished) 1039 if(fFinish == polished) 1082 { 1040 { 1083 fFacetNormal = fGlobalNormal; 1041 fFacetNormal = fGlobalNormal; 1084 } 1042 } 1085 else 1043 else 1086 { 1044 { 1087 fFacetNormal = GetFacetNormal(fOldMomentu 1045 fFacetNormal = GetFacetNormal(fOldMomentum, fGlobalNormal); 1088 } 1046 } 1089 G4double cost1 = -fOldMomentum * fFacetNorm 1047 G4double cost1 = -fOldMomentum * fFacetNormal; 1090 G4double cost2 = 0.; 1048 G4double cost2 = 0.; 1091 G4double sint2 = 0.; 1049 G4double sint2 = 0.; 1092 1050 1093 G4bool surfaceRoughnessCriterionPass = true 1051 G4bool surfaceRoughnessCriterionPass = true; 1094 if(fSurfaceRoughness != 0. && fRindex1 > fR 1052 if(fSurfaceRoughness != 0. && fRindex1 > fRindex2) 1095 { 1053 { 1096 G4double wavelength = h_Pl 1054 G4double wavelength = h_Planck * c_light / fPhotonMomentum; 1097 G4double surfaceRoughnessCriterion = std: 1055 G4double surfaceRoughnessCriterion = std::exp(-std::pow( 1098 (4. * pi * fSurfaceRoughness * fRindex1 1056 (4. * pi * fSurfaceRoughness * fRindex1 * cost1 / wavelength), 2)); 1099 surfaceRoughnessCriterionPass = G4Boolean 1057 surfaceRoughnessCriterionPass = G4BooleanRand(surfaceRoughnessCriterion); 1100 } 1058 } 1101 1059 1102 leap: 1060 leap: 1103 1061 1104 G4bool through = false; 1062 G4bool through = false; 1105 G4bool done = false; 1063 G4bool done = false; 1106 1064 1107 G4ThreeVector A_trans, A_paral, E1pp, E1pl; 1065 G4ThreeVector A_trans, A_paral, E1pp, E1pl; 1108 G4double E1_perp, E1_parl; 1066 G4double E1_perp, E1_parl; 1109 G4double s1, s2, E2_perp, E2_parl, E2_total 1067 G4double s1, s2, E2_perp, E2_parl, E2_total, transCoeff; 1110 G4double E2_abs, C_parl, C_perp; 1068 G4double E2_abs, C_parl, C_perp; 1111 G4double alpha; 1069 G4double alpha; 1112 1070 1113 do 1071 do 1114 { 1072 { 1115 if(through) 1073 if(through) 1116 { 1074 { 1117 swap = !swap; 1075 swap = !swap; 1118 through = false; 1076 through = false; 1119 fGlobalNormal = -fGlobalNormal; 1077 fGlobalNormal = -fGlobalNormal; 1120 G4SwapPtr(fMaterial1, fMaterial2); 1078 G4SwapPtr(fMaterial1, fMaterial2); 1121 G4SwapObj(&fRindex1, &fRindex2); 1079 G4SwapObj(&fRindex1, &fRindex2); 1122 } 1080 } 1123 1081 1124 if(fFinish == polished) 1082 if(fFinish == polished) 1125 { 1083 { 1126 fFacetNormal = fGlobalNormal; 1084 fFacetNormal = fGlobalNormal; 1127 } 1085 } 1128 else 1086 else 1129 { 1087 { 1130 fFacetNormal = GetFacetNormal(fOldMomen 1088 fFacetNormal = GetFacetNormal(fOldMomentum, fGlobalNormal); 1131 } 1089 } 1132 1090 1133 cost1 = -fOldMomentum * fFacetNormal; 1091 cost1 = -fOldMomentum * fFacetNormal; 1134 if(std::abs(cost1) < 1.0 - fCarTolerance) 1092 if(std::abs(cost1) < 1.0 - fCarTolerance) 1135 { 1093 { 1136 fSint1 = std::sqrt(1. - cost1 * cost1); 1094 fSint1 = std::sqrt(1. - cost1 * cost1); 1137 sint2 = fSint1 * fRindex1 / fRindex2; 1095 sint2 = fSint1 * fRindex1 / fRindex2; // *** Snell's Law *** 1138 // this isn't a sine as we might expect 1096 // this isn't a sine as we might expect from the name; can be > 1 1139 } 1097 } 1140 else 1098 else 1141 { 1099 { 1142 fSint1 = 0.0; 1100 fSint1 = 0.0; 1143 sint2 = 0.0; 1101 sint2 = 0.0; 1144 } 1102 } 1145 1103 1146 // TOTAL INTERNAL REFLECTION 1104 // TOTAL INTERNAL REFLECTION 1147 if(sint2 >= 1.0) 1105 if(sint2 >= 1.0) 1148 { 1106 { 1149 swap = false; 1107 swap = false; 1150 1108 1151 fStatus = TotalInternalReflection; 1109 fStatus = TotalInternalReflection; 1152 if(!surfaceRoughnessCriterionPass) 1110 if(!surfaceRoughnessCriterionPass) 1153 fStatus = LambertianReflection; 1111 fStatus = LambertianReflection; 1154 if(fModel == unified && fFinish != poli 1112 if(fModel == unified && fFinish != polished) 1155 ChooseReflection(); 1113 ChooseReflection(); 1156 if(fStatus == LambertianReflection) 1114 if(fStatus == LambertianReflection) 1157 { 1115 { 1158 DoReflection(); 1116 DoReflection(); 1159 } 1117 } 1160 else if(fStatus == BackScattering) 