Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/optical/src/G4OpBoundaryProcess.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/optical/src/G4OpBoundaryProcess.cc (Version 11.3.0) and /processes/optical/src/G4OpBoundaryProcess.cc (Version 11.0.p2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 //////////////////////////////////////////////     26 ////////////////////////////////////////////////////////////////////////
 27 // Optical Photon Boundary Process Class Imple     27 // Optical Photon Boundary Process Class Implementation
 28 //////////////////////////////////////////////     28 ////////////////////////////////////////////////////////////////////////
 29 //                                                 29 //
 30 // File:        G4OpBoundaryProcess.cc             30 // File:        G4OpBoundaryProcess.cc
 31 // Description: Discrete Process -- reflection     31 // Description: Discrete Process -- reflection/refraction at
 32 //                                  optical in     32 //                                  optical interfaces
 33 // Version:     1.1                                33 // Version:     1.1
 34 // Created:     1997-06-18                         34 // Created:     1997-06-18
 35 // Modified:    1998-05-25 - Correct parallel      35 // Modified:    1998-05-25 - Correct parallel component of polarization
 36 //                           (thanks to: Stefa     36 //                           (thanks to: Stefano Magni + Giovanni Pieri)
 37 //              1998-05-28 - NULL Rindex point     37 //              1998-05-28 - NULL Rindex pointer before reuse
 38 //                           (thanks to: Stefa     38 //                           (thanks to: Stefano Magni)
 39 //              1998-06-11 - delete *sint1 in      39 //              1998-06-11 - delete *sint1 in oblique reflection
 40 //                           (thanks to: Giova     40 //                           (thanks to: Giovanni Pieri)
 41 //              1998-06-19 - move from GetLoca     41 //              1998-06-19 - move from GetLocalExitNormal() to the new
 42 //                           method: GetLocalE     42 //                           method: GetLocalExitNormal(&valid) to get
 43 //                           the surface norma     43 //                           the surface normal in all cases
 44 //              1998-11-07 - NULL OpticalSurfa     44 //              1998-11-07 - NULL OpticalSurface pointer before use
 45 //                           comparison not sh     45 //                           comparison not sharp for: std::abs(cost1) < 1.0
 46 //                           remove sin1, sin2     46 //                           remove sin1, sin2 in lines 556,567
 47 //                           (thanks to Stefan     47 //                           (thanks to Stefano Magni)
 48 //              1999-10-10 - Accommodate chang     48 //              1999-10-10 - Accommodate changes done in DoAbsorption by
 49 //                           changing logic in     49 //                           changing logic in DielectricMetal
 50 //              2001-10-18 - avoid Linux (gcc-     50 //              2001-10-18 - avoid Linux (gcc-2.95.2) warning about variables
 51 //                           might be used uni     51 //                           might be used uninitialized in this function
 52 //                           moved E2_perp, E2     52 //                           moved E2_perp, E2_parl and E2_total out of 'if'
 53 //              2003-11-27 - Modified line 168     53 //              2003-11-27 - Modified line 168-9 to reflect changes made to
 54 //                           G4OpticalSurface      54 //                           G4OpticalSurface class ( by Fan Lei)
 55 //              2004-02-02 - Set theStatus = U     55 //              2004-02-02 - Set theStatus = Undefined at start of DoIt
 56 //              2005-07-28 - add G4ProcessType     56 //              2005-07-28 - add G4ProcessType to constructor
 57 //              2006-11-04 - add capability of     57 //              2006-11-04 - add capability of calculating the reflectivity
 58 //                           off a metal surfa     58 //                           off a metal surface by way of a complex index
 59 //                           of refraction - T     59 //                           of refraction - Thanks to Sehwook Lee and John
 60 //                           Hauptman (Dept. o     60 //                           Hauptman (Dept. of Physics - Iowa State Univ.)
 61 //              2009-11-10 - add capability of     61 //              2009-11-10 - add capability of simulating surface reflections
 62 //                           with Look-Up-Tabl     62 //                           with Look-Up-Tables (LUT) containing measured
 63 //                           optical reflectan     63 //                           optical reflectance for a variety of surface
 64 //                           treatments - Than     64 //                           treatments - Thanks to Martin Janecek and
 65 //                           William Moses (La     65 //                           William Moses (Lawrence Berkeley National Lab.)
 66 //              2013-06-01 - add the capabilit     66 //              2013-06-01 - add the capability of simulating the transmission
 67 //                           of a dichronic fi     67 //                           of a dichronic filter
 68 //              2017-02-24 - add capability of     68 //              2017-02-24 - add capability of simulating surface reflections
 69 //                           with Look-Up-Tabl     69 //                           with Look-Up-Tables (LUT) developed in DAVIS
 70 //                                                 70 //
 71 // Author:      Peter Gumplinger                   71 // Author:      Peter Gumplinger
 72 //    adopted from work by Werner Keil - April     72 //    adopted from work by Werner Keil - April 2/96
 73 //                                                 73 //
 74 //////////////////////////////////////////////     74 ////////////////////////////////////////////////////////////////////////
 75                                                    75 
 76 #include "G4OpBoundaryProcess.hh"                  76 #include "G4OpBoundaryProcess.hh"
 77                                                    77 
 78 #include "G4ios.hh"                                78 #include "G4ios.hh"
 79 #include "G4GeometryTolerance.hh"                  79 #include "G4GeometryTolerance.hh"
 80 #include "G4LogicalBorderSurface.hh"               80 #include "G4LogicalBorderSurface.hh"
 81 #include "G4LogicalSkinSurface.hh"                 81 #include "G4LogicalSkinSurface.hh"
 82 #include "G4OpProcessSubType.hh"                   82 #include "G4OpProcessSubType.hh"
 83 #include "G4OpticalParameters.hh"                  83 #include "G4OpticalParameters.hh"
 84 #include "G4ParallelWorldProcess.hh"               84 #include "G4ParallelWorldProcess.hh"
 85 #include "G4PhysicalConstants.hh"                  85 #include "G4PhysicalConstants.hh"
 86 #include "G4SystemOfUnits.hh"                      86 #include "G4SystemOfUnits.hh"
 87 #include "G4TransportationManager.hh"              87 #include "G4TransportationManager.hh"
 88 #include "G4VSensitiveDetector.hh"                 88 #include "G4VSensitiveDetector.hh"
 89                                                    89 
 90 //....oooOO0OOooo........oooOO0OOooo........oo     90 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 91 G4OpBoundaryProcess::G4OpBoundaryProcess(const     91 G4OpBoundaryProcess::G4OpBoundaryProcess(const G4String& processName,
 92                                          G4Pro <<  92                                          G4ProcessType type)
 93   : G4VDiscreteProcess(processName, ptype)     <<  93   : G4VDiscreteProcess(processName, type)
 94 {                                                  94 {
 95   Initialise();                                    95   Initialise();
 96                                                    96 
 97   if(verboseLevel > 0)                             97   if(verboseLevel > 0)
 98   {                                                98   {
 99     G4cout << GetProcessName() << " is created     99     G4cout << GetProcessName() << " is created " << G4endl;
100   }                                               100   }
101   SetProcessSubType(fOpBoundary);                 101   SetProcessSubType(fOpBoundary);
102                                                   102 
103   fStatus           = Undefined;                  103   fStatus           = Undefined;
104   fModel            = glisur;                     104   fModel            = glisur;
105   fFinish           = polished;                   105   fFinish           = polished;
106   fReflectivity     = 1.;                         106   fReflectivity     = 1.;
107   fEfficiency       = 0.;                         107   fEfficiency       = 0.;
108   fTransmittance    = 0.;                         108   fTransmittance    = 0.;
109   fSurfaceRoughness = 0.;                         109   fSurfaceRoughness = 0.;
110   fProb_sl          = 0.;                         110   fProb_sl          = 0.;
111   fProb_ss          = 0.;                         111   fProb_ss          = 0.;
112   fProb_bs          = 0.;                         112   fProb_bs          = 0.;
113                                                   113 
114   fRealRIndexMPV  = nullptr;                      114   fRealRIndexMPV  = nullptr;
115   fImagRIndexMPV  = nullptr;                      115   fImagRIndexMPV  = nullptr;
116   fMaterial1      = nullptr;                      116   fMaterial1      = nullptr;
117   fMaterial2      = nullptr;                      117   fMaterial2      = nullptr;
118   fOpticalSurface = nullptr;                      118   fOpticalSurface = nullptr;
119   fCarTolerance   = G4GeometryTolerance::GetIn    119   fCarTolerance   = G4GeometryTolerance::GetInstance()->GetSurfaceTolerance();
120                                                   120 
121   f_iTE = f_iTM   = 0;                            121   f_iTE = f_iTM   = 0;
122   fPhotonMomentum = 0.;                           122   fPhotonMomentum = 0.;
123   fRindex1 = fRindex2 = 1.;                       123   fRindex1 = fRindex2 = 1.;
124   fSint1              = 0.;                       124   fSint1              = 0.;
125   fDichroicVector     = nullptr;                  125   fDichroicVector     = nullptr;
126 }                                                 126 }
127                                                   127 
128 //....oooOO0OOooo........oooOO0OOooo........oo    128 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
129 G4OpBoundaryProcess::~G4OpBoundaryProcess() =  << 129 G4OpBoundaryProcess::~G4OpBoundaryProcess() {}
130                                                   130 
131 //....oooOO0OOooo........oooOO0OOooo........oo    131 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
132 void G4OpBoundaryProcess::PreparePhysicsTable(    132 void G4OpBoundaryProcess::PreparePhysicsTable(const G4ParticleDefinition&)
133 {                                                 133 {
134   Initialise();                                   134   Initialise();
135 }                                                 135 }
136                                                   136 
137 //....oooOO0OOooo........oooOO0OOooo........oo    137 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
138 void G4OpBoundaryProcess::Initialise()            138 void G4OpBoundaryProcess::Initialise()
139 {                                                 139 {
140   G4OpticalParameters* params = G4OpticalParam    140   G4OpticalParameters* params = G4OpticalParameters::Instance();
141   SetInvokeSD(params->GetBoundaryInvokeSD());     141   SetInvokeSD(params->GetBoundaryInvokeSD());
142   SetVerboseLevel(params->GetBoundaryVerboseLe    142   SetVerboseLevel(params->GetBoundaryVerboseLevel());
143 }                                                 143 }
144                                                   144 
145 //....oooOO0OOooo........oooOO0OOooo........oo    145 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
146 G4VParticleChange* G4OpBoundaryProcess::PostSt    146 G4VParticleChange* G4OpBoundaryProcess::PostStepDoIt(const G4Track& aTrack,
147                                                   147                                                      const G4Step& aStep)
148 {                                                 148 {
149   fStatus = Undefined;                            149   fStatus = Undefined;
150   aParticleChange.Initialize(aTrack);             150   aParticleChange.Initialize(aTrack);
151   aParticleChange.ProposeVelocity(aTrack.GetVe    151   aParticleChange.ProposeVelocity(aTrack.GetVelocity());
152                                                   152 
153   // Get hyperStep from  G4ParallelWorldProces    153   // Get hyperStep from  G4ParallelWorldProcess
154   //  NOTE: PostSetpDoIt of this process to be    154   //  NOTE: PostSetpDoIt of this process to be invoked after
155   //  G4ParallelWorldProcess!                     155   //  G4ParallelWorldProcess!