1118 else if(fStatus == BackScattering) 1161 { 1119 { 1162 fNewMomentum = -fOldMomentum; 1120 fNewMomentum = -fOldMomentum; 1163 fNewPolarization = -fOldPolarization; 1121 fNewPolarization = -fOldPolarization; 1164 } 1122 } 1165 else 1123 else 1166 { 1124 { 1167 fNewMomentum = 1125 fNewMomentum = 1168 fOldMomentum - 2. * fOldMomentum * 1126 fOldMomentum - 2. * fOldMomentum * fFacetNormal * fFacetNormal; 1169 fNewPolarization = -fOldPolarization 1127 fNewPolarization = -fOldPolarization + (2. * fOldPolarization * 1170 1128 fFacetNormal * fFacetNormal); 1171 } 1129 } 1172 } 1130 } 1173 // NOT TIR 1131 // NOT TIR 1174 else if(sint2 < 1.0) 1132 else if(sint2 < 1.0) 1175 { 1133 { 1176 // Calculate amplitude for transmission 1134 // Calculate amplitude for transmission (Q = P x N) 1177 if(cost1 > 0.0) 1135 if(cost1 > 0.0) 1178 { 1136 { 1179 cost2 = std::sqrt(1. - sint2 * sint2) 1137 cost2 = std::sqrt(1. - sint2 * sint2); 1180 } 1138 } 1181 else 1139 else 1182 { 1140 { 1183 cost2 = -std::sqrt(1. - sint2 * sint2 1141 cost2 = -std::sqrt(1. - sint2 * sint2); 1184 } 1142 } 1185 1143 1186 if(fSint1 > 0.0) 1144 if(fSint1 > 0.0) 1187 { 1145 { 1188 A_trans = (fOldMomentum.cross(fFacetN 1146 A_trans = (fOldMomentum.cross(fFacetNormal)).unit(); 1189 E1_perp = fOldPolarization * A_trans; 1147 E1_perp = fOldPolarization * A_trans; 1190 E1pp = E1_perp * A_trans; 1148 E1pp = E1_perp * A_trans; 1191 E1pl = fOldPolarization - E1pp; 1149 E1pl = fOldPolarization - E1pp; 1192 E1_parl = E1pl.mag(); 1150 E1_parl = E1pl.mag(); 1193 } 1151 } 1194 else 1152 else 1195 { 1153 { 1196 A_trans = fOldPolarization; 1154 A_trans = fOldPolarization; 1197 // Here we Follow Jackson's conventio 1155 // Here we Follow Jackson's conventions and set the parallel 1198 // component = 1 in case of a ray per 1156 // component = 1 in case of a ray perpendicular to the surface 1199 E1_perp = 0.0; 1157 E1_perp = 0.0; 1200 E1_parl = 1.0; 1158 E1_parl = 1.0; 1201 } 1159 } 1202 1160 1203 s1 = fRindex1 * cost1; 1161 s1 = fRindex1 * cost1; 1204 E2_perp = 2. * s1 * E1_perp / (fRindex 1162 E2_perp = 2. * s1 * E1_perp / (fRindex1 * cost1 + fRindex2 * cost2); 1205 E2_parl = 2. * s1 * E1_parl / (fRindex 1163 E2_parl = 2. * s1 * E1_parl / (fRindex2 * cost1 + fRindex1 * cost2); 1206 E2_total = E2_perp * E2_perp + E2_parl 1164 E2_total = E2_perp * E2_perp + E2_parl * E2_parl; 1207 s2 = fRindex2 * cost2 * E2_total; 1165 s2 = fRindex2 * cost2 * E2_total; 1208 1166 1209 // D.Sawkey, 24 May 24 << 1167 if(fTransmittance > 0.) 1210 // Transmittance has already been taken << 1168 transCoeff = fTransmittance; 1211 // For e.g. specular surfaces, the rati << 1169 else if(cost1 != 0.0) 1212 // reflection should be given by the ma << 1213 // TRANSMITTANCE << 1214 //if(fTransmittance > 0.) << 1215 // transCoeff = fTransmittance; << 1216 //else if(cost1 != 0.0) << 1217 if(cost1 != 0.0) << 1218 transCoeff = s2 / s1; 1170 transCoeff = s2 / s1; 1219 else 1171 else 1220 transCoeff = 0.0; 1172 transCoeff = 0.0; 1221 1173 1222 // NOT TIR: REFLECTION 1174 // NOT TIR: REFLECTION 1223 if(!G4BooleanRand(transCoeff)) 1175 if(!G4BooleanRand(transCoeff)) 1224 { 1176 { 1225 swap = false; 1177 swap = false; 1226 fStatus = FresnelReflection; 1178 fStatus = FresnelReflection; 1227 1179 1228 if(!surfaceRoughnessCriterionPass) 1180 if(!surfaceRoughnessCriterionPass) 1229 fStatus = LambertianReflection; 1181 fStatus = LambertianReflection; 1230 if(fModel == unified && fFinish != po 1182 if(fModel == unified && fFinish != polished) 1231 ChooseReflection(); 1183 ChooseReflection(); 1232 if(fStatus == LambertianReflection) 1184 if(fStatus == LambertianReflection) 1233 { 1185 { 1234 DoReflection(); 1186 DoReflection(); 1235 } 1187 } 1236 else if(fStatus == BackScattering) 1188 else if(fStatus == BackScattering) 1237 { 1189 { 1238 fNewMomentum = -fOldMomentum; 1190 fNewMomentum = -fOldMomentum; 1239 fNewPolarization = -fOldPolarizatio 1191 fNewPolarization = -fOldPolarization; 1240 } 1192 } 1241 else 1193 else 1242 { 1194 { 1243 fNewMomentum = 1195 fNewMomentum = 1244 fOldMomentum - 2. * fOldMomentum 1196 fOldMomentum - 2. * fOldMomentum * fFacetNormal * fFacetNormal; 1245 if(fSint1 > 0.0) 1197 if(fSint1 > 0.0) 1246 { // incident ray oblique 1198 { // incident ray oblique 1247 E2_parl = fRindex2 * E2_parl / f 1199 E2_parl = fRindex2 * E2_parl / fRindex1 - E1_parl; 1248 E2_perp = E2_perp - E1_perp; 1200 E2_perp = E2_perp - E1_perp; 1249 E2_total = E2_perp * E2_perp + E2 1201 E2_total = E2_perp * E2_perp + E2_parl * E2_parl; 1250 A_paral = (fNewMomentum.cross(A_ 1202 A_paral = (fNewMomentum.cross(A_trans)).unit(); 1251 E2_abs = std::sqrt(E2_total); 1203 E2_abs = std::sqrt(E2_total); 1252 C_parl = E2_parl / E2_abs; 1204 C_parl = E2_parl / E2_abs; 1253 C_perp = E2_perp / E2_abs; 1205 C_perp = E2_perp / E2_abs; 1254 1206 1255 fNewPolarization = C_parl * A_par 1207 fNewPolarization = C_parl * A_paral + C_perp * A_trans; 1256 } 1208 } 1257 else 1209 else 1258 { // incident ray perpendicular 1210 { // incident ray perpendicular 1259 if(fRindex2 > fRindex1) 1211 if(fRindex2 > fRindex1) 1260 { 1212 { 1261 fNewPolarization = -fOldPolariz 1213 fNewPolarization = -fOldPolarization; 1262 } 1214 } 1263 else 1215 else 1264 { 1216 { 1265 fNewPolarization = fOldPolariza 1217 fNewPolarization = fOldPolarization; 1266 } 1218 } 1267 } 1219 } 1268 } 1220 } 1269 } 1221 } 1270 // NOT TIR: TRANSMISSION 1222 // NOT TIR: TRANSMISSION 1271 else 1223 else 1272 { 1224 { 1273 inside = !inside; 1225 inside = !inside; 1274 through = true; 1226 through = true; 1275 fStatus = FresnelRefraction; 1227 fStatus = FresnelRefraction; 1276 1228 1277 if(fSint1 > 0.0) 1229 if(fSint1 > 0.0) 1278 { // incident ray oblique 1230 { // incident ray oblique 1279 alpha = cost1 - cost2 * (fRi 1231 alpha = cost1 - cost2 * (fRindex2 / fRindex1); 1280 fNewMomentum = (fOldMomentum + alph 1232 fNewMomentum = (fOldMomentum + alpha * fFacetNormal).unit(); 1281 A_paral = (fNewMomentum.cross( 1233 A_paral = (fNewMomentum.cross(A_trans)).unit(); 1282 E2_abs = std::sqrt(E2_total); 1234 E2_abs = std::sqrt(E2_total); 1283 C_parl = E2_parl / E2_abs; 1235 C_parl = E2_parl / E2_abs; 1284 C_perp = E2_perp / E2_abs; 1236 C_perp = E2_perp / E2_abs; 1285 1237 1286 fNewPolarization = C_parl * A_paral 1238 fNewPolarization = C_parl * A_paral + C_perp * A_trans; 1287 } 1239 } 1288 else 1240 else 1289 { // incident ray perpendicular 1241 { // incident ray perpendicular 1290 fNewMomentum = fOldMomentum; 1242 fNewMomentum = fOldMomentum; 1291 fNewPolarization = fOldPolarization 1243 fNewPolarization = fOldPolarization; 1292 } 1244 } 1293 } 1245 } 1294 } 1246 } 1295 1247 1296 fOldMomentum = fNewMomentum.unit(); 1248 fOldMomentum = fNewMomentum.unit(); 1297 fOldPolarization = fNewPolarization.unit( 1249 fOldPolarization = fNewPolarization.unit(); 1298 1250 1299 if(fStatus == FresnelRefraction) 1251 if(fStatus == FresnelRefraction) 1300 { 1252 { 1301 done = (fNewMomentum * fGlobalNormal <= 1253 done = (fNewMomentum * fGlobalNormal <= 0.0); 1302 } 1254 } 1303 else 1255 else 1304 { 1256 { 1305 done = (fNewMomentum * fGlobalNormal >= 1257 done = (fNewMomentum * fGlobalNormal >= -fCarTolerance); 1306 } 1258 } 1307 // Loop checking, 13-Aug-2015, Peter Gump 1259 // Loop checking, 13-Aug-2015, Peter Gumplinger 1308 } while(!done); 1260 } while(!done); 1309 1261 1310 if(inside && !swap) 1262 if(inside && !swap) 1311 { 1263 { 1312 if(fFinish == polishedbackpainted || fFin 1264 if(fFinish == polishedbackpainted || fFinish == groundbackpainted) 1313 { 1265 { 1314 G4double rand = G4UniformRand(); 1266 G4double rand = G4UniformRand(); 1315 if(rand > fReflectivity + fTransmittanc 1267 if(rand > fReflectivity + fTransmittance) 1316 { 1268 { 1317 DoAbsorption(); 1269 DoAbsorption(); 1318 } 1270 } 1319 else