156   const G4Step* pStep = &aStep;                   156   const G4Step* pStep = &aStep;
157   const G4Step* hStep = G4ParallelWorldProcess    157   const G4Step* hStep = G4ParallelWorldProcess::GetHyperStep();
158   if(hStep != nullptr)                            158   if(hStep != nullptr)
159     pStep = hStep;                                159     pStep = hStep;
160                                                   160 
161   if(pStep->GetPostStepPoint()->GetStepStatus(    161   if(pStep->GetPostStepPoint()->GetStepStatus() == fGeomBoundary)
162   {                                               162   {
163     fMaterial1 = pStep->GetPreStepPoint()->Get    163     fMaterial1 = pStep->GetPreStepPoint()->GetMaterial();
164     fMaterial2 = pStep->GetPostStepPoint()->Ge    164     fMaterial2 = pStep->GetPostStepPoint()->GetMaterial();
165   }                                               165   }
166   else                                            166   else
167   {                                               167   {
168     fStatus = NotAtBoundary;                      168     fStatus = NotAtBoundary;
169     if(verboseLevel > 1)                          169     if(verboseLevel > 1)
170       BoundaryProcessVerbose();                   170       BoundaryProcessVerbose();
171     return G4VDiscreteProcess::PostStepDoIt(aT    171     return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
172   }                                               172   }
173                                                   173 
174   G4VPhysicalVolume* thePrePV  = pStep->GetPre    174   G4VPhysicalVolume* thePrePV  = pStep->GetPreStepPoint()->GetPhysicalVolume();
175   G4VPhysicalVolume* thePostPV = pStep->GetPos    175   G4VPhysicalVolume* thePostPV = pStep->GetPostStepPoint()->GetPhysicalVolume();
176                                                   176 
177   if(verboseLevel > 1)                            177   if(verboseLevel > 1)
178   {                                               178   {
179     G4cout << " Photon at Boundary! " << G4end    179     G4cout << " Photon at Boundary! " << G4endl;
180     if(thePrePV != nullptr)                       180     if(thePrePV != nullptr)
181       G4cout << " thePrePV:  " << thePrePV->Ge    181       G4cout << " thePrePV:  " << thePrePV->GetName() << G4endl;
182     if(thePostPV != nullptr)                      182     if(thePostPV != nullptr)
183       G4cout << " thePostPV: " << thePostPV->G    183       G4cout << " thePostPV: " << thePostPV->GetName() << G4endl;
184   }                                               184   }
185                                                   185 
186   G4double stepLength = aTrack.GetStepLength() << 186   if(aTrack.GetStepLength() <= fCarTolerance)
187   if(stepLength <= fCarTolerance)              << 
188   {                                               187   {
189     fStatus = StepTooSmall;                       188     fStatus = StepTooSmall;
190     if(verboseLevel > 1)                          189     if(verboseLevel > 1)
191       BoundaryProcessVerbose();                   190       BoundaryProcessVerbose();
192                                                   191 
193     G4MaterialPropertyVector* groupvel = nullp    192     G4MaterialPropertyVector* groupvel = nullptr;
194     G4MaterialPropertiesTable* aMPT = fMateria    193     G4MaterialPropertiesTable* aMPT = fMaterial2->GetMaterialPropertiesTable();
195     if(aMPT != nullptr)                           194     if(aMPT != nullptr)
196     {                                             195     {
197       groupvel = aMPT->GetProperty(kGROUPVEL);    196       groupvel = aMPT->GetProperty(kGROUPVEL);
198     }                                             197     }
199                                                << 
200     if(groupvel != nullptr)                       198     if(groupvel != nullptr)
201     {                                             199     {
202       aParticleChange.ProposeVelocity(            200       aParticleChange.ProposeVelocity(
203         groupvel->Value(fPhotonMomentum, idx_g    201         groupvel->Value(fPhotonMomentum, idx_groupvel));
204     }                                             202     }
205     return G4VDiscreteProcess::PostStepDoIt(aT    203     return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
206   }                                               204   }
207   else if (stepLength <= 10.*fCarTolerance &&  << 
208   {  // see bug 2510                           << 
209     ++fNumSmallStepWarnings;                   << 
210     if(verboseLevel > 0)                       << 
211     {                                          << 
212       G4ExceptionDescription ed;               << 
213       ed << "G4OpBoundaryProcess: "            << 
214          << "Opticalphoton step length: " << s << 
215          << "This is larger than the threshold << 
216             "to set status StepTooSmall." << G << 
217          << "Boundary scattering may be incorr << 
218       if(fNumSmallStepWarnings == 10)          << 
219       {                                        << 
220         ed << G4endl << "*** Step size warning << 
221       }                                        << 
222       G4Exception("G4OpBoundaryProcess", "OpBo << 
223     }                                          << 
224   }                                            << 
225                                                   205 
226   const G4DynamicParticle* aParticle = aTrack.    206   const G4DynamicParticle* aParticle = aTrack.GetDynamicParticle();
227                                                   207 
228   fPhotonMomentum  = aParticle->GetTotalMoment    208   fPhotonMomentum  = aParticle->GetTotalMomentum();
229   fOldMomentum     = aParticle->GetMomentumDir    209   fOldMomentum     = aParticle->GetMomentumDirection();
230   fOldPolarization = aParticle->GetPolarizatio    210   fOldPolarization = aParticle->GetPolarization();
231                                                   211 
232   if(verboseLevel > 1)                            212   if(verboseLevel > 1)
233   {                                               213   {
234     G4cout << " Old Momentum Direction: " << f    214     G4cout << " Old Momentum Direction: " << fOldMomentum << G4endl
235            << " Old Polarization:       " << f    215            << " Old Polarization:       " << fOldPolarization << G4endl;
236   }                                               216   }
237                                                   217 
238   G4ThreeVector theGlobalPoint = pStep->GetPos    218   G4ThreeVector theGlobalPoint = pStep->GetPostStepPoint()->GetPosition();
239   G4bool valid;                                   219   G4bool valid;
240                                                   220 
241   // ID of Navigator which limits step            221   // ID of Navigator which limits step
242   G4int hNavId = G4ParallelWorldProcess::GetHy    222   G4int hNavId = G4ParallelWorldProcess::GetHypNavigatorID();
243   auto iNav    = G4TransportationManager::GetT    223   auto iNav    = G4TransportationManager::GetTransportationManager()
244                 ->GetActiveNavigatorsIterator(    224                 ->GetActiveNavigatorsIterator();
245   fGlobalNormal = (iNav[hNavId])->GetGlobalExi    225   fGlobalNormal = (iNav[hNavId])->GetGlobalExitNormal(theGlobalPoint, &valid);
246                                                   226 
247   if(valid)                                       227   if(valid)
248   {                                               228   {
249     fGlobalNormal = -fGlobalNormal;               229     fGlobalNormal = -fGlobalNormal;
250   }                                               230   }
251   else                                            231   else
252   {                                               232   {
253     G4ExceptionDescription ed;                    233     G4ExceptionDescription ed;
254     ed << " G4OpBoundaryProcess/PostStepDoIt()    234     ed << " G4OpBoundaryProcess/PostStepDoIt(): "
255        << " The Navigator reports that it retu    235        << " The Navigator reports that it returned an invalid normal" << G4endl;
256     G4Exception(                                  236     G4Exception(
257       "G4OpBoundaryProcess::PostStepDoIt", "Op    237       "G4OpBoundaryProcess::PostStepDoIt", "OpBoun01", EventMustBeAborted, ed,
258       "Invalid Surface Normal - Geometry must     238       "Invalid Surface Normal - Geometry must return valid surface normal");
259   }                                               239   }
260                                                   240 
261   if(fOldMomentum * fGlobalNormal > 0.0)          241   if(fOldMomentum * fGlobalNormal > 0.0)
262   {                                               242   {
263 #ifdef G4OPTICAL_DEBUG                            243 #ifdef G4OPTICAL_DEBUG
264     G4ExceptionDescription ed;                    244     G4ExceptionDescription ed;
265     ed << " G4OpBoundaryProcess/PostStepDoIt()    245     ed << " G4OpBoundaryProcess/PostStepDoIt(): fGlobalNormal points in a "
266           "wrong direction. "                     246           "wrong direction. "
267        << G4endl                                  247        << G4endl
268        << "   The momentum of the photon arriv    248        << "   The momentum of the photon arriving at interface (oldMomentum)"
269        << "   must exit the volume cross in th    249        << "   must exit the volume cross in the step. " << G4endl
270        << "   So it MUST have dot < 0 with the    250        << "   So it MUST have dot < 0 with the normal that Exits the new "
271           "volume (globalNormal)."                251           "volume (globalNormal)."
272        << G4endl << "   >> The dot product of     252        << G4endl << "   >> The dot product of oldMomentum and global Normal is "
273        << fOldMomentum * fGlobalNormal << G4en    253        << fOldMomentum * fGlobalNormal << G4endl
274        << "     Old Momentum  (during step)       254        << "     Old Momentum  (during step)     = " << fOldMomentum << G4endl
275        << "     Global Normal (Exiting New Vol    255        << "     Global Normal (Exiting New Vol) = " << fGlobalNormal << G4endl
276        << G4endl;                                 256        << G4endl;
277     G4Exception("G4OpBoundaryProcess::PostStep    257     G4Exception("G4OpBoundaryProcess::PostStepDoIt", "OpBoun02",
278                 EventMustBeAborted,  // Or Jus    258                 EventMustBeAborted,  // Or JustWarning to see if it happens
279                                      // repeat    259                                      // repeatedly on one ray
280                 ed,                               260                 ed,
281                 "Invalid Surface Normal - Geom    261                 "Invalid Surface Normal - Geometry must return valid surface "
282                 "normal pointing in the right     262                 "normal pointing in the right direction");
283 #else                                             263 #else
284     fGlobalNormal = -fGlobalNormal;               264     fGlobalNormal = -fGlobalNormal;
285 #endif                                            265 #endif
286   }                                               266   }
287                                                   267 
288   G4MaterialPropertyVector* rIndexMPV = nullpt    268   G4MaterialPropertyVector* rIndexMPV = nullptr;
289   G4MaterialPropertiesTable* MPT = fMaterial1-    269   G4MaterialPropertiesTable* MPT = fMaterial1->GetMaterialPropertiesTable();
290   if(MPT != nullptr)                              270   if(MPT != nullptr)
291   {                                               271   {
292     rIndexMPV = MPT->GetProperty(kRINDEX);        272     rIndexMPV = MPT->GetProperty(kRINDEX);
293   }                                               273   }
294   if(rIndexMPV != nullptr)                        274   if(rIndexMPV != nullptr)
295   {                                               275   {
296     fRindex1 = rIndexMPV->Value(fPhotonMomentu    276     fRindex1 = rIndexMPV->Value(fPhotonMomentum, idx_rindex1);
297   }                                               277   }
298   else                                            278   else
299   {                                               279   {
300     fStatus = NoRINDEX;                           280     fStatus = NoRINDEX;
301     if(verboseLevel > 1)                          281     if(verboseLevel > 1)
302       BoundaryProcessVerbose();                   282       BoundaryProcessVerbose();
303     aParticleChange.ProposeLocalEnergyDeposit(    283     aParticleChange.ProposeLocalEnergyDeposit(fPhotonMomentum);
304     aParticleChange.ProposeTrackStatus(fStopAn    284     aParticleChange.ProposeTrackStatus(fStopAndKill);
305     return G4VDiscreteProcess::PostStepDoIt(aT    285     return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
306   }                                               286   }
307                                                   287 
308   fReflectivity      = 1.;                        288   fReflectivity      = 1.;
309   fEfficiency        = 0.;                        289   fEfficiency        = 0.;
310   fTransmittance     = 0.;                        290   fTransmittance     = 0.;
311   fSurfaceRoughness  = 0.;                        291   fSurfaceRoughness  = 0.;
312   fModel             = glisur;                    292   fModel             = glisur;
313   fFinish            = polished;                  293   fFinish            = polished;
314   G4SurfaceType type = dielectric_dielectric;     294   G4SurfaceType type = dielectric_dielectric;
315                                                   295 
316   rIndexMPV       = nullptr;                      296   rIndexMPV       = nullptr;
317   fOpticalSurface = nullptr;                      297   fOpticalSurface = nullptr;
318                                                   298 
319   G4LogicalSurface* surface =                     299   G4LogicalSurface* surface =
320     G4LogicalBorderSurface::GetSurface(thePreP    300     G4LogicalBorderSurface::GetSurface(thePrePV, thePostPV);
321   if(surface == nullptr)                          301   if(surface == nullptr)
322   {                                               302   {
323     if(thePostPV->GetMotherLogical() == thePre    303     if(thePostPV->GetMotherLogical() == thePrePV->GetLogicalVolume())
324     {                                             304     {
325       surface = G4LogicalSkinSurface::GetSurfa    305       surface = G4LogicalSkinSurface::GetSurface(thePostPV->GetLogicalVolume());
326       if(surface == nullptr)                      306       if(surface == nullptr)
327       {                                           307       {
328         surface =                                 308         surface =
329           G4LogicalSkinSurface::GetSurface(the    309           G4LogicalSkinSurface::GetSurface(thePrePV->GetLogicalVolume());
330       }                                           310       }
331     }                                             311     }
332     else                                          312     else
333     {                                             313     {
334       surface = G4LogicalSkinSurface::GetSurfa    314       surface = G4LogicalSkinSurface::GetSurface(thePrePV->GetLogicalVolume());
335       if(surface == nullptr)                      315       if(surface == nullptr)
336       {                                           316       {
337         surface =                                 317         surface =
338           G4LogicalSkinSurface::GetSurface(the    318           G4LogicalSkinSurface::GetSurface(thePostPV->GetLogicalVolume());
339       }                                           319       }
340     }                                             320     }
341   }                                               321   }
342                                                   322 
343   if(surface != nullptr)                          323   if(surface != nullptr)
344   {                                               324   {
345     fOpticalSurface =                             325     fOpticalSurface =
346       dynamic_cast<G4OpticalSurface*>(surface-    326       dynamic_cast<G4OpticalSurface*>(surface->GetSurfaceProperty());
347   }                                               327   }
348   if(fOpticalSurface != nullptr)                  328   if(fOpticalSurface != nullptr)
349   {                                               329   {
350     type    = fOpticalSurface->GetType();         330     type    = fOpticalSurface->GetType();
351     fModel  = fOpticalSurface->GetModel();        331     fModel  = fOpticalSurface->GetModel();
352     fFinish = fOpticalSurface->GetFinish();       332     fFinish = fOpticalSurface->GetFinish();
353                                                   333 
354     G4MaterialPropertiesTable* sMPT =             334     G4MaterialPropertiesTable* sMPT =
355       fOpticalSurface->GetMaterialPropertiesTa    335       fOpticalSurface->GetMaterialPropertiesTable();
356     if(sMPT != nullptr)                           336     if(sMPT != nullptr)
357     {                                             337     {
358       if(fFinish == polishedbackpainted || fFi    338       if(fFinish == polishedbackpainted || fFinish == groundbackpainted)
359       {                                           339       {
360         rIndexMPV = sMPT->GetProperty(kRINDEX)    340         rIndexMPV = sMPT->GetProperty(kRINDEX);
361         if(rIndexMPV != nullptr)                  341         if(rIndexMPV != nullptr)
362         {                                         342         {
363           fRindex2 = rIndexMPV->Value(fPhotonM    343           fRindex2 = rIndexMPV->Value(fPhotonMomentum, idx_rindex_surface);
364         }                                         344         }
365         else                                      345         else
366         {                                         346         {
367           fStatus = NoRINDEX;                     347           fStatus = NoRINDEX;
368           if(verboseLevel > 1)                    348           if(verboseLevel > 1)