if(rand > fReflectivity) 1271 else if(rand > fReflectivity) 1320 { 1272 { 1321 fStatus = Transmission; 1273 fStatus = Transmission; 1322 fNewMomentum = fOldMomentum; 1274 fNewMomentum = fOldMomentum; 1323 fNewPolarization = fOldPolarization; 1275 fNewPolarization = fOldPolarization; 1324 } 1276 } 1325 else 1277 else 1326 { 1278 { 1327 if(fStatus != FresnelRefraction) 1279 if(fStatus != FresnelRefraction) 1328 { 1280 { 1329 fGlobalNormal = -fGlobalNormal; 1281 fGlobalNormal = -fGlobalNormal; 1330 } 1282 } 1331 else 1283 else 1332 { 1284 { 1333 swap = !swap; 1285 swap = !swap; 1334 G4SwapPtr(fMaterial1, fMaterial2); 1286 G4SwapPtr(fMaterial1, fMaterial2); 1335 G4SwapObj(&fRindex1, &fRindex2); 1287 G4SwapObj(&fRindex1, &fRindex2); 1336 } 1288 } 1337 if(fFinish == groundbackpainted) 1289 if(fFinish == groundbackpainted) 1338 fStatus = LambertianReflection; 1290 fStatus = LambertianReflection; 1339 1291 1340 DoReflection(); 1292 DoReflection(); 1341 1293 1342 fGlobalNormal = -fGlobalNormal; 1294 fGlobalNormal = -fGlobalNormal; 1343 fOldMomentum = fNewMomentum; 1295 fOldMomentum = fNewMomentum; 1344 1296 1345 goto leap; 1297 goto leap; 1346 } 1298 } 1347 } 1299 } 1348 } 1300 } 1349 } 1301 } 1350 1302 1351 //....oooOO0OOooo........oooOO0OOooo........o 1303 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 1352 G4double G4OpBoundaryProcess::GetMeanFreePath 1304 G4double G4OpBoundaryProcess::GetMeanFreePath(const G4Track&, G4double, 1353 1305 G4ForceCondition* condition) 1354 { 1306 { 1355 *condition = Forced; 1307 *condition = Forced; 1356 return DBL_MAX; 1308 return DBL_MAX; 1357 } 1309 } 1358 1310 1359 //....oooOO0OOooo........oooOO0OOooo........o 1311 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 1360 G4double G4OpBoundaryProcess::GetIncidentAngl 1312 G4double G4OpBoundaryProcess::GetIncidentAngle() 1361 { 1313 { 1362 return pi - std::acos(fOldMomentum * fFacet 1314 return pi - std::acos(fOldMomentum * fFacetNormal / 1363 (fOldMomentum.mag() * 1315 (fOldMomentum.mag() * fFacetNormal.mag())); 1364 } 1316 } 1365 1317 1366 //....oooOO0OOooo........oooOO0OOooo........o 1318 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 1367 G4double G4OpBoundaryProcess::GetReflectivity 1319 G4double G4OpBoundaryProcess::GetReflectivity(G4double E1_perp, 1368 1320 G4double E1_parl, 1369 1321 G4double incidentangle, 1370 1322 G4double realRindex, 1371 1323 G4double imaginaryRindex) 1372 { 1324 { 1373 G4complex reflectivity, reflectivity_TE, re 1325 G4complex reflectivity, reflectivity_TE, reflectivity_TM; 1374 G4complex N1(fRindex1, 0.), N2(realRindex, 1326 G4complex N1(fRindex1, 0.), N2(realRindex, imaginaryRindex); 1375 G4complex cosPhi; 1327 G4complex cosPhi; 1376 1328 1377 G4complex u(1., 0.); // unit number 1 1329 G4complex u(1., 0.); // unit number 1 1378 1330 1379 G4complex numeratorTE; // E1_perp=1 E1_par 1331 G4complex numeratorTE; // E1_perp=1 E1_parl=0 -> TE polarization 1380 G4complex numeratorTM; // E1_parl=1 E1_per 1332 G4complex numeratorTM; // E1_parl=1 E1_perp=0 -> TM polarization 1381 G4complex denominatorTE, denominatorTM; 1333 G4complex denominatorTE, denominatorTM; 1382 G4complex rTM, rTE; 1334 G4complex rTM, rTE; 1383 1335 1384 G4MaterialPropertiesTable* MPT = fMaterial1 1336 G4MaterialPropertiesTable* MPT = fMaterial1->GetMaterialPropertiesTable(); 1385 G4MaterialPropertyVector* ppR = MPT->GetPr 1337 G4MaterialPropertyVector* ppR = MPT->GetProperty(kREALRINDEX); 1386 G4MaterialPropertyVector* ppI = MPT->GetPr 1338 G4MaterialPropertyVector* ppI = MPT->GetProperty(kIMAGINARYRINDEX); 1387 if(ppR && ppI) 1339 if(ppR && ppI) 1388 { 1340 { 1389 G4double rRindex = ppR->Value(fPhotonMome 1341 G4double rRindex = ppR->Value(fPhotonMomentum, idx_rrindex); 1390 G4double iRindex = ppI->Value(fPhotonMome 1342 G4double iRindex = ppI->Value(fPhotonMomentum, idx_irindex); 1391 N1 = G4complex(rRindex, iRi 1343 N1 = G4complex(rRindex, iRindex); 1392 } 1344 } 1393 1345 1394 // Following two equations, rTM and rTE, ar 1346 // Following two equations, rTM and rTE, are from: "Introduction To Modern 1395 // Optics" written by Fowles 1347 // Optics" written by Fowles 1396 cosPhi = std::sqrt(u - ((std::sin(incidenta 1348 cosPhi = std::sqrt(u - ((std::sin(incidentangle) * std::sin(incidentangle)) * 1397 (N1 * N1) / (N2 * N 1349 (N1 * N1) / (N2 * N2))); 1398 1350 1399 numeratorTE = N1 * std::cos(incidentangle 1351 numeratorTE = N1 * std::cos(incidentangle) - N2 * cosPhi; 1400 denominatorTE = N1 * std::cos(incidentangle 1352 denominatorTE = N1 * std::cos(incidentangle) + N2 * cosPhi; 1401 rTE = numeratorTE / denominatorTE 1353 rTE = numeratorTE / denominatorTE; 1402 1354 1403 numeratorTM = N2 * std::cos(incidentangle 1355 numeratorTM = N2 * std::cos(incidentangle) - N1 * cosPhi; 1404 denominatorTM = N2 * std::cos(incidentangle 1356 denominatorTM = N2 * std::cos(incidentangle) + N1 * cosPhi; 1405 rTM = numeratorTM / denominatorTM 1357 rTM = numeratorTM / denominatorTM; 1406 1358 1407 // This is my (PG) calculaton for reflectiv 1359 // This is my (PG) calculaton for reflectivity on a metallic surface 1408 // depending on the fraction of TE and TM p 1360 // depending on the fraction of TE and TM polarization 1409 // when TE polarization, E1_parl=0 and E1_p 1361 // when TE polarization, E1_parl=0 and E1_perp=1, R=abs(rTE)^2 and 1410 // when TM polarization, E1_parl=1 and E1_p 1362 // when TM polarization, E1_parl=1 and E1_perp=0, R=abs(rTM)^2 1411 1363 1412 reflectivity_TE = (rTE * conj(rTE)) * (E1_p 1364 reflectivity_TE = (rTE * conj(rTE)) * (E1_perp * E1_perp) / 1413 (E1_perp * E1_perp + E1_p 1365 (E1_perp * E1_perp + E1_parl * E1_parl); 1414 reflectivity_TM = (rTM * conj(rTM)) * (E1_p 1366 reflectivity_TM = (rTM * conj(rTM)) * (E1_parl * E1_parl) / 1415 (E1_perp * E1_perp + E1_p 1367 (E1_perp * E1_perp + E1_parl * E1_parl); 1416 reflectivity = reflectivity_TE + reflectivi 1368 reflectivity = reflectivity_TE + reflectivity_TM; 1417 1369 1418 do 1370 do 1419 { 1371 { 1420 if(G4UniformRand() * real(reflectivity) > 1372 if(G4UniformRand() * real(reflectivity) > real(reflectivity_TE)) 1421 { 1373 { 1422 f_iTE = -1; 1374 f_iTE = -1; 1423 } 1375 } 1424 else 1376 else 1425 { 1377 { 1426 f_iTE = 1; 1378 f_iTE = 1; 1427 } 1379 } 1428 if(G4UniformRand() * real(reflectivity) > 1380 if(G4UniformRand() * real(reflectivity) > real(reflectivity_TM)) 1429 { 1381 { 1430 f_iTM = -1; 1382 f_iTM = -1; 1431 } 1383 } 1432 else 1384 else 1433 { 1385 { 1434 f_iTM = 1; 1386 f_iTM = 1; 1435 } 1387 } 1436 // Loop checking, 13-Aug-2015, Peter Gump 1388 // Loop checking, 13-Aug-2015, Peter Gumplinger 1437 } while(f_iTE < 0 && f_iTM < 0); 1389 } while(f_iTE < 0 && f_iTM < 0); 1438 1390 1439 return real(reflectivity); 1391 return real(reflectivity); 1440 } 1392 } 1441 1393 1442 //....oooOO0OOooo........oooOO0OOooo........o 1394 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 1395 1443 void G4OpBoundaryProcess::CalculateReflectivi 1396 void G4OpBoundaryProcess::CalculateReflectivity() 1444 { 1397 { 1445 G4double realRindex = fRealRIndexMPV->Value 1398 G4double realRindex = fRealRIndexMPV->Value(fPhotonMomentum, idx_rrindex); 1446 G4double imaginaryRindex = 1399 G4double imaginaryRindex = 1447 fImagRIndexMPV->Value(fPhotonMomentum, id 1400 fImagRIndexMPV->Value(fPhotonMomentum, idx_irindex); 1448 1401 1449 // calculate FacetNormal 1402 // calculate FacetNormal 1450 if(fFinish == ground) 1403 if(fFinish == ground) 1451 { 1404 { 1452 fFacetNormal = GetFacetNormal(fOldMomentu 1405 fFacetNormal = GetFacetNormal(fOldMomentum, fGlobalNormal); 1453 } 1406 } 1454 else 1407 else 1455 { 1408 { 1456 fFacetNormal = fGlobalNormal; 1409 fFacetNormal = fGlobalNormal; 1457 } 1410 } 1458 1411 1459 G4double cost1 = -fOldMomentum * fFacetNorm 1412 G4double cost1 = -fOldMomentum * fFacetNormal; 1460 if(std::abs(cost1) < 1.0 - fCarTolerance) 1413 if(std::abs(cost1) < 1.0 - fCarTolerance) 1461 { 1414 { 1462 fSint1 = std::sqrt(1. - cost1 * cost1); 1415 fSint1 = std::sqrt(1. - cost1 * cost1); 1463 } 1416 } 1464 else 1417 else 1465 { 1418 { 1466 fSint1 = 0.0; 1419 fSint1 = 0.0; 1467 } 1420 } 1468 1421 1469 G4ThreeVector A_trans, A_paral, E1pp, E1pl; 1422 G4ThreeVector A_trans, A_paral, E1pp, E1pl; 1470 G4double E1_perp, E1_parl; 1423 G4double E1_perp, E1_parl; 1471 1424 1472 if(fSint1 > 0.0) 1425 if(fSint1 > 0.0) 1473 { 1426 { 1474 A_trans = (fOldMomentum.cross(fFacetNorma 1427 A_trans = (fOldMomentum.cross(fFacetNormal)).unit(); 1475 E1_perp = fOldPolarization * A_trans; 1428 E1_perp = fOldPolarization * A_trans; 1476 E1pp = E1_perp * A_trans; 1429 E1pp = E1_perp * A_trans; 1477 E1pl = fOldPolarization - E1pp; 1430 E1pl = fOldPolarization - E1pp; 1478 E1_parl = E1pl.mag(); 1431 E1_parl = E1pl.mag(); 1479 } 1432 } 1480 else 1433 else 1481 { 1434 { 1482 A_trans = fOldPolarization; 1435 A_trans = fOldPolarization; 1483 // Here we Follow Jackson's conventions a 1436 // Here we Follow Jackson's conventions and we set the parallel 1484 // component = 1 in case of a ray perpend 1437 // component = 1 in case of a ray perpendicular to the surface 1485 E1_perp = 0.0; 1438 E1_perp = 0.0; 1486 E1_parl = 1.0; 1439 E1_parl = 1.0; 1487 } 1440 } 1488 1441 1489 G4double incidentangle = GetIncidentAngle() 1442 G4double incidentangle = GetIncidentAngle(); 1490 1443 1491 // calculate the reflectivity depending on 1444 // calculate the reflectivity depending on incident angle, 1492 // polarization and complex refractive 1445 // polarization and complex refractive 1493 fReflectivity = GetReflectivity(E1_perp, E1 1446 fReflectivity = GetReflectivity(E1_perp, E1_parl, incidentangle, realRindex, 1494 imaginaryRi 1447 imaginaryRindex); 1495 } 1448 } 1496 1449 1497 //....oooOO0OOooo........oooOO0OOooo........o 1450 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 1498 G4bool G4OpBoundaryProcess::InvokeSD(const G4 1451 G4bool G4OpBoundaryProcess::InvokeSD(const G4Step* pStep) 1499 { 1452 { 1500 G4Step aStep = *pStep; 1453 G4Step aStep = *pStep; 1501 aStep.AddTotalEnergyDeposit(fPhotonMomentum 1454 aStep.AddTotalEnergyDeposit(fPhotonMomentum); 1502 1455 1503 G4VSensitiveDetector* sd = aStep.GetPostSte 1456 G4VSensitiveDetector* sd = aStep.GetPostStepPoint()->GetSensitiveDetector(); 1504 if(sd != nullptr) 1457 if(sd != nullptr) 1505 return sd->Hit(&aStep); 1458 return sd->Hit(&aStep); 1506 else 1459 else 1507 return false; 1460 return false; 1508 } 1461 } 1509 1462 1510 //....oooOO0OOooo........oooOO0OOooo........o 1463 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 1511 inline void G4OpBoundaryProcess::SetInvokeSD( 1464 inline void G4OpBoundaryProcess::SetInvokeSD(G4bool flag) 1512 { 1465 { 1513 fInvokeSD = flag; 1466 fInvokeSD = flag; 1514 G4OpticalParameters::Instance()->SetBoundar 1467 G4OpticalParameters::Instance()->SetBoundaryInvokeSD(fInvokeSD); 1515 } 1468 } 1516 1469 1517 //....oooOO0OOooo........oooOO0OOooo........o 1470 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 1518 void G4OpBoundaryProcess::SetVerboseLevel(G4i 1471 void G4OpBoundaryProcess::SetVerboseLevel(G4int verbose) 1519 { 1472 { 1520 verboseLevel = verbose; 1473 verboseLevel = verbose; 1521 G4OpticalParameters::Instance()->SetBoundar 1474 G4OpticalParameters::Instance()->SetBoundaryVerboseLevel(verboseLevel); 1522 } << 1523 << 1524 //....oooOO0OOooo........oooOO0OOooo........o << 1525 void G4OpBoundaryProcess::CoatedDielectricDie << 1526 { << 1527 G4MaterialPropertyVector* pp = nullptr; << 1528 << 1529 G4MaterialPropertiesTable* MPT = fMaterial2 << 1530 if((pp = MPT->GetProperty(kRINDEX))) << 1531 { << 1532 fRindex2 = pp->Value(fPhotonMomentum, idx << 1533 } << 1534 << 1535 MPT = fOpticalSurface->GetMaterialPropertie << 1536 if((pp = MPT->GetProperty(kCOATEDRINDEX))) << 1537 { << 1538 fCoatedRindex = pp->Value(fPhotonMomentum << 1539 } << 1540 if(MPT->ConstPropertyExists(kCOATEDTHICKNES << 1541 { << 1542 fCoatedThickness = MPT->GetConstProperty( << 1543 } << 1544 if(MPT->ConstPropertyExists(kCOATEDFRUSTRAT << 1545 { << 1546 fCoatedFrustratedTransmission = << 1547 (G4bool)MPT->GetConstProperty(kCOATEDFR << 1548 } << 1549 << 1550 G4double sintTL; << 1551 G4double wavelength = h_Planck * c_light / << 1552 G4double PdotN; << 1553 G4double E1_perp, E1_parl; << 1554 G4double s1, E2_perp, E2_parl, E2_total, tr << 1555 G4double E2_abs, C_parl, C_perp; << 1556 G4double alpha; << 1557 G4ThreeVector A_trans, A_paral, E1pp, E1pl; << 1558 //G4bool Inside = false; << 1559 //G4bool Swap = false; << 1560 G4bool through = false; << 1561 G4bool done = false; << 1562 << 1563 do { << 1564 if (through) << 1565 { << 1566 //Swap = !Swap; << 1567 through = false; << 1568 fGlobalNormal = -fGlobalNormal; << 1569 G4SwapPtr(fMaterial1, fMaterial2); << 1570 G4SwapObj(&fRindex1, &fRindex2); << 1571 } << 1572 << 1573 if(fFinish == polished) << 1574 { << 1575 fFacetNormal = fGlobalNormal; << 1576 } << 1577 else << 1578 { << 1579 fFacetNormal = GetFacetNormal(fOldMomen << 1580 } << 1581 << 1582 PdotN = fOldMomentum * fFacetNormal; << 1583 G4double cost1 = -PdotN; << 1584 G4double sint2, cost2 = 0.; << 1585 << 1586 if (std::abs(cost1) < 1.0 - fCarTolerance << 1587 { << 1588 fSint1 = std::sqrt(1. - cost1 * cost1); << 1589 sint2 = fSint1 * fRindex1 / fRindex2; << 1590 sintTL = fSint1 * fRindex1 / fCoatedRin << 1591 } else << 1592 { << 1593 fSint1 = 0.0; << 1594 sint2 = 0.0; << 1595 sintTL = 0.0; << 1596 } << 1597 << 1598 if (fSint1 > 0.0) << 1599 { << 1600 A_trans = fOldMomentum.cross(fFacetNorm << 1601 A_trans = A_trans.unit(); << 1602 E1_perp = fOldPolarization * A_trans; << 1603 E1pp = E1_perp * A_trans; << 1604 E1pl = fOldPolarization - E1pp; << 1605 E1_parl = E1pl.mag(); << 1606 } << 1607 else << 1608 { << 1609 A_trans = fOldPolarization; << 1610 E1_perp = 0.0; << 1611 E1_parl = 1.0; << 1612 } << 1613 << 1614 s1 = fRindex1 * cost1; << 1615 << 1616 if (cost1 > 0.0) << 1617 { << 1618 cost2 = std::sqrt(1. - sint2 * sint2); << 1619 } << 1620 else << 1621 { << 1622 cost2 = -std::sqrt(1. - sint2 * sint2); << 1623 } << 1624 << 1625 transCoeff = 0.0; << 1626 << 1627 if (sintTL >= 1.0) << 1628 { // --> Angle > Angle Limit << 1629 //Swap = false; << 1630 } << 1631 E2_perp = 2. * s1 * E1_perp / (fRindex1 * << 1632 E2_parl = 2. * s1 * E1_parl / (fRindex2 * << 1633 E2_total = E2_perp * E2_perp + E2_parl * << 1634 << 1635 transCoeff = 1. - GetReflectivityThroughT << 1636 sintTL, E1_perp, E1_p << 1637 if (!G4BooleanRand(transCoeff)) << 1638 { << 1639 if(verboseLevel > 2) << 1640 G4cout << "Reflection from " << fMate << 1641 << fMaterial2->GetName() << G4 << 1642 << 1643 //Swap = false; << 1644 << 1645 if (sintTL >= 1.0) << 1646 { << 1647 fStatus = TotalInternalReflection; << 1648 } << 1649 else << 1650 { << 1651 fStatus = CoatedDielectricReflection; << 1652 } << 1653 << 1654 PdotN = fOldMomentum * fFacetNormal; << 1655 fNewMomentum = fOldMomentum - (2. * Pdo << 1656 << 1657 if (fSint1 > 0.0) { // incident ray o << 1658 << 1659 E2_parl = fRindex2 * E2_parl / fRinde << 1660 E2_perp = E2_perp - E1_perp; << 1661 E2_total = E2_perp * E2_perp + E2_par << 1662 A_paral = fNewMomentum.cross(A_trans) << 1663 A_paral = A_paral.unit(); << 1664 E2_abs = std::sqrt(E2_total); << 1665 C_parl = E2_parl / E2_abs; << 1666 C_perp = E2_perp / E2_abs; << 1667 << 1668 fNewPolarization = C_parl * A_paral + << 1669 << 1670 } << 1671 else << 1672 { // incident ray perpend << 1673 if (fRindex2 > fRindex1) << 1674 { << 1675 fNewPolarization = -fOldPolarizatio << 1676 } << 1677 else << 1678 { << 1679 fNewPolarization = fOldPolarization << 1680 } << 1681 } << 1682 << 1683 } else { // photon gets transmitted << 1684 