369             BoundaryProcessVerbose();             349             BoundaryProcessVerbose();
370           aParticleChange.ProposeLocalEnergyDe    350           aParticleChange.ProposeLocalEnergyDeposit(fPhotonMomentum);
371           aParticleChange.ProposeTrackStatus(f    351           aParticleChange.ProposeTrackStatus(fStopAndKill);
372           return G4VDiscreteProcess::PostStepD    352           return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
373         }                                         353         }
374       }                                           354       }
375                                                   355 
376       fRealRIndexMPV = sMPT->GetProperty(kREAL    356       fRealRIndexMPV = sMPT->GetProperty(kREALRINDEX);
377       fImagRIndexMPV = sMPT->GetProperty(kIMAG    357       fImagRIndexMPV = sMPT->GetProperty(kIMAGINARYRINDEX);
378       f_iTE = f_iTM = 1;                          358       f_iTE = f_iTM = 1;
379                                                   359 
380       G4MaterialPropertyVector* pp;               360       G4MaterialPropertyVector* pp;
381       if((pp = sMPT->GetProperty(kREFLECTIVITY    361       if((pp = sMPT->GetProperty(kREFLECTIVITY)))
382       {                                           362       {
383         fReflectivity = pp->Value(fPhotonMomen    363         fReflectivity = pp->Value(fPhotonMomentum, idx_reflect);
384       }                                           364       }
385       else if(fRealRIndexMPV && fImagRIndexMPV    365       else if(fRealRIndexMPV && fImagRIndexMPV)
386       {                                           366       {
387         CalculateReflectivity();                  367         CalculateReflectivity();
388       }                                           368       }
389                                                   369 
390       if((pp = sMPT->GetProperty(kEFFICIENCY))    370       if((pp = sMPT->GetProperty(kEFFICIENCY)))
391       {                                           371       {
392         fEfficiency = pp->Value(fPhotonMomentu    372         fEfficiency = pp->Value(fPhotonMomentum, idx_eff);
393       }                                           373       }
394       if((pp = sMPT->GetProperty(kTRANSMITTANC    374       if((pp = sMPT->GetProperty(kTRANSMITTANCE)))
395       {                                           375       {
396         fTransmittance = pp->Value(fPhotonMome    376         fTransmittance = pp->Value(fPhotonMomentum, idx_trans);
397       }                                           377       }
398       if(sMPT->ConstPropertyExists(kSURFACEROU    378       if(sMPT->ConstPropertyExists(kSURFACEROUGHNESS))
399       {                                           379       {
400         fSurfaceRoughness = sMPT->GetConstProp    380         fSurfaceRoughness = sMPT->GetConstProperty(kSURFACEROUGHNESS);
401       }                                           381       }
402                                                   382 
403       if(fModel == unified)                       383       if(fModel == unified)
404       {                                           384       {
405         fProb_sl = (pp = sMPT->GetProperty(kSP    385         fProb_sl = (pp = sMPT->GetProperty(kSPECULARLOBECONSTANT))
406                      ? pp->Value(fPhotonMoment    386                      ? pp->Value(fPhotonMomentum, idx_lobe)
407                      : 0.;                        387                      : 0.;
408         fProb_ss = (pp = sMPT->GetProperty(kSP    388         fProb_ss = (pp = sMPT->GetProperty(kSPECULARSPIKECONSTANT))
409                      ? pp->Value(fPhotonMoment    389                      ? pp->Value(fPhotonMomentum, idx_spike)
410                      : 0.;                        390                      : 0.;
411         fProb_bs = (pp = sMPT->GetProperty(kBA    391         fProb_bs = (pp = sMPT->GetProperty(kBACKSCATTERCONSTANT))
412                      ? pp->Value(fPhotonMoment    392                      ? pp->Value(fPhotonMomentum, idx_back)
413                      : 0.;                        393                      : 0.;
414       }                                           394       }
415     }  // end of if(sMPT)                         395     }  // end of if(sMPT)
416     else if(fFinish == polishedbackpainted ||     396     else if(fFinish == polishedbackpainted || fFinish == groundbackpainted)
417     {                                             397     {
418       aParticleChange.ProposeLocalEnergyDeposi    398       aParticleChange.ProposeLocalEnergyDeposit(fPhotonMomentum);
419       aParticleChange.ProposeTrackStatus(fStop    399       aParticleChange.ProposeTrackStatus(fStopAndKill);
420       return G4VDiscreteProcess::PostStepDoIt(    400       return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
421     }                                             401     }
422   }  // end of if(fOpticalSurface)                402   }  // end of if(fOpticalSurface)
423                                                   403 
424   //  DIELECTRIC-DIELECTRIC                       404   //  DIELECTRIC-DIELECTRIC
425   if(type == dielectric_dielectric)               405   if(type == dielectric_dielectric)
426   {                                               406   {
427     if(fFinish == polished || fFinish == groun    407     if(fFinish == polished || fFinish == ground)
428     {                                             408     {
429       if(fMaterial1 == fMaterial2)                409       if(fMaterial1 == fMaterial2)
430       {                                           410       {
431         fStatus = SameMaterial;                   411         fStatus = SameMaterial;
432         if(verboseLevel > 1)                      412         if(verboseLevel > 1)
433           BoundaryProcessVerbose();               413           BoundaryProcessVerbose();
434         return G4VDiscreteProcess::PostStepDoI    414         return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
435       }                                           415       }
436       MPT       = fMaterial2->GetMaterialPrope << 416       MPT = fMaterial2->GetMaterialPropertiesTable();
437       rIndexMPV = nullptr;                        417       rIndexMPV = nullptr;
438       if(MPT != nullptr)                          418       if(MPT != nullptr)
439       {                                           419       {
440         rIndexMPV = MPT->GetProperty(kRINDEX);    420         rIndexMPV = MPT->GetProperty(kRINDEX);
441       }                                           421       }
442       if(rIndexMPV != nullptr)                    422       if(rIndexMPV != nullptr)
443       {                                           423       {
444         fRindex2 = rIndexMPV->Value(fPhotonMom    424         fRindex2 = rIndexMPV->Value(fPhotonMomentum, idx_rindex2);
445       }                                           425       }
446       else                                        426       else
447       {                                           427       {
448         fStatus = NoRINDEX;                       428         fStatus = NoRINDEX;
449         if(verboseLevel > 1)                      429         if(verboseLevel > 1)
450           BoundaryProcessVerbose();               430           BoundaryProcessVerbose();
451         aParticleChange.ProposeLocalEnergyDepo    431         aParticleChange.ProposeLocalEnergyDeposit(fPhotonMomentum);
452         aParticleChange.ProposeTrackStatus(fSt    432         aParticleChange.ProposeTrackStatus(fStopAndKill);
453         return G4VDiscreteProcess::PostStepDoI    433         return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
454       }                                           434       }
455     }                                             435     }
456     if(fFinish == polishedbackpainted || fFini    436     if(fFinish == polishedbackpainted || fFinish == groundbackpainted)
457     {                                             437     {
458       DielectricDielectric();                     438       DielectricDielectric();
459     }                                             439     }
460     else                                          440     else
461     {                                             441     {
462       G4double rand = G4UniformRand();            442       G4double rand = G4UniformRand();
463       if(rand > fReflectivity + fTransmittance    443       if(rand > fReflectivity + fTransmittance)
464       {                                           444       {
465         DoAbsorption();                           445         DoAbsorption();
466       }                                           446       }
467       else if(rand > fReflectivity)               447       else if(rand > fReflectivity)
468       {                                           448       {
469         fStatus          = Transmission;          449         fStatus          = Transmission;
470         fNewMomentum     = fOldMomentum;          450         fNewMomentum     = fOldMomentum;
471         fNewPolarization = fOldPolarization;      451         fNewPolarization = fOldPolarization;
472       }                                           452       }
473       else                                        453       else
474       {                                           454       {
475         if(fFinish == polishedfrontpainted)       455         if(fFinish == polishedfrontpainted)
476         {                                         456         {
477           DoReflection();                         457           DoReflection();
478         }                                         458         }
479         else if(fFinish == groundfrontpainted)    459         else if(fFinish == groundfrontpainted)
480         {                                         460         {
481           fStatus = LambertianReflection;         461           fStatus = LambertianReflection;
482           DoReflection();                         462           DoReflection();
483         }                                         463         }
484         else                                      464         else
485         {                                         465         {
486           DielectricDielectric();                 466           DielectricDielectric();
487         }                                         467         }
488       }                                           468       }
489     }                                             469     }
490   }                                               470   }
491   else if(type == dielectric_metal)               471   else if(type == dielectric_metal)
492   {                                               472   {
493     DielectricMetal();                            473     DielectricMetal();
494   }                                               474   }
495   else if(type == dielectric_LUT)                 475   else if(type == dielectric_LUT)
496   {                                               476   {
497     DielectricLUT();                              477     DielectricLUT();
498   }                                               478   }
499   else if(type == dielectric_LUTDAVIS)            479   else if(type == dielectric_LUTDAVIS)
500   {                                               480   {
501     DielectricLUTDAVIS();                         481     DielectricLUTDAVIS();
502   }                                               482   }
503   else if(type == dielectric_dichroic)            483   else if(type == dielectric_dichroic)
504   {                                               484   {
505     DielectricDichroic();                         485     DielectricDichroic();
506   }                                               486   }
507   else if(type == coated)                      << 
508   {                                            << 
509     CoatedDielectricDielectric();              << 
510   }                                            << 
511   else                                            487   else
512   {                                               488   {
513     if(fNumBdryTypeWarnings <= 10)             << 489     G4ExceptionDescription ed;
514     {                                          << 490     ed << " PostStepDoIt(): Illegal boundary type." << G4endl;
515       ++fNumBdryTypeWarnings;                  << 491     G4Exception("G4OpBoundaryProcess", "OpBoun04", JustWarning, ed);
516       if(verboseLevel > 0)                     << 
517       {                                        << 
518         G4ExceptionDescription ed;             << 
519         ed << " PostStepDoIt(): Illegal bounda << 
520         if(fNumBdryTypeWarnings == 10)         << 
521         {                                      << 
522           ed << "** Boundary type warnings sto << 
523         }                                      << 
524         G4Exception("G4OpBoundaryProcess", "Op << 
525       }                                        << 
526     }                                          << 
527     return G4VDiscreteProcess::PostStepDoIt(aT    492     return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
528   }                                               493   }
529                                                   494 
530   fNewMomentum     = fNewMomentum.unit();         495   fNewMomentum     = fNewMomentum.unit();
531   fNewPolarization = fNewPolarization.unit();     496   fNewPolarization = fNewPolarization.unit();
532                                                   497 
533   if(verboseLevel > 1)                            498   if(verboseLevel > 1)
534   {                                               499   {
535     G4cout << " New Momentum Direction: " << f    500     G4cout << " New Momentum Direction: " << fNewMomentum << G4endl
536            << " New Polarization:       " << f    501            << " New Polarization:       " << fNewPolarization << G4endl;
537     BoundaryProcessVerbose();                     502     BoundaryProcessVerbose();
538   }                                               503   }
539                                                   504 
540   aParticleChange.ProposeMomentumDirection(fNe    505   aParticleChange.ProposeMomentumDirection(fNewMomentum);
541   aParticleChange.ProposePolarization(fNewPola    506   aParticleChange.ProposePolarization(fNewPolarization);
542                                                   507 
543   if(fStatus == FresnelRefraction || fStatus =    508   if(fStatus == FresnelRefraction || fStatus == Transmission)
544   {                                               509   {
545     // not all surface types check that fMater    510     // not all surface types check that fMaterial2 has an MPT
546     G4MaterialPropertiesTable* aMPT = fMateria    511     G4MaterialPropertiesTable* aMPT = fMaterial2->GetMaterialPropertiesTable();
547     G4MaterialPropertyVector* groupvel = nullp    512     G4MaterialPropertyVector* groupvel = nullptr;
548     if(aMPT != nullptr)                           513     if(aMPT != nullptr)
549     {                                             514     {
550       groupvel = aMPT->GetProperty(kGROUPVEL);    515       groupvel = aMPT->GetProperty(kGROUPVEL);
551     }                                             516     }
552     if(groupvel != nullptr)                       517     if(groupvel != nullptr)
553     {                                             518     {
554       aParticleChange.ProposeVelocity(            519       aParticleChange.ProposeVelocity(
555         groupvel->Value(fPhotonMomentum, idx_g    520         groupvel->Value(fPhotonMomentum, idx_groupvel));
556     }                                             521     }
557   }                                               522   }
558                                                   523 
559   if(fStatus == Detection && fInvokeSD)           524   if(fStatus == Detection && fInvokeSD)
560     InvokeSD(pStep);                              525     InvokeSD(pStep);
561   return G4VDiscreteProcess::PostStepDoIt(aTra    526   return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
562 }                                                 527 }
563                                                   528 
564 //....oooOO0OOooo........oooOO0OOooo........oo    529 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
565 void G4OpBoundaryProcess::BoundaryProcessVerbo    530 void G4OpBoundaryProcess::BoundaryProcessVerbose() const
566 {                                                 531 {
567   G4cout << " *** ";                              532   G4cout << " *** ";
568   if(fStatus == Undefined)                        533   if(fStatus == Undefined)
569     G4cout << "Undefined";                        534     G4cout << "Undefined";
570   else if(fStatus == Transmission)                535   else if(fStatus == Transmission)
571     G4cout << "Transmission";                     536     G4cout << "Transmission";
572   else if(fStatus == FresnelRefraction)           537   else if(fStatus == FresnelRefraction)
573     G4cout << "FresnelRefraction";                538     G4cout << "FresnelRefraction";
574   else if(fStatus == FresnelReflection)           539   else if(fStatus == FresnelReflection)
575     G4cout << "FresnelReflection";                540     G4cout << "FresnelReflection";
576   else if(fStatus == TotalInternalReflection)     541   else if(fStatus == TotalInternalReflection)
577     G4cout << "TotalInternalReflection";          542     G4cout << "TotalInternalReflection";
578   else if(fStatus == LambertianReflection)        543   else if(fStatus == LambertianReflection)
579     G4cout << "LambertianReflection";             544     G4cout << "LambertianReflection";
580   else if(fStatus == LobeReflection)              545   else if(fStatus == LobeReflection)
581     G4cout << "LobeReflection";                   546     G4cout << "LobeReflection";
582   else if(fStatus == SpikeReflection)             547   else if(fStatus == SpikeReflection)
583     G4cout << "SpikeReflection";                  548     G4cout << "SpikeReflection";
584   else if(fStatus == BackScattering)              549   else if(fStatus == BackScattering)
585     G4cout << "BackScattering";                   550     G4cout << "BackScattering";