if (verboseLevel > 2) << 1685 G4cout << "Transmission from " << fMa << 1686 << fMaterial2->GetName() << G4 << 1687 << 1688 //Inside = !Inside; << 1689 through = true; << 1690 << 1691 if (fEfficiency > 0.) << 1692 { << 1693 DoAbsorption(); << 1694 return; << 1695 } << 1696 else << 1697 { << 1698 if (sintTL >= 1.0) << 1699 { << 1700 fStatus = CoatedDielectricFrustrate << 1701 } << 1702 else << 1703 { << 1704 fStatus = CoatedDielectricRefractio << 1705 } << 1706 << 1707 if (fSint1 > 0.0) { // incident << 1708 << 1709 alpha = cost1 - cost2 * (fRindex2 / << 1710 fNewMomentum = fOldMomentum + alpha << 1711 fNewMomentum = fNewMomentum.unit(); << 1712 A_paral = fNewMomentum.cross(A_tran << 1713 A_paral = A_paral.unit(); << 1714 E2_abs = std::sqrt(E2_total); << 1715 C_parl = E2_parl / E2_abs; << 1716 C_perp = E2_perp / E2_abs; << 1717 << 1718 fNewPolarization = C_parl * A_paral << 1719 << 1720 } << 1721 else << 1722 { // incident ray pe << 1723 fNewMomentum = fOldMomentum; << 1724 fNewPolarization = fOldPolarization << 1725 } << 1726 } << 1727 } << 1728 << 1729 fOldMomentum = fNewMomentum.unit(); << 1730 fOldPolarization = fNewPolarization.unit( << 1731 if ((fStatus == CoatedDielectricFrustrate << 1732 (fStatus == CoatedDielectricRefractio << 1733 { << 1734 done = (fNewMomentum * fGlobalNormal <= << 1735 } << 1736 else << 1737 { << 1738 done = (fNewMomentum * fGlobalNormal >= << 1739 } << 1740 << 1741 } while (!done); << 1742 } << 1743 << 1744 //....oooOO0OOooo........oooOO0OOooo........o << 1745 G4double G4OpBoundaryProcess::GetReflectivity << 1746 G4double E1_perp, << 1747 G4double E1_parl, << 1748 G4double wavelength, G4dou << 1749 G4complex Reflectivity, Reflectivity_TE, Re << 1750 G4double gammaTL, costTL; << 1751 << 1752 G4complex i(0, 1); << 1753 G4complex rTM, rTE; << 1754 G4complex r1toTL, rTLto2; << 1755 G4double k0 = 2 * pi / wavelength; << 1756 << 1757 // Angle > Angle limit << 1758 if (sinTL >= 1.0) { << 1759 if (fCoatedFrustratedTransmission) { //Fr << 1760 << 1761 if (cost1 > 0.0) << 1762 { << 1763 gammaTL = std::sqrt(fRindex1 * fRinde << 1764 fCoatedRindex * fCoatedRin << 1765 } << 1766 else << 1767 { << 1768 gammaTL = -std::sqrt(fRindex1 * fRind << 1769 fCoatedRindex * fCoatedRin << 1770 } << 1771 << 1772 // TE << 1773 r1toTL = (fRindex1 * cost1 - i * gammaT << 1774 rTLto2 = (i * gammaTL - fRindex2 * cost << 1775 if (cost1 != 0.0) << 1776 { << 1777 rTE = (r1toTL + rTLto2 * std::exp(-2 << 1778 (1.0 + r1toTL * rTLto2 * std << 1779 } << 1780 // TM << 1781 r1toTL = (fRindex1 * i * gammaTL - fCoa << 1782 (fRindex1 * i * gammaTL + f << 1783 rTLto2 = (fCoatedRindex * fCoatedRindex << 1784 (fCoatedRindex * fCoatedRin << 1785 if (cost1 != 0.0) << 1786 { << 1787 rTM = (r1toTL + rTLto2 * std::exp(-2 << 1788 (1.0 + r1toTL * rTLto2 * std << 1789 } << 1790 } << 1791 else << 1792 { //Total reflection << 1793 return(1.); << 1794 } << 1795 } << 1796 << 1797 // Angle <= Angle limit << 1798 else //if (sinTL < 1.0) << 1799 { << 1800 if (cost1 > 0.0) << 1801 { << 1802 costTL = std::sqrt(1. - sinTL * sinTL); << 1803 } << 1804 else << 1805 { << 1806 costTL = -std::sqrt(1. - sinTL * sinTL) << 1807 } << 1808 // TE << 1809 r1toTL = (fRindex1 * cost1 - fCoatedRinde << 1810 rTLto2 = (fCoatedRindex * costTL - fRinde << 1811 if (cost1 != 0.0) << 1812 { << 1813 rTE = (r1toTL + rTLto2 * std::exp(2.0 * << 1814 (1.0 + r1toTL * rTLto2 * std::exp << 1815 } << 1816 // TM << 1817 r1toTL = (fRindex1 * costTL - fCoatedRind << 1818 rTLto2 = (fCoatedRindex * cost2 - fRindex << 1819 if (cost1 != 0.0) << 1820 { << 1821 rTM = (r1toTL + rTLto2 * std::exp(2.0 * << 1822 (1.0 + r1toTL * rTLto2 * std::exp << 1823 } << 1824 } << 1825 << 1826 Reflectivity_TE = (rTE * conj(rTE)) * (E1_p << 1827 Reflectivity_TM = (rTM * conj(rTM)) * (E1_p << 1828 Reflectivity = Reflectivity_TE + Reflectivi << 1829 << 1830 return real(Reflectivity); << 1831 } 1475 } 1832 1476