586   else if(fStatus == PolishedLumirrorAirReflec    551   else if(fStatus == PolishedLumirrorAirReflection)
587     G4cout << "PolishedLumirrorAirReflection";    552     G4cout << "PolishedLumirrorAirReflection";
588   else if(fStatus == PolishedLumirrorGlueRefle    553   else if(fStatus == PolishedLumirrorGlueReflection)
589     G4cout << "PolishedLumirrorGlueReflection"    554     G4cout << "PolishedLumirrorGlueReflection";
590   else if(fStatus == PolishedAirReflection)       555   else if(fStatus == PolishedAirReflection)
591     G4cout << "PolishedAirReflection";            556     G4cout << "PolishedAirReflection";
592   else if(fStatus == PolishedTeflonAirReflecti    557   else if(fStatus == PolishedTeflonAirReflection)
593     G4cout << "PolishedTeflonAirReflection";      558     G4cout << "PolishedTeflonAirReflection";
594   else if(fStatus == PolishedTiOAirReflection)    559   else if(fStatus == PolishedTiOAirReflection)
595     G4cout << "PolishedTiOAirReflection";         560     G4cout << "PolishedTiOAirReflection";
596   else if(fStatus == PolishedTyvekAirReflectio    561   else if(fStatus == PolishedTyvekAirReflection)
597     G4cout << "PolishedTyvekAirReflection";       562     G4cout << "PolishedTyvekAirReflection";
598   else if(fStatus == PolishedVM2000AirReflecti    563   else if(fStatus == PolishedVM2000AirReflection)
599     G4cout << "PolishedVM2000AirReflection";      564     G4cout << "PolishedVM2000AirReflection";
600   else if(fStatus == PolishedVM2000GlueReflect    565   else if(fStatus == PolishedVM2000GlueReflection)
601     G4cout << "PolishedVM2000GlueReflection";     566     G4cout << "PolishedVM2000GlueReflection";
602   else if(fStatus == EtchedLumirrorAirReflecti    567   else if(fStatus == EtchedLumirrorAirReflection)
603     G4cout << "EtchedLumirrorAirReflection";      568     G4cout << "EtchedLumirrorAirReflection";
604   else if(fStatus == EtchedLumirrorGlueReflect    569   else if(fStatus == EtchedLumirrorGlueReflection)
605     G4cout << "EtchedLumirrorGlueReflection";     570     G4cout << "EtchedLumirrorGlueReflection";
606   else if(fStatus == EtchedAirReflection)         571   else if(fStatus == EtchedAirReflection)
607     G4cout << "EtchedAirReflection";              572     G4cout << "EtchedAirReflection";
608   else if(fStatus == EtchedTeflonAirReflection    573   else if(fStatus == EtchedTeflonAirReflection)
609     G4cout << "EtchedTeflonAirReflection";        574     G4cout << "EtchedTeflonAirReflection";
610   else if(fStatus == EtchedTiOAirReflection)      575   else if(fStatus == EtchedTiOAirReflection)
611     G4cout << "EtchedTiOAirReflection";           576     G4cout << "EtchedTiOAirReflection";
612   else if(fStatus == EtchedTyvekAirReflection)    577   else if(fStatus == EtchedTyvekAirReflection)
613     G4cout << "EtchedTyvekAirReflection";         578     G4cout << "EtchedTyvekAirReflection";
614   else if(fStatus == EtchedVM2000AirReflection    579   else if(fStatus == EtchedVM2000AirReflection)
615     G4cout << "EtchedVM2000AirReflection";        580     G4cout << "EtchedVM2000AirReflection";
616   else if(fStatus == EtchedVM2000GlueReflectio    581   else if(fStatus == EtchedVM2000GlueReflection)
617     G4cout << "EtchedVM2000GlueReflection";       582     G4cout << "EtchedVM2000GlueReflection";
618   else if(fStatus == GroundLumirrorAirReflecti    583   else if(fStatus == GroundLumirrorAirReflection)
619     G4cout << "GroundLumirrorAirReflection";      584     G4cout << "GroundLumirrorAirReflection";
620   else if(fStatus == GroundLumirrorGlueReflect    585   else if(fStatus == GroundLumirrorGlueReflection)
621     G4cout << "GroundLumirrorGlueReflection";     586     G4cout << "GroundLumirrorGlueReflection";
622   else if(fStatus == GroundAirReflection)         587   else if(fStatus == GroundAirReflection)
623     G4cout << "GroundAirReflection";              588     G4cout << "GroundAirReflection";
624   else if(fStatus == GroundTeflonAirReflection    589   else if(fStatus == GroundTeflonAirReflection)
625     G4cout << "GroundTeflonAirReflection";        590     G4cout << "GroundTeflonAirReflection";
626   else if(fStatus == GroundTiOAirReflection)      591   else if(fStatus == GroundTiOAirReflection)
627     G4cout << "GroundTiOAirReflection";           592     G4cout << "GroundTiOAirReflection";
628   else if(fStatus == GroundTyvekAirReflection)    593   else if(fStatus == GroundTyvekAirReflection)
629     G4cout << "GroundTyvekAirReflection";         594     G4cout << "GroundTyvekAirReflection";
630   else if(fStatus == GroundVM2000AirReflection    595   else if(fStatus == GroundVM2000AirReflection)
631     G4cout << "GroundVM2000AirReflection";        596     G4cout << "GroundVM2000AirReflection";
632   else if(fStatus == GroundVM2000GlueReflectio    597   else if(fStatus == GroundVM2000GlueReflection)
633     G4cout << "GroundVM2000GlueReflection";       598     G4cout << "GroundVM2000GlueReflection";
634   else if(fStatus == Absorption)                  599   else if(fStatus == Absorption)
635     G4cout << "Absorption";                       600     G4cout << "Absorption";
636   else if(fStatus == Detection)                   601   else if(fStatus == Detection)
637     G4cout << "Detection";                        602     G4cout << "Detection";
638   else if(fStatus == NotAtBoundary)               603   else if(fStatus == NotAtBoundary)
639     G4cout << "NotAtBoundary";                    604     G4cout << "NotAtBoundary";
640   else if(fStatus == SameMaterial)                605   else if(fStatus == SameMaterial)
641     G4cout << "SameMaterial";                     606     G4cout << "SameMaterial";
642   else if(fStatus == StepTooSmall)                607   else if(fStatus == StepTooSmall)
643     G4cout << "StepTooSmall";                     608     G4cout << "StepTooSmall";
644   else if(fStatus == NoRINDEX)                    609   else if(fStatus == NoRINDEX)
645     G4cout << "NoRINDEX";                         610     G4cout << "NoRINDEX";
646   else if(fStatus == Dichroic)                    611   else if(fStatus == Dichroic)
647     G4cout << "Dichroic Transmission";            612     G4cout << "Dichroic Transmission";
648   else if(fStatus == CoatedDielectricReflectio << 
649     G4cout << "Coated Dielectric Reflection";  << 
650   else if(fStatus == CoatedDielectricRefractio << 
651     G4cout << "Coated Dielectric Refraction";  << 
652   else if(fStatus == CoatedDielectricFrustrate << 
653     G4cout << "Coated Dielectric Frustrated Tr << 
654                                                << 
655   G4cout << " ***" << G4endl;                     613   G4cout << " ***" << G4endl;
656 }                                                 614 }
657                                                   615 
658 //....oooOO0OOooo........oooOO0OOooo........oo    616 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
659 G4ThreeVector G4OpBoundaryProcess::GetFacetNor    617 G4ThreeVector G4OpBoundaryProcess::GetFacetNormal(
660   const G4ThreeVector& momentum, const G4Three    618   const G4ThreeVector& momentum, const G4ThreeVector& normal) const
661 {                                                 619 {
662   G4ThreeVector facetNormal;                      620   G4ThreeVector facetNormal;
663   if(fModel == unified || fModel == LUT || fMo    621   if(fModel == unified || fModel == LUT || fModel == DAVIS)
664   {                                               622   {
665     /* This function codes alpha to a random v    623     /* This function codes alpha to a random value taken from the
666     distribution p(alpha) = g(alpha; 0, sigma_    624     distribution p(alpha) = g(alpha; 0, sigma_alpha)*std::sin(alpha),
667     for alpha > 0 and alpha < 90, where g(alph    625     for alpha > 0 and alpha < 90, where g(alpha; 0, sigma_alpha) is a
668     gaussian distribution with mean 0 and stan    626     gaussian distribution with mean 0 and standard deviation sigma_alpha.  */
669                                                   627 
670     G4double sigma_alpha = 0.0;                   628     G4double sigma_alpha = 0.0;
671     if(fOpticalSurface)                           629     if(fOpticalSurface)
672       sigma_alpha = fOpticalSurface->GetSigmaA    630       sigma_alpha = fOpticalSurface->GetSigmaAlpha();
673     if(sigma_alpha == 0.0)                        631     if(sigma_alpha == 0.0)
674     {                                             632     {
675       return normal;                              633       return normal;
676     }                                             634     }
677                                                   635 
678     G4double f_max = std::min(1.0, 4. * sigma_    636     G4double f_max = std::min(1.0, 4. * sigma_alpha);
679     G4double alpha, phi, sinAlpha;                637     G4double alpha, phi, sinAlpha;
680                                                   638 
681     do                                            639     do
682     {  // Loop checking, 13-Aug-2015, Peter Gu    640     {  // Loop checking, 13-Aug-2015, Peter Gumplinger
683       do                                          641       do
684       {  // Loop checking, 13-Aug-2015, Peter     642       {  // Loop checking, 13-Aug-2015, Peter Gumplinger
685         alpha    = G4RandGauss::shoot(0.0, sig    643         alpha    = G4RandGauss::shoot(0.0, sigma_alpha);
686         sinAlpha = std::sin(alpha);               644         sinAlpha = std::sin(alpha);
687       } while(G4UniformRand() * f_max > sinAlp    645       } while(G4UniformRand() * f_max > sinAlpha || alpha >= halfpi);
688                                                   646 
689       phi = G4UniformRand() * twopi;              647       phi = G4UniformRand() * twopi;
690       facetNormal.set(sinAlpha * std::cos(phi)    648       facetNormal.set(sinAlpha * std::cos(phi), sinAlpha * std::sin(phi),
691                       std::cos(alpha));           649                       std::cos(alpha));
692       facetNormal.rotateUz(normal);               650       facetNormal.rotateUz(normal);
693     } while(momentum * facetNormal >= 0.0);       651     } while(momentum * facetNormal >= 0.0);
694   }                                               652   }
695   else                                            653   else
696   {                                               654   {
697     G4double polish = 1.0;                        655     G4double polish = 1.0;
698     if(fOpticalSurface)                           656     if(fOpticalSurface)
699       polish = fOpticalSurface->GetPolish();      657       polish = fOpticalSurface->GetPolish();
700     if(polish < 1.0)                              658     if(polish < 1.0)
701     {                                             659     {
702       do                                          660       do
703       {  // Loop checking, 13-Aug-2015, Peter     661       {  // Loop checking, 13-Aug-2015, Peter Gumplinger
704         G4ThreeVector smear;                      662         G4ThreeVector smear;
705         do                                        663         do
706         {  // Loop checking, 13-Aug-2015, Pete    664         {  // Loop checking, 13-Aug-2015, Peter Gumplinger
707           smear.setX(2. * G4UniformRand() - 1.    665           smear.setX(2. * G4UniformRand() - 1.);
708           smear.setY(2. * G4UniformRand() - 1.    666           smear.setY(2. * G4UniformRand() - 1.);
709           smear.setZ(2. * G4UniformRand() - 1.    667           smear.setZ(2. * G4UniformRand() - 1.);
710         } while(smear.mag2() > 1.0);              668         } while(smear.mag2() > 1.0);
711         facetNormal = normal + (1. - polish) *    669         facetNormal = normal + (1. - polish) * smear;
712       } while(momentum * facetNormal >= 0.0);     670       } while(momentum * facetNormal >= 0.0);
713       facetNormal = facetNormal.unit();           671       facetNormal = facetNormal.unit();
714     }                                             672     }
715     else                                          673     else
716     {                                             674     {
717       facetNormal = normal;                       675       facetNormal = normal;
718     }                                             676     }
719   }                                               677   }
720   return facetNormal;                             678   return facetNormal;
721 }                                                 679 }
722                                                   680 
723 //....oooOO0OOooo........oooOO0OOooo........oo    681 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
724 void G4OpBoundaryProcess::DielectricMetal()       682 void G4OpBoundaryProcess::DielectricMetal()
725 {                                                 683 {
726   G4int n = 0;                                    684   G4int n = 0;
727   G4double rand;                                  685   G4double rand;
728   G4ThreeVector A_trans;                          686   G4ThreeVector A_trans;
729                                                   687 
730   do                                              688   do
731   {                                               689   {
732     ++n;                                          690     ++n;
733     rand = G4UniformRand();                       691     rand = G4UniformRand();
734     if(rand > fReflectivity && n == 1)            692     if(rand > fReflectivity && n == 1)
735     {                                             693     {
736       if(rand > fReflectivity + fTransmittance    694       if(rand > fReflectivity + fTransmittance)
737       {                                           695       {
738         DoAbsorption();                           696         DoAbsorption();
739       }                                           697       }
740       else                                        698       else
741       {                                           699       {
742         fStatus          = Transmission;          700         fStatus          = Transmission;
743         fNewMomentum     = fOldMomentum;          701         fNewMomentum     = fOldMomentum;
744         fNewPolarization = fOldPolarization;      702         fNewPolarization = fOldPolarization;
745       }                                           703       }
746       break;                                      704       break;
747     }                                             705     }
748     else                                          706     else
749     {                                             707     {
750       if(fRealRIndexMPV && fImagRIndexMPV)        708       if(fRealRIndexMPV && fImagRIndexMPV)
751       {                                           709       {
752         if(n > 1)                                 710         if(n > 1)
753         {                                         711         {
754           CalculateReflectivity();                712           CalculateReflectivity();
755           if(!G4BooleanRand(fReflectivity))       713           if(!G4BooleanRand(fReflectivity))
756           {                                       714           {
757             DoAbsorption();                       715             DoAbsorption();
758             break;                                716             break;
759           }                                       717           }
760         }                                         718         }
761       }                                           719       }
762       if(fModel == glisur || fFinish == polish    720       if(fModel == glisur || fFinish == polished)
763       {                                           721       {
764         DoReflection();                           722         DoReflection();
765       }                                           723       }
766       else                                        724       else
767       {                                           725       {
768         if(n == 1)                                726         if(n == 1)
769           ChooseReflection();                     727           ChooseReflection();
770         if(fStatus == LambertianReflection)       728         if(fStatus == LambertianReflection)
771         {                                         729         {
772           DoReflection();                         730           DoReflection();
773         }                                         731         }
774         else if(fStatus == BackScattering)        732         else if(fStatus == BackScattering)
775         {                                         733         {
776           fNewMomentum     = -fOldMomentum;       734           fNewMomentum     = -fOldMomentum;
777           fNewPolarization = -fOldPolarization    735           fNewPolarization = -fOldPolarization;
778         }                                         736         }
779         else                                      737         else
780         {                                         738         {
781           if(fStatus == LobeReflection)           739           if(fStatus == LobeReflection)
782           {                                       740           {
783             if(!fRealRIndexMPV || !fImagRIndex    741             if(!fRealRIndexMPV || !fImagRIndexMPV)
784             {                                     742             {
785               fFacetNormal = GetFacetNormal(fO    743               fFacetNormal = GetFacetNormal(fOldMomentum, fGlobalNormal);
786             }                                     744             }
787             // else                            << 745             //else
788             //  case of complex rindex needs t    746             //  case of complex rindex needs to be implemented
789           }                                       747           }
790           fNewMomentum =                          748           fNewMomentum =
791             fOldMomentum - 2. * fOldMomentum *    749             fOldMomentum - 2. * fOldMomentum * fFacetNormal * fFacetNormal;
792                                                   750 
793           if(f_iTE > 0 && f_iTM > 0)              751           if(f_iTE > 0 && f_iTM > 0)
794           {                                       752           {
795             fNewPolarization =                    753             fNewPolarization =
796               -fOldPolarization +                 754               -fOldPolarization +
797               (2. * fOldPolarization * fFacetN    755               (2. * fOldPolarization * fFacetNormal * fFacetNormal);
798           }                                       756           }
799           else if(f_iTE > 0)                      757           else if(f_iTE > 0)
800           {                                       758           {
801             A_trans = (fSint1 > 0.0) ? fOldMom    759             A_trans = (fSint1 > 0.0) ? fOldMomentum.cross(fFacetNormal).unit()
802                                      : fOldPol    760                                      : fOldPolarization;
803             fNewPolarization = -A_trans;          761             fNewPolarization = -A_trans;
804           }                                       762           }
805           else if(f_iTM > 0)                      763           else if(f_iTM > 0)
806           {                                       764           {
807             fNewPolarization =                    765             fNewPolarization =
808               -fNewMomentum.cross(A_trans).uni    766               -fNewMomentum.cross(A_trans).unit();  // = -A_paral
809           }                                       767           }
810         }                                         768         }
811       }                                           769       }
812       fOldMomentum     = fNewMomentum;            770       fOldMomentum     = fNewMomentum;
813       fOldPolarization = fNewPolarization;        771       fOldPolarization = fNewPolarization;
814     }                                             772     }
815     // Loop checking, 13-Aug-2015, Peter Gumpl    773     // Loop checking, 13-Aug-2015, Peter Gumplinger
816   } while(fNewMomentum * fGlobalNormal < 0.0);    774   } while(fNewMomentum * fGlobalNormal < 0.0);
817 }                                                 775 }
818                                                   776 
819 //....oooOO0OOooo........oooOO0OOooo........oo    777 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
820 void G4OpBoundaryProcess::DielectricLUT()         778 void G4OpBoundaryProcess::DielectricLUT()
821 {                                                 779 {
822   G4int thetaIndex, phiIndex;                     780   G4int thetaIndex, phiIndex;
823   G4double angularDistVal, thetaRad, phiRad;      781   G4double angularDistVal, thetaRad, phiRad;
824   G4ThreeVector perpVectorTheta, perpVectorPhi    782   G4ThreeVector perpVectorTheta, perpVectorPhi;
825                                                   783 
826   fStatus = G4OpBoundaryProcessStatus(            784   fStatus = G4OpBoundaryProcessStatus(
827     G4int(fFinish) + (G4int(NoRINDEX) - G4int(    785     G4int(fFinish) + (G4int(NoRINDEX) - G4int(groundbackpainted)));
828                                                   786 
829   G4int thetaIndexMax = fOpticalSurface->GetTh    787   G4int thetaIndexMax = fOpticalSurface->GetThetaIndexMax();
830   G4int phiIndexMax   = fOpticalSurface->GetPh    788   G4int phiIndexMax   = fOpticalSurface->GetPhiIndexMax();
831                                                   789 
832   G4double rand;                                  790   G4double rand;
833                                                   791 
834   do                                              792   do
835   {                                               793   {
836     rand = G4UniformRand();                       794     rand = G4UniformRand();
837     if(rand > fReflectivity)                      795     if(rand > fReflectivity)
838     {                                             796     {
839       if(rand > fReflectivity + fTransmittance    797       if(rand > fReflectivity + fTransmittance)
840       {                                           798       {
841         DoAbsorption();                           799         DoAbsorption();
842       }                                           800       }
843       else                                        801       else
844       {                                           802       {
845         fStatus          = Transmission;          803         fStatus          = Transmission;
846         fNewMomentum     = fOldMomentum;          804         fNewMomentum     = fOldMomentum;
847         fNewPolarization = fOldPolarization;      805         fNewPolarization = fOldPolarization;
848       }                                           806       }
849       break;                                      807       break;
850     }                                             808     }
851     else                                          809     else
852     {                                             810     {
853       // Calculate Angle between Normal and Ph    811       // Calculate Angle between Normal and Photon Momentum
854       G4double anglePhotonToNormal = fOldMomen    812       G4double anglePhotonToNormal = fOldMomentum.angle(-fGlobalNormal);
855       // Round to closest integer: LBNL model     813       // Round to closest integer: LBNL model array has 91 values
856       G4int angleIncident = (G4int)std::lrint( << 814       G4int angleIncident = std::lrint(anglePhotonToNormal / CLHEP::deg);
857                                                   815 
858       // Take random angles THETA and PHI,        816       // Take random angles THETA and PHI,
859       // and see if below Probability - if not    817       // and see if below Probability - if not - Redo
860       do                                          818       do
861       {                                           819       {
862         thetaIndex = (G4int)G4RandFlat::shootI << 820         thetaIndex = G4RandFlat::shootInt(thetaIndexMax - 1);
863         phiIndex   = (G4int)G4RandFlat::shootI << 821         phiIndex   = G4RandFlat::shootInt(phiIndexMax - 1);
864         // Find probability with the new indec    822         // Find probability with the new indeces from LUT
865         angularDistVal = fOpticalSurface->GetA    823         angularDistVal = fOpticalSurface->GetAngularDistributionValue(
866           angleIncident, thetaIndex, phiIndex)    824           angleIncident, thetaIndex, phiIndex);
867         // Loop checking, 13-Aug-2015, Peter G    825         // Loop checking, 13-Aug-2015, Peter Gumplinger
868       } while(!G4BooleanRand(angularDistVal));    826       } while(!G4BooleanRand(angularDistVal));
869                                                   827 
870       thetaRad = G4double(-90 + 4 * thetaIndex    828       thetaRad = G4double(-90 + 4 * thetaIndex) * pi / 180.;
871       phiRad   = G4double(-90 + 5 * phiIndex)     829       phiRad   = G4double(-90 + 5 * phiIndex) * pi / 180.;
872       // Rotate Photon Momentum in Theta, then    830       // Rotate Photon Momentum in Theta, then in Phi
873       fNewMomentum = -fOldMomentum;               831       fNewMomentum = -fOldMomentum;
874                                                   832 
875       perpVectorTheta = fNewMomentum.cross(fGl    833       perpVectorTheta = fNewMomentum.cross(fGlobalNormal);
876       if(perpVectorTheta.mag() < fCarTolerance    834       if(perpVectorTheta.mag() < fCarTolerance)
877       {                                           835       {
878         perpVectorTheta = fNewMomentum.orthogo    836         perpVectorTheta = fNewMomentum.orthogonal();
879       }                                           837       }
880       fNewMomentum =                              838       fNewMomentum =
881         fNewMomentum.rotate(anglePhotonToNorma    839         fNewMomentum.rotate(anglePhotonToNormal - thetaRad, perpVectorTheta);
882       perpVectorPhi = perpVectorTheta.cross(fN    840       perpVectorPhi = perpVectorTheta.cross(fNewMomentum);
883       fNewMomentum  = fNewMomentum.rotate(-phi    841       fNewMomentum  = fNewMomentum.rotate(-phiRad, perpVectorPhi);
884                                                   842 
885       // Rotate Polarization too:                 843       // Rotate Polarization too:
886       fFacetNormal     = (fNewMomentum - fOldM    844       fFacetNormal     = (fNewMomentum - fOldMomentum).unit();
887       fNewPolarization = -fOldPolarization +      845       fNewPolarization = -fOldPolarization +
888                          (2. * fOldPolarizatio    846                          (2. * fOldPolarization * fFacetNormal * fFacetNormal);
889     }                                             847     }
890     // Loop checking, 13-Aug-2015, Peter Gumpl    848     // Loop checking, 13-Aug-2015, Peter Gumplinger
891   } while(fNewMomentum * fGlobalNormal <= 0.0)    849   } while(fNewMomentum * fGlobalNormal <= 0.0);
892 }                                                 850 }
893                                                   851 
894 //....oooOO0OOooo........oooOO0OOooo........oo    852 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
895 void G4OpBoundaryProcess::DielectricLUTDAVIS()    853 void G4OpBoundaryProcess::DielectricLUTDAVIS()
896 {                                                 854 {
897   G4int angindex, random, angleIncident;          855   G4int angindex, random, angleIncident;
898   G4double reflectivityValue, elevation, azimu    856   G4double reflectivityValue, elevation, azimuth;
899   G4double anglePhotonToNormal;                   857   G4double anglePhotonToNormal;
900                                                   858 
901   G4int lutbin  = fOpticalSurface->GetLUTbins(    859   G4int lutbin  = fOpticalSurface->GetLUTbins();
902   G4double rand = G4UniformRand();                860   G4double rand = G4UniformRand();
903                                                   861 
904   G4double sinEl;                                 862   G4double sinEl;
905   G4ThreeVector u, vNorm, w;                      863   G4ThreeVector u, vNorm, w;
906                                                   864 
907   do                                              865   do
908   {                                               866   {
909     anglePhotonToNormal = fOldMomentum.angle(-    867     anglePhotonToNormal = fOldMomentum.angle(-fGlobalNormal);
910                                                   868 
911     // Davis model has 90 reflection bins: rou    869     // Davis model has 90 reflection bins: round down
912     // don't allow angleIncident to be 90 for     870     // don't allow angleIncident to be 90 for anglePhotonToNormal close to 90
913     angleIncident = std::min(                  << 871     angleIncident = std::min(static_cast<G4int>(
914       static_cast<G4int>(std::floor(anglePhoto << 872       std::floor(anglePhotonToNormal / CLHEP::deg)), 89);
915     reflectivityValue = fOpticalSurface->GetRe    873     reflectivityValue = fOpticalSurface->GetReflectivityLUTValue(angleIncident);
916                                                   874 
917     if(rand > reflectivityValue)                  875     if(rand > reflectivityValue)
918     {                                             876     {
919       if(fEfficiency > 0.)                        877       if(fEfficiency > 0.)
920       {                                           878       {
921         DoAbsorption();                           879         DoAbsorption();
922         break;                                    880         break;
923       }                                           881       }
924       else                                        882       else
925       {                                           883       {
926         fStatus = Transmission;                   884         fStatus = Transmission;
927                                                   885 
928         if(angleIncident <= 0.01)                 886         if(angleIncident <= 0.01)
929         {                                         887         {
930           fNewMomentum = fOldMomentum;            888           fNewMomentum = fOldMomentum;
931           break;                                  889           break;
932         }                                         890         }
933                                                   891 
934         do                                        892         do
935         {                                         893         {
936           random = (G4int)G4RandFlat::shootInt << 894           random = G4RandFlat::shootInt(1, lutbin + 1);
937           angindex =                              895           angindex =
938             (((random * 2) - 1)) + angleIncide    896             (((random * 2) - 1)) + angleIncident * lutbin * 2 + 3640000;
939                                                   897 
940           azimuth =                               898           azimuth =
941             fOpticalSurface->GetAngularDistrib    899             fOpticalSurface->GetAngularDistributionValueLUT(angindex - 1);
942           elevation = fOpticalSurface->GetAngu    900           elevation = fOpticalSurface->GetAngularDistributionValueLUT(angindex);
943         } while(elevation == 0. && azimuth ==     901         } while(elevation == 0. && azimuth == 0.);
944                                                   902 
945         sinEl = std::sin(elevation);              903         sinEl = std::sin(elevation);
946         vNorm = (fGlobalNormal.cross(fOldMomen    904         vNorm = (fGlobalNormal.cross(fOldMomentum)).unit();
947         u     = vNorm.cross(fGlobalNormal) * (    905         u     = vNorm.cross(fGlobalNormal) * (sinEl * std::cos(azimuth));
948         vNorm *= (sinEl * std::sin(azimuth));     906         vNorm *= (sinEl * std::sin(azimuth));
949         // fGlobalNormal shouldn't be modified    907         // fGlobalNormal shouldn't be modified here
950         w            = (fGlobalNormal *= std::    908         w            = (fGlobalNormal *= std::cos(elevation));
951         fNewMomentum = u + vNorm + w;             909         fNewMomentum = u + vNorm + w;
952                                                   910 
953         // Rotate Polarization too:               911         // Rotate Polarization too:
954         fFacetNormal     = (fNewMomentum - fOl    912         fFacetNormal     = (fNewMomentum - fOldMomentum).unit();
955         fNewPolarization = -fOldPolarization +    913         fNewPolarization = -fOldPolarization + (2. * fOldPolarization *
956                                                   914                                                 fFacetNormal * fFacetNormal);
957       }                                           915       }
958     }                                             916     }
959     else                                          917     else
960     {                                             918     {
961       fStatus = LobeReflection;                   919       fStatus = LobeReflection;
962                                                   920 
963       if(angleIncident == 0)                      921       if(angleIncident == 0)
964       {                                           922       {
965         fNewMomentum = -fOldMomentum;             923         fNewMomentum = -fOldMomentum;
966         break;                                    924         break;
967       }                                           925       }
968                                                   926 
969       do                                          927       do
970       {                                           928       {
971         random   = (G4int)G4RandFlat::shootInt << 929         random   = G4RandFlat::shootInt(1, lutbin + 1);
972         angindex = (((random * 2) - 1)) + (ang    930         angindex = (((random * 2) - 1)) + (angleIncident - 1) * lutbin * 2;
973                                                   931 
974         azimuth = fOpticalSurface->GetAngularD    932         azimuth = fOpticalSurface->GetAngularDistributionValueLUT(angindex - 1);
975         elevation = fOpticalSurface->GetAngula    933         elevation = fOpticalSurface->GetAngularDistributionValueLUT(angindex);
976       } while(elevation == 0. && azimuth == 0.    934       } while(elevation == 0. && azimuth == 0.);
977                                                   935 
978       sinEl = std::sin(elevation);                936       sinEl = std::sin(elevation);
979       vNorm = (fGlobalNormal.cross(fOldMomentu    937       vNorm = (fGlobalNormal.cross(fOldMomentum)).unit();
980       u     = vNorm.cross(fGlobalNormal) * (si    938       u     = vNorm.cross(fGlobalNormal) * (sinEl * std::cos(azimuth));
981       vNorm *= (sinEl * std::sin(azimuth));       939       vNorm *= (sinEl * std::sin(azimuth));
982       // fGlobalNormal shouldn't be modified h    940       // fGlobalNormal shouldn't be modified here
983       w = (fGlobalNormal *= std::cos(elevation    941       w = (fGlobalNormal *= std::cos(elevation));
984                                                   942 
985       fNewMomentum = u + vNorm + w;               943       fNewMomentum = u + vNorm + w;
986                                                   944 
987       // Rotate Polarization too: (needs revis    945       // Rotate Polarization too: (needs revision)
988       fNewPolarization = fOldPolarization;        946       fNewPolarization = fOldPolarization;
989     }                                             947     }
990   } while(fNewMomentum * fGlobalNormal <= 0.0)    948   } while(fNewMomentum * fGlobalNormal <= 0.0);
991 }                                                 949 }
992                                                   950 
993 //....oooOO0OOooo........oooOO0OOooo........oo    951 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
994 void G4OpBoundaryProcess::DielectricDichroic()    952 void G4OpBoundaryProcess::DielectricDichroic()
995 {                                                 953 {
996   // Calculate Angle between Normal and Photon    954   // Calculate Angle between Normal and Photon Momentum
997   G4double anglePhotonToNormal = fOldMomentum.    955   G4double anglePhotonToNormal = fOldMomentum.angle(-fGlobalNormal);
998                                                   956 
999   // Round it to closest integer                  957   // Round it to closest integer
1000   G4double angleIncident = std::floor(180. /     958   G4double angleIncident = std::floor(180. / pi * anglePhotonToNormal + 0.5);
1001                                                  959 
1002   if(!fDichroicVector)                           960   if(!fDichroicVector)
1003   {                                              961   {
1004     if(fOpticalSurface)                          962     if(fOpticalSurface)
1005       fDichroicVector = fOpticalSurface->GetD    963       fDichroicVector = fOpticalSurface->GetDichroicVector();
1006   }                                              964   }
1007                                                  965 
1008   if(fDichroicVector)                            966   if(fDichroicVector)
1009   {                                              967   {
1010     G4double wavelength = h_Planck * c_light     968     G4double wavelength = h_Planck * c_light / fPhotonMomentum;
1011     fTransmittance      = fDichroicVector->Va    969     fTransmittance      = fDichroicVector->Value(wavelength / nm, angleIncident,
1012                                             i    970                                             idx_dichroicX, idx_dichroicY) *
1013                      perCent;                    971                      perCent;
1014     //   G4cout << "wavelength: " << std::flo    972     //   G4cout << "wavelength: " << std::floor(wavelength/nm)
1015     //                            << "nm" <<     973     //                            << "nm" << G4endl;
1016     //   G4cout << "Incident angle: " << angl    974     //   G4cout << "Incident angle: " << angleIncident << "deg" << G4endl;
1017     //   G4cout << "Transmittance: "             975     //   G4cout << "Transmittance: "
1018     //          << std::floor(fTransmittance/    976     //          << std::floor(fTransmittance/perCent) << "%" << G4endl;
1019   }                                              977   }
1020   else                                           978   else
1021   {                                              979   {
1022     G4ExceptionDescription ed;                   980     G4ExceptionDescription ed;
1023     ed << " G4OpBoundaryProcess/DielectricDic    981     ed << " G4OpBoundaryProcess/DielectricDichroic(): "
1024        << " The dichroic surface has no G4Phy    982        << " The dichroic surface has no G4Physics2DVector" << G4endl;
1025     G4Exception("G4OpBoundaryProcess::Dielect    983     G4Exception("G4OpBoundaryProcess::DielectricDichroic", "OpBoun03",
1026                 FatalException, ed,              984                 FatalException, ed,
1027                 "A dichroic surface must have    985                 "A dichroic surface must have an associated G4Physics2DVector");
1028   }                                              986   }
1029                                                  987 
1030   if(!G4BooleanRand(fTransmittance))             988   if(!G4BooleanRand(fTransmittance))
1031   {  // Not transmitted, so reflect              989   {  // Not transmitted, so reflect
1032     if(fModel == glisur || fFinish == polishe    990     if(fModel == glisur || fFinish == polished)
1033     {                                            991     {
1034       DoReflection();                            992       DoReflection();
1035     }                                            993     }
1036     else                                         994     else
1037     {                                            995     {
1038       ChooseReflection();                        996       ChooseReflection();
1039       if(fStatus == LambertianReflection)        997       if(fStatus == LambertianReflection)
1040       {                                          998       {
1041         DoReflection();                          999         DoReflection();
1042       }                                          1000       }
1043       else if(fStatus == BackScattering)         1001       else if(fStatus == BackScattering)
1044       {                                          1002       {
1045         fNewMomentum     = -fOldMomentum;        1003         fNewMomentum     = -fOldMomentum;
1046         fNewPolarization = -fOldPolarization;    1004         fNewPolarization = -fOldPolarization;
1047       }                                          1005       }
1048       else                                       1006       else
1049       {                                          1007       {
1050         G4double PdotN, EdotN;                   1008         G4double PdotN, EdotN;
1051         do                                       1009         do
1052         {                                        1010         {
1053           if(fStatus == LobeReflection)          1011           if(fStatus == LobeReflection)
1054           {                                      1012           {
1055             fFacetNormal = GetFacetNormal(fOl    1013             fFacetNormal = GetFacetNormal(fOldMomentum, fGlobalNormal);
1056           }                                      1014           }
1057           PdotN        = fOldMomentum * fFace    1015           PdotN        = fOldMomentum * fFacetNormal;
1058           fNewMomentum = fOldMomentum - (2. *    1016           fNewMomentum = fOldMomentum - (2. * PdotN) * fFacetNormal;
1059           // Loop checking, 13-Aug-2015, Pete    1017           // Loop checking, 13-Aug-2015, Peter Gumplinger
1060         } while(fNewMomentum * fGlobalNormal     1018         } while(fNewMomentum * fGlobalNormal <= 0.0);
1061                                                  1019 
1062         EdotN            = fOldPolarization *    1020         EdotN            = fOldPolarization * fFacetNormal;
1063         fNewPolarization = -fOldPolarization     1021         fNewPolarization = -fOldPolarization + (2. * EdotN) * fFacetNormal;
1064       }                                          1022       }
1065     }                                            1023     }
1066   }                                              1024   }
1067   else                                           1025   else
1068   {                                              1026   {
1069     fStatus          = Dichroic;                 1027     fStatus          = Dichroic;
1070     fNewMomentum     = fOldMomentum;             1028     fNewMomentum     = fOldMomentum;
1071     fNewPolarization = fOldPolarization;         1029     fNewPolarization = fOldPolarization;
1072   }                                              1030   }
1073 }                                                1031 }
1074                                                  1032 
1075 //....oooOO0OOooo........oooOO0OOooo........o    1033 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
1076 void G4OpBoundaryProcess::DielectricDielectri    1034 void G4OpBoundaryProcess::DielectricDielectric()
1077 {                                                1035 {
1078   G4bool inside = false;                         1036   G4bool inside = false;
1079   G4bool swap   = false;                         1037   G4bool swap   = false;
1080                                                  1038 
1081   if(fFinish == polished)                        1039   if(fFinish == polished)
1082   {                                              1040   {
1083     fFacetNormal = fGlobalNormal;                1041     fFacetNormal = fGlobalNormal;
1084   }                                              1042   }
1085   else                                           1043   else
1086   {                                              1044   {
1087     fFacetNormal = GetFacetNormal(fOldMomentu    1045     fFacetNormal = GetFacetNormal(fOldMomentum, fGlobalNormal);
1088   }                                              1046   }
1089   G4double cost1 = -fOldMomentum * fFacetNorm    1047   G4double cost1 = -fOldMomentum * fFacetNormal;
1090   G4double cost2 = 0.;                           1048   G4double cost2 = 0.;
1091   G4double sint2 = 0.;                           1049   G4double sint2 = 0.;
1092                                                  1050 
1093   G4bool surfaceRoughnessCriterionPass = true    1051   G4bool surfaceRoughnessCriterionPass = true;
1094   if(fSurfaceRoughness != 0. && fRindex1 > fR    1052   if(fSurfaceRoughness != 0. && fRindex1 > fRindex2)
1095   {                                              1053   {
1096     G4double wavelength                = h_Pl    1054     G4double wavelength                = h_Planck * c_light / fPhotonMomentum;
1097     G4double surfaceRoughnessCriterion = std:    1055     G4double surfaceRoughnessCriterion = std::exp(-std::pow(
1098       (4. * pi * fSurfaceRoughness * fRindex1    1056       (4. * pi * fSurfaceRoughness * fRindex1 * cost1 / wavelength), 2));
1099     surfaceRoughnessCriterionPass = G4Boolean    1057     surfaceRoughnessCriterionPass = G4BooleanRand(surfaceRoughnessCriterion);
1100   }                                              1058   }
1101                                                  1059 
1102 leap:                                            1060 leap:
1103                                                  1061 
1104   G4bool through = false;                        1062   G4bool through = false;
1105   G4bool done    = false;                        1063   G4bool done    = false;
1106                                                  1064 
1107   G4ThreeVector A_trans, A_paral, E1pp, E1pl;    1065   G4ThreeVector A_trans, A_paral, E1pp, E1pl;
1108   G4double E1_perp, E1_parl;                     1066   G4double E1_perp, E1_parl;
1109   G4double s1, s2, E2_perp, E2_parl, E2_total    1067   G4double s1, s2, E2_perp, E2_parl, E2_total, transCoeff;
1110   G4double E2_abs, C_parl, C_perp;               1068   G4double E2_abs, C_parl, C_perp;
1111   G4double alpha;                                1069   G4double alpha;
1112                                                  1070 
1113   do                                             1071   do
1114   {                                              1072   {
1115     if(through)                                  1073     if(through)
1116     {                                            1074     {
1117       swap          = !swap;                     1075       swap          = !swap;
1118       through       = false;                     1076       through       = false;
1119       fGlobalNormal = -fGlobalNormal;            1077       fGlobalNormal = -fGlobalNormal;
1120       G4SwapPtr(fMaterial1, fMaterial2);         1078       G4SwapPtr(fMaterial1, fMaterial2);
1121       G4SwapObj(&fRindex1, &fRindex2);           1079       G4SwapObj(&fRindex1, &fRindex2);
1122     }                                            1080     }
1123                                                  1081 
1124     if(fFinish == polished)                      1082     if(fFinish == polished)
1125     {                                            1083     {
1126       fFacetNormal = fGlobalNormal;              1084       fFacetNormal = fGlobalNormal;
1127     }                                            1085     }
1128     else                                         1086     else
1129     {                                            1087     {
1130       fFacetNormal = GetFacetNormal(fOldMomen    1088       fFacetNormal = GetFacetNormal(fOldMomentum, fGlobalNormal);
1131     }                                            1089     }
1132                                                  1090 
1133     cost1 = -fOldMomentum * fFacetNormal;        1091     cost1 = -fOldMomentum * fFacetNormal;
1134     if(std::abs(cost1) < 1.0 - fCarTolerance)    1092     if(std::abs(cost1) < 1.0 - fCarTolerance)
1135     {                                            1093     {
1136       fSint1 = std::sqrt(1. - cost1 * cost1);    1094       fSint1 = std::sqrt(1. - cost1 * cost1);
1137       sint2  = fSint1 * fRindex1 / fRindex2;     1095       sint2  = fSint1 * fRindex1 / fRindex2;  // *** Snell's Law ***
1138       // this isn't a sine as we might expect    1096       // this isn't a sine as we might expect from the name; can be > 1
1139     }                                            1097     }
1140     else                                         1098     else
1141     {                                            1099     {
1142       fSint1 = 0.0;                              1100       fSint1 = 0.0;
1143       sint2  = 0.0;                              1101       sint2  = 0.0;
1144     }                                            1102     }
1145                                                  1103 
1146     // TOTAL INTERNAL REFLECTION                 1104     // TOTAL INTERNAL REFLECTION
1147     if(sint2 >= 1.0)                             1105     if(sint2 >= 1.0)
1148     {                                            1106     {
1149       swap = false;                              1107       swap = false;
1150                                                  1108 
1151       fStatus = TotalInternalReflection;         1109       fStatus = TotalInternalReflection;
1152       if(!surfaceRoughnessCriterionPass)         1110       if(!surfaceRoughnessCriterionPass)
1153         fStatus = LambertianReflection;          1111         fStatus = LambertianReflection;
1154       if(fModel == unified && fFinish != poli    1112       if(fModel == unified && fFinish != polished)
1155         ChooseReflection();                      1113         ChooseReflection();
1156       if(fStatus == LambertianReflection)        1114       if(fStatus == LambertianReflection)
1157       {                                          1115       {
1158         DoReflection();                          1116         DoReflection();
1159       }                                          1117       }
1160       else if(fStatus == BackScattering)         1118       else if(fStatus == BackScattering)
1161       {                                          1119       {
1162         fNewMomentum     = -fOldMomentum;        1120         fNewMomentum     = -fOldMomentum;
1163         fNewPolarization = -fOldPolarization;    1121         fNewPolarization = -fOldPolarization;
1164       }                                          1122       }
1165       else                                       1123       else
1166       {                                          1124       {
1167         fNewMomentum =                           1125         fNewMomentum =
1168           fOldMomentum - 2. * fOldMomentum *     1126           fOldMomentum - 2. * fOldMomentum * fFacetNormal * fFacetNormal;
1169         fNewPolarization = -fOldPolarization     1127         fNewPolarization = -fOldPolarization + (2. * fOldPolarization *
1170                                                  1128                                                 fFacetNormal * fFacetNormal);
1171       }                                          1129       }
1172     }                                            1130     }
1173     // NOT TIR                                   1131     // NOT TIR
1174     else if(sint2 < 1.0)                         1132     else if(sint2 < 1.0)
1175     {                                            1133     {
1176       // Calculate amplitude for transmission    1134       // Calculate amplitude for transmission (Q = P x N)
1177       if(cost1 > 0.0)                            1135       if(cost1 > 0.0)
1178       {                                          1136       {
1179         cost2 = std::sqrt(1. - sint2 * sint2)    1137         cost2 = std::sqrt(1. - sint2 * sint2);
1180       }                                          1138       }
1181       else                                       1139       else
1182       {                                          1140       {
1183         cost2 = -std::sqrt(1. - sint2 * sint2    1141         cost2 = -std::sqrt(1. - sint2 * sint2);
1184       }                                          1142       }
1185                                                  1143 
1186       if(fSint1 > 0.0)                           1144       if(fSint1 > 0.0)
1187       {                                          1145       {
1188         A_trans = (fOldMomentum.cross(fFacetN    1146         A_trans = (fOldMomentum.cross(fFacetNormal)).unit();
1189         E1_perp = fOldPolarization * A_trans;    1147         E1_perp = fOldPolarization * A_trans;
1190         E1pp    = E1_perp * A_trans;             1148         E1pp    = E1_perp * A_trans;
1191         E1pl    = fOldPolarization - E1pp;       1149         E1pl    = fOldPolarization - E1pp;
1192         E1_parl = E1pl.mag();                    1150         E1_parl = E1pl.mag();
1193       }                                          1151       }
1194       else                                       1152       else
1195       {                                          1153       {
1196         A_trans = fOldPolarization;              1154         A_trans = fOldPolarization;
1197         // Here we Follow Jackson's conventio    1155         // Here we Follow Jackson's conventions and set the parallel
1198         // component = 1 in case of a ray per    1156         // component = 1 in case of a ray perpendicular to the surface
1199         E1_perp = 0.0;                           1157         E1_perp = 0.0;
1200         E1_parl = 1.0;                           1158         E1_parl = 1.0;
1201       }                                          1159       }
1202                                                  1160 
1203       s1       = fRindex1 * cost1;               1161       s1       = fRindex1 * cost1;
1204       E2_perp  = 2. * s1 * E1_perp / (fRindex    1162       E2_perp  = 2. * s1 * E1_perp / (fRindex1 * cost1 + fRindex2 * cost2);
1205       E2_parl  = 2. * s1 * E1_parl / (fRindex    1163       E2_parl  = 2. * s1 * E1_parl / (fRindex2 * cost1 + fRindex1 * cost2);
1206       E2_total = E2_perp * E2_perp + E2_parl     1164       E2_total = E2_perp * E2_perp + E2_parl * E2_parl;
1207       s2       = fRindex2 * cost2 * E2_total;    1165       s2       = fRindex2 * cost2 * E2_total;
1208                                                  1166 
1209       // D.Sawkey, 24 May 24                  << 1167       if(fTransmittance > 0.)
1210       // Transmittance has already been taken << 1168         transCoeff = fTransmittance;
1211       // For e.g. specular surfaces, the rati << 1169       else if(cost1 != 0.0)
1212       // reflection should be given by the ma << 
1213       // TRANSMITTANCE                        << 
1214       //if(fTransmittance > 0.)               << 
1215       //  transCoeff = fTransmittance;        << 
1216       //else if(cost1 != 0.0)                 << 
1217       if(cost1 != 0.0)                        << 
1218         transCoeff = s2 / s1;                    1170         transCoeff = s2 / s1;
1219       else                                       1171       else
1220         transCoeff = 0.0;                        1172         transCoeff = 0.0;
1221                                                  1173 
1222       // NOT TIR: REFLECTION                     1174       // NOT TIR: REFLECTION
1223       if(!G4BooleanRand(transCoeff))             1175       if(!G4BooleanRand(transCoeff))
1224       {                                          1176       {
1225         swap    = false;                         1177         swap    = false;
1226         fStatus = FresnelReflection;             1178         fStatus = FresnelReflection;
1227                                                  1179 
1228         if(!surfaceRoughnessCriterionPass)       1180         if(!surfaceRoughnessCriterionPass)
1229           fStatus = LambertianReflection;        1181           fStatus = LambertianReflection;
1230         if(fModel == unified && fFinish != po    1182         if(fModel == unified && fFinish != polished)
1231           ChooseReflection();                    1183           ChooseReflection();
1232         if(fStatus == LambertianReflection)      1184         if(fStatus == LambertianReflection)
1233         {                                        1185         {
1234           DoReflection();                        1186           DoReflection();
1235         }                                        1187         }
1236         else if(fStatus == BackScattering)       1188         else if(fStatus == BackScattering)
1237         {                                        1189         {
1238           fNewMomentum     = -fOldMomentum;      1190           fNewMomentum     = -fOldMomentum;
1239           fNewPolarization = -fOldPolarizatio    1191           fNewPolarization = -fOldPolarization;
1240         }                                        1192         }
1241         else                                     1193         else
1242         {                                        1194         {
1243           fNewMomentum =                         1195           fNewMomentum =
1244             fOldMomentum - 2. * fOldMomentum     1196             fOldMomentum - 2. * fOldMomentum * fFacetNormal * fFacetNormal;
1245           if(fSint1 > 0.0)                       1197           if(fSint1 > 0.0)
1246           {  // incident ray oblique             1198           {  // incident ray oblique
1247             E2_parl  = fRindex2 * E2_parl / f    1199             E2_parl  = fRindex2 * E2_parl / fRindex1 - E1_parl;
1248             E2_perp  = E2_perp - E1_perp;        1200             E2_perp  = E2_perp - E1_perp;
1249             E2_total = E2_perp * E2_perp + E2    1201             E2_total = E2_perp * E2_perp + E2_parl * E2_parl;
1250             A_paral  = (fNewMomentum.cross(A_    1202             A_paral  = (fNewMomentum.cross(A_trans)).unit();
1251             E2_abs   = std::sqrt(E2_total);      1203             E2_abs   = std::sqrt(E2_total);
1252             C_parl   = E2_parl / E2_abs;         1204             C_parl   = E2_parl / E2_abs;
1253             C_perp   = E2_perp / E2_abs;         1205             C_perp   = E2_perp / E2_abs;
1254                                                  1206 
1255             fNewPolarization = C_parl * A_par    1207             fNewPolarization = C_parl * A_paral + C_perp * A_trans;
1256           }                                      1208           }
1257           else                                   1209           else
1258           {  // incident ray perpendicular       1210           {  // incident ray perpendicular
1259             if(fRindex2 > fRindex1)              1211             if(fRindex2 > fRindex1)
1260             {                                    1212             {
1261               fNewPolarization = -fOldPolariz    1213               fNewPolarization = -fOldPolarization;
1262             }                                    1214             }
1263             else                                 1215             else
1264             {                                    1216             {
1265               fNewPolarization = fOldPolariza    1217               fNewPolarization = fOldPolarization;
1266             }                                    1218             }
1267           }                                      1219           }
1268         }                                        1220         }
1269       }                                          1221       }
1270       // NOT TIR: TRANSMISSION                   1222       // NOT TIR: TRANSMISSION
1271       else                                       1223       else
1272       {                                          1224       {
1273         inside  = !inside;                       1225         inside  = !inside;
1274         through = true;                          1226         through = true;
1275         fStatus = FresnelRefraction;             1227         fStatus = FresnelRefraction;
1276                                                  1228 
1277         if(fSint1 > 0.0)                         1229         if(fSint1 > 0.0)
1278         {  // incident ray oblique               1230         {  // incident ray oblique
1279           alpha        = cost1 - cost2 * (fRi    1231           alpha        = cost1 - cost2 * (fRindex2 / fRindex1);
1280           fNewMomentum = (fOldMomentum + alph    1232           fNewMomentum = (fOldMomentum + alpha * fFacetNormal).unit();
1281           A_paral      = (fNewMomentum.cross(    1233           A_paral      = (fNewMomentum.cross(A_trans)).unit();
1282           E2_abs       = std::sqrt(E2_total);    1234           E2_abs       = std::sqrt(E2_total);
1283           C_parl       = E2_parl / E2_abs;       1235           C_parl       = E2_parl / E2_abs;
1284           C_perp       = E2_perp / E2_abs;       1236           C_perp       = E2_perp / E2_abs;
1285                                                  1237 
1286           fNewPolarization = C_parl * A_paral    1238           fNewPolarization = C_parl * A_paral + C_perp * A_trans;
1287         }                                        1239         }
1288         else                                     1240         else
1289         {  // incident ray perpendicular         1241         {  // incident ray perpendicular
1290           fNewMomentum     = fOldMomentum;       1242           fNewMomentum     = fOldMomentum;
1291           fNewPolarization = fOldPolarization    1243           fNewPolarization = fOldPolarization;
1292         }                                        1244         }
1293       }                                          1245       }
1294     }                                            1246     }
1295                                                  1247 
1296     fOldMomentum     = fNewMomentum.unit();      1248     fOldMomentum     = fNewMomentum.unit();
1297     fOldPolarization = fNewPolarization.unit(    1249     fOldPolarization = fNewPolarization.unit();
1298                                                  1250 
1299     if(fStatus == FresnelRefraction)             1251     if(fStatus == FresnelRefraction)
1300     {                                            1252     {
1301       done = (fNewMomentum * fGlobalNormal <=    1253       done = (fNewMomentum * fGlobalNormal <= 0.0);
1302     }                                            1254     }
1303     else                                         1255     else
1304     {                                            1256     {
1305       done = (fNewMomentum * fGlobalNormal >=    1257       done = (fNewMomentum * fGlobalNormal >= -fCarTolerance);
1306     }                                            1258     }
1307     // Loop checking, 13-Aug-2015, Peter Gump    1259     // Loop checking, 13-Aug-2015, Peter Gumplinger
1308   } while(!done);                                1260   } while(!done);
1309                                                  1261 
1310   if(inside && !swap)                            1262   if(inside && !swap)
1311   {                                              1263   {
1312     if(fFinish == polishedbackpainted || fFin    1264     if(fFinish == polishedbackpainted || fFinish == groundbackpainted)
1313     {                                            1265     {
1314       G4double rand = G4UniformRand();           1266       G4double rand = G4UniformRand();
1315       if(rand > fReflectivity + fTransmittanc    1267       if(rand > fReflectivity + fTransmittance)
1316       {                                          1268       {
1317         DoAbsorption();                          1269         DoAbsorption();
1318       }                                          1270       }
1319       else if(rand > fReflectivity)              1271       else if(rand > fReflectivity)
1320       {                                          1272       {
1321         fStatus          = Transmission;         1273         fStatus          = Transmission;
1322         fNewMomentum     = fOldMomentum;         1274         fNewMomentum     = fOldMomentum;
1323         fNewPolarization = fOldPolarization;     1275         fNewPolarization = fOldPolarization;
1324       }                                          1276       }
1325       else                                       1277       else
1326       {                                          1278       {
1327         if(fStatus != FresnelRefraction)         1279         if(fStatus != FresnelRefraction)
1328         {                                        1280         {
1329           fGlobalNormal = -fGlobalNormal;        1281           fGlobalNormal = -fGlobalNormal;
1330         }                                        1282         }
1331         else                                     1283         else
1332         {                                        1284         {
1333           swap = !swap;                          1285           swap = !swap;
1334           G4SwapPtr(fMaterial1, fMaterial2);     1286           G4SwapPtr(fMaterial1, fMaterial2);
1335           G4SwapObj(&fRindex1, &fRindex2);       1287           G4SwapObj(&fRindex1, &fRindex2);
1336         }                                        1288         }
1337         if(fFinish == groundbackpainted)         1289         if(fFinish == groundbackpainted)
1338           fStatus = LambertianReflection;        1290           fStatus = LambertianReflection;
1339                                                  1291 
1340         DoReflection();                          1292         DoReflection();
1341                                                  1293 
1342         fGlobalNormal = -fGlobalNormal;          1294         fGlobalNormal = -fGlobalNormal;
1343         fOldMomentum  = fNewMomentum;            1295         fOldMomentum  = fNewMomentum;
1344                                                  1296 
1345         goto leap;                               1297         goto leap;
1346       }                                          1298       }
1347     }                                            1299     }
1348   }                                              1300   }
1349 }                                                1301 }
1350                                                  1302 
1351 //....oooOO0OOooo........oooOO0OOooo........o    1303 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
1352 G4double G4OpBoundaryProcess::GetMeanFreePath    1304 G4double G4OpBoundaryProcess::GetMeanFreePath(const G4Track&, G4double,
1353                                                  1305                                               G4ForceCondition* condition)
1354 {                                                1306 {
1355   *condition = Forced;                           1307   *condition = Forced;
1356   return DBL_MAX;                                1308   return DBL_MAX;
1357 }                                                1309 }
1358                                                  1310 
1359 //....oooOO0OOooo........oooOO0OOooo........o    1311 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
1360 G4double G4OpBoundaryProcess::GetIncidentAngl    1312 G4double G4OpBoundaryProcess::GetIncidentAngle()
1361 {                                                1313 {
1362   return pi - std::acos(fOldMomentum * fFacet    1314   return pi - std::acos(fOldMomentum * fFacetNormal /
1363                         (fOldMomentum.mag() *    1315                         (fOldMomentum.mag() * fFacetNormal.mag()));
1364 }                                                1316 }
1365                                                  1317 
1366 //....oooOO0OOooo........oooOO0OOooo........o    1318 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
1367 G4double G4OpBoundaryProcess::GetReflectivity    1319 G4double G4OpBoundaryProcess::GetReflectivity(G4double E1_perp,
1368                                                  1320                                               G4double E1_parl,
1369                                                  1321                                               G4double incidentangle,
1370                                                  1322                                               G4double realRindex,
1371                                                  1323                                               G4double imaginaryRindex)
1372 {                                                1324 {
1373   G4complex reflectivity, reflectivity_TE, re    1325   G4complex reflectivity, reflectivity_TE, reflectivity_TM;
1374   G4complex N1(fRindex1, 0.), N2(realRindex,     1326   G4complex N1(fRindex1, 0.), N2(realRindex, imaginaryRindex);
1375   G4complex cosPhi;                              1327   G4complex cosPhi;
1376                                                  1328 
1377   G4complex u(1., 0.);  // unit number 1         1329   G4complex u(1., 0.);  // unit number 1
1378                                                  1330 
1379   G4complex numeratorTE;  // E1_perp=1 E1_par    1331   G4complex numeratorTE;  // E1_perp=1 E1_parl=0 -> TE polarization
1380   G4complex numeratorTM;  // E1_parl=1 E1_per    1332   G4complex numeratorTM;  // E1_parl=1 E1_perp=0 -> TM polarization
1381   G4complex denominatorTE, denominatorTM;        1333   G4complex denominatorTE, denominatorTM;
1382   G4complex rTM, rTE;                            1334   G4complex rTM, rTE;
1383                                                  1335 
1384   G4MaterialPropertiesTable* MPT = fMaterial1    1336   G4MaterialPropertiesTable* MPT = fMaterial1->GetMaterialPropertiesTable();
1385   G4MaterialPropertyVector* ppR  = MPT->GetPr    1337   G4MaterialPropertyVector* ppR  = MPT->GetProperty(kREALRINDEX);
1386   G4MaterialPropertyVector* ppI  = MPT->GetPr    1338   G4MaterialPropertyVector* ppI  = MPT->GetProperty(kIMAGINARYRINDEX);
1387   if(ppR && ppI)                                 1339   if(ppR && ppI)
1388   {                                              1340   {
1389     G4double rRindex = ppR->Value(fPhotonMome    1341     G4double rRindex = ppR->Value(fPhotonMomentum, idx_rrindex);
1390     G4double iRindex = ppI->Value(fPhotonMome    1342     G4double iRindex = ppI->Value(fPhotonMomentum, idx_irindex);
1391     N1               = G4complex(rRindex, iRi    1343     N1               = G4complex(rRindex, iRindex);
1392   }                                              1344   }
1393                                                  1345 
1394   // Following two equations, rTM and rTE, ar    1346   // Following two equations, rTM and rTE, are from: "Introduction To Modern
1395   // Optics" written by Fowles                   1347   // Optics" written by Fowles
1396   cosPhi = std::sqrt(u - ((std::sin(incidenta    1348   cosPhi = std::sqrt(u - ((std::sin(incidentangle) * std::sin(incidentangle)) *
1397                           (N1 * N1) / (N2 * N    1349                           (N1 * N1) / (N2 * N2)));
1398                                                  1350 
1399   numeratorTE   = N1 * std::cos(incidentangle    1351   numeratorTE   = N1 * std::cos(incidentangle) - N2 * cosPhi;
1400   denominatorTE = N1 * std::cos(incidentangle    1352   denominatorTE = N1 * std::cos(incidentangle) + N2 * cosPhi;
1401   rTE           = numeratorTE / denominatorTE    1353   rTE           = numeratorTE / denominatorTE;
1402                                                  1354 
1403   numeratorTM   = N2 * std::cos(incidentangle    1355   numeratorTM   = N2 * std::cos(incidentangle) - N1 * cosPhi;
1404   denominatorTM = N2 * std::cos(incidentangle    1356   denominatorTM = N2 * std::cos(incidentangle) + N1 * cosPhi;
1405   rTM           = numeratorTM / denominatorTM    1357   rTM           = numeratorTM / denominatorTM;
1406                                                  1358 
1407   // This is my (PG) calculaton for reflectiv    1359   // This is my (PG) calculaton for reflectivity on a metallic surface
1408   // depending on the fraction of TE and TM p    1360   // depending on the fraction of TE and TM polarization
1409   // when TE polarization, E1_parl=0 and E1_p    1361   // when TE polarization, E1_parl=0 and E1_perp=1, R=abs(rTE)^2 and
1410   // when TM polarization, E1_parl=1 and E1_p    1362   // when TM polarization, E1_parl=1 and E1_perp=0, R=abs(rTM)^2
1411                                                  1363 
1412   reflectivity_TE = (rTE * conj(rTE)) * (E1_p    1364   reflectivity_TE = (rTE * conj(rTE)) * (E1_perp * E1_perp) /
1413                     (E1_perp * E1_perp + E1_p    1365                     (E1_perp * E1_perp + E1_parl * E1_parl);
1414   reflectivity_TM = (rTM * conj(rTM)) * (E1_p    1366   reflectivity_TM = (rTM * conj(rTM)) * (E1_parl * E1_parl) /
1415                     (E1_perp * E1_perp + E1_p    1367                     (E1_perp * E1_perp + E1_parl * E1_parl);
1416   reflectivity = reflectivity_TE + reflectivi    1368   reflectivity = reflectivity_TE + reflectivity_TM;
1417                                                  1369 
1418   do                                             1370   do
1419   {                                              1371   {
1420     if(G4UniformRand() * real(reflectivity) >    1372     if(G4UniformRand() * real(reflectivity) > real(reflectivity_TE))
1421     {                                            1373     {
1422       f_iTE = -1;                                1374       f_iTE = -1;
1423     }                                            1375     }
1424     else                                         1376     else
1425     {                                            1377     {
1426       f_iTE = 1;                                 1378       f_iTE = 1;
1427     }                                            1379     }
1428     if(G4UniformRand() * real(reflectivity) >    1380     if(G4UniformRand() * real(reflectivity) > real(reflectivity_TM))
1429     {                                            1381     {
1430       f_iTM = -1;                                1382       f_iTM = -1;
1431     }                                            1383     }
1432     else                                         1384     else
1433     {                                            1385     {
1434       f_iTM = 1;                                 1386       f_iTM = 1;
1435     }                                            1387     }
1436     // Loop checking, 13-Aug-2015, Peter Gump    1388     // Loop checking, 13-Aug-2015, Peter Gumplinger
1437   } while(f_iTE < 0 && f_iTM < 0);               1389   } while(f_iTE < 0 && f_iTM < 0);
1438                                                  1390 
1439   return real(reflectivity);                     1391   return real(reflectivity);
1440 }                                                1392 }
1441                                                  1393 
1442 //....oooOO0OOooo........oooOO0OOooo........o    1394 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
                                                   >> 1395 
1443 void G4OpBoundaryProcess::CalculateReflectivi    1396 void G4OpBoundaryProcess::CalculateReflectivity()
1444 {                                                1397 {
1445   G4double realRindex = fRealRIndexMPV->Value    1398   G4double realRindex = fRealRIndexMPV->Value(fPhotonMomentum, idx_rrindex);
1446   G4double imaginaryRindex =                     1399   G4double imaginaryRindex =
1447     fImagRIndexMPV->Value(fPhotonMomentum, id    1400     fImagRIndexMPV->Value(fPhotonMomentum, idx_irindex);
1448                                                  1401 
1449   // calculate FacetNormal                       1402   // calculate FacetNormal
1450   if(fFinish == ground)                          1403   if(fFinish == ground)
1451   {                                              1404   {
1452     fFacetNormal = GetFacetNormal(fOldMomentu    1405     fFacetNormal = GetFacetNormal(fOldMomentum, fGlobalNormal);
1453   }                                              1406   }
1454   else                                           1407   else
1455   {                                              1408   {
1456     fFacetNormal = fGlobalNormal;                1409     fFacetNormal = fGlobalNormal;
1457   }                                              1410   }
1458                                                  1411 
1459   G4double cost1 = -fOldMomentum * fFacetNorm    1412   G4double cost1 = -fOldMomentum * fFacetNormal;
1460   if(std::abs(cost1) < 1.0 - fCarTolerance)      1413   if(std::abs(cost1) < 1.0 - fCarTolerance)
1461   {                                              1414   {
1462     fSint1 = std::sqrt(1. - cost1 * cost1);      1415     fSint1 = std::sqrt(1. - cost1 * cost1);
1463   }                                              1416   }
1464   else                                           1417   else
1465   {                                              1418   {
1466     fSint1 = 0.0;                                1419     fSint1 = 0.0;
1467   }                                              1420   }
1468                                                  1421 
1469   G4ThreeVector A_trans, A_paral, E1pp, E1pl;    1422   G4ThreeVector A_trans, A_paral, E1pp, E1pl;
1470   G4double E1_perp, E1_parl;                     1423   G4double E1_perp, E1_parl;
1471                                                  1424 
1472   if(fSint1 > 0.0)                               1425   if(fSint1 > 0.0)
1473   {                                              1426   {
1474     A_trans = (fOldMomentum.cross(fFacetNorma    1427     A_trans = (fOldMomentum.cross(fFacetNormal)).unit();
1475     E1_perp = fOldPolarization * A_trans;        1428     E1_perp = fOldPolarization * A_trans;
1476     E1pp    = E1_perp * A_trans;                 1429     E1pp    = E1_perp * A_trans;
1477     E1pl    = fOldPolarization - E1pp;           1430     E1pl    = fOldPolarization - E1pp;
1478     E1_parl = E1pl.mag();                        1431     E1_parl = E1pl.mag();
1479   }                                              1432   }
1480   else                                           1433   else
1481   {                                              1434   {
1482     A_trans = fOldPolarization;                  1435     A_trans = fOldPolarization;
1483     // Here we Follow Jackson's conventions a    1436     // Here we Follow Jackson's conventions and we set the parallel
1484     // component = 1 in case of a ray perpend    1437     // component = 1 in case of a ray perpendicular to the surface
1485     E1_perp = 0.0;                               1438     E1_perp = 0.0;
1486     E1_parl = 1.0;                               1439     E1_parl = 1.0;
1487   }                                              1440   }
1488                                                  1441 
1489   G4double incidentangle = GetIncidentAngle()    1442   G4double incidentangle = GetIncidentAngle();
1490                                                  1443 
1491   // calculate the reflectivity depending on     1444   // calculate the reflectivity depending on incident angle,
1492   // polarization and complex refractive         1445   // polarization and complex refractive
1493   fReflectivity = GetReflectivity(E1_perp, E1    1446   fReflectivity = GetReflectivity(E1_perp, E1_parl, incidentangle, realRindex,
1494                                   imaginaryRi    1447                                   imaginaryRindex);
1495 }                                                1448 }
1496                                                  1449 
1497 //....oooOO0OOooo........oooOO0OOooo........o    1450 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
1498 G4bool G4OpBoundaryProcess::InvokeSD(const G4    1451 G4bool G4OpBoundaryProcess::InvokeSD(const G4Step* pStep)
1499 {                                                1452 {
1500   G4Step aStep = *pStep;                         1453   G4Step aStep = *pStep;
1501   aStep.AddTotalEnergyDeposit(fPhotonMomentum    1454   aStep.AddTotalEnergyDeposit(fPhotonMomentum);
1502                                                  1455 
1503   G4VSensitiveDetector* sd = aStep.GetPostSte    1456   G4VSensitiveDetector* sd = aStep.GetPostStepPoint()->GetSensitiveDetector();
1504   if(sd != nullptr)                              1457   if(sd != nullptr)
1505     return sd->Hit(&aStep);                      1458     return sd->Hit(&aStep);
1506   else                                           1459   else
1507     return false;                                1460     return false;
1508 }                                                1461 }
1509                                                  1462 
1510 //....oooOO0OOooo........oooOO0OOooo........o    1463 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
1511 inline void G4OpBoundaryProcess::SetInvokeSD(    1464 inline void G4OpBoundaryProcess::SetInvokeSD(G4bool flag)
1512 {                                                1465 {
1513   fInvokeSD = flag;                              1466   fInvokeSD = flag;
1514   G4OpticalParameters::Instance()->SetBoundar    1467   G4OpticalParameters::Instance()->SetBoundaryInvokeSD(fInvokeSD);
1515 }                                                1468 }
1516                                                  1469 
1517 //....oooOO0OOooo........oooOO0OOooo........o    1470 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
1518 void G4OpBoundaryProcess::SetVerboseLevel(G4i    1471 void G4OpBoundaryProcess::SetVerboseLevel(G4int verbose)
1519 {                                                1472 {
1520   verboseLevel = verbose;                        1473   verboseLevel = verbose;
1521   G4OpticalParameters::Instance()->SetBoundar    1474   G4OpticalParameters::Instance()->SetBoundaryVerboseLevel(verboseLevel);
1522 }                                             << 
1523                                               << 
1524 //....oooOO0OOooo........oooOO0OOooo........o << 
1525 void G4OpBoundaryProcess::CoatedDielectricDie << 
1526 {                                             << 
1527   G4MaterialPropertyVector* pp = nullptr;     << 
1528                                               << 
1529   G4MaterialPropertiesTable* MPT = fMaterial2 << 
1530   if((pp = MPT->GetProperty(kRINDEX)))        << 
1531   {                                           << 
1532     fRindex2 = pp->Value(fPhotonMomentum, idx << 
1533   }                                           << 
1534                                               << 
1535   MPT = fOpticalSurface->GetMaterialPropertie << 
1536   if((pp = MPT->GetProperty(kCOATEDRINDEX)))  << 
1537   {                                           << 
1538     fCoatedRindex = pp->Value(fPhotonMomentum << 
1539   }                                           << 
1540   if(MPT->ConstPropertyExists(kCOATEDTHICKNES << 
1541   {                                           << 
1542     fCoatedThickness = MPT->GetConstProperty( << 
1543   }                                           << 
1544   if(MPT->ConstPropertyExists(kCOATEDFRUSTRAT << 
1545   {                                           << 
1546     fCoatedFrustratedTransmission =           << 
1547       (G4bool)MPT->GetConstProperty(kCOATEDFR << 
1548   }                                           << 
1549                                               << 
1550   G4double sintTL;                            << 
1551   G4double wavelength = h_Planck * c_light /  << 
1552   G4double PdotN;                             << 
1553   G4double E1_perp, E1_parl;                  << 
1554   G4double s1, E2_perp, E2_parl, E2_total, tr << 
1555   G4double E2_abs, C_parl, C_perp;            << 
1556   G4double alpha;                             << 
1557   G4ThreeVector A_trans, A_paral, E1pp, E1pl; << 
1558   //G4bool Inside  = false;                   << 
1559   //G4bool Swap    = false;                   << 
1560   G4bool through = false;                     << 
1561   G4bool done    = false;                     << 
1562                                               << 
1563   do {                                        << 
1564     if (through)                              << 
1565     {                                         << 
1566       //Swap = !Swap;                         << 
1567       through = false;                        << 
1568       fGlobalNormal = -fGlobalNormal;         << 
1569       G4SwapPtr(fMaterial1, fMaterial2);      << 
1570       G4SwapObj(&fRindex1, &fRindex2);        << 
1571     }                                         << 
1572                                               << 
1573     if(fFinish == polished)                   << 
1574     {                                         << 
1575       fFacetNormal = fGlobalNormal;           << 
1576     }                                         << 
1577     else                                      << 
1578     {                                         << 
1579       fFacetNormal = GetFacetNormal(fOldMomen << 
1580     }                                         << 
1581                                               << 
1582     PdotN = fOldMomentum * fFacetNormal;      << 
1583     G4double cost1 = -PdotN;                  << 
1584     G4double sint2, cost2 = 0.;               << 
1585                                               << 
1586     if (std::abs(cost1) < 1.0 - fCarTolerance << 
1587     {                                         << 
1588       fSint1 = std::sqrt(1. - cost1 * cost1); << 
1589       sint2 = fSint1 * fRindex1 / fRindex2;   << 
1590       sintTL = fSint1 * fRindex1 / fCoatedRin << 
1591     } else                                    << 
1592     {                                         << 
1593       fSint1 = 0.0;                           << 
1594       sint2 = 0.0;                            << 
1595       sintTL = 0.0;                           << 
1596     }                                         << 
1597                                               << 
1598     if (fSint1 > 0.0)                         << 
1599     {                                         << 
1600       A_trans = fOldMomentum.cross(fFacetNorm << 
1601       A_trans = A_trans.unit();               << 
1602       E1_perp = fOldPolarization * A_trans;   << 
1603       E1pp = E1_perp * A_trans;               << 
1604       E1pl = fOldPolarization - E1pp;         << 
1605       E1_parl = E1pl.mag();                   << 
1606     }                                         << 
1607     else                                      << 
1608     {                                         << 
1609       A_trans = fOldPolarization;             << 
1610       E1_perp = 0.0;                          << 
1611       E1_parl = 1.0;                          << 
1612     }                                         << 
1613                                               << 
1614     s1 = fRindex1 * cost1;                    << 
1615                                               << 
1616     if (cost1 > 0.0)                          << 
1617     {                                         << 
1618       cost2 = std::sqrt(1. - sint2 * sint2);  << 
1619     }                                         << 
1620     else                                      << 
1621     {                                         << 
1622       cost2 = -std::sqrt(1. - sint2 * sint2); << 
1623     }                                         << 
1624                                               << 
1625     transCoeff = 0.0;                         << 
1626                                               << 
1627     if (sintTL >= 1.0)                        << 
1628     { // --> Angle > Angle Limit              << 
1629       //Swap = false;                         << 
1630     }                                         << 
1631     E2_perp = 2. * s1 * E1_perp / (fRindex1 * << 
1632     E2_parl = 2. * s1 * E1_parl / (fRindex2 * << 
1633     E2_total = E2_perp * E2_perp + E2_parl *  << 
1634                                               << 
1635     transCoeff = 1. - GetReflectivityThroughT << 
1636                         sintTL, E1_perp, E1_p << 
1637     if (!G4BooleanRand(transCoeff))           << 
1638     {                                         << 
1639       if(verboseLevel > 2)                    << 
1640         G4cout << "Reflection from " << fMate << 
1641                << fMaterial2->GetName() << G4 << 
1642                                               << 
1643       //Swap = false;                         << 
1644                                               << 
1645       if (sintTL >= 1.0)                      << 
1646       {                                       << 
1647         fStatus = TotalInternalReflection;    << 
1648       }                                       << 
1649       else                                    << 
1650       {                                       << 
1651         fStatus = CoatedDielectricReflection; << 
1652       }                                       << 
1653                                               << 
1654       PdotN = fOldMomentum * fFacetNormal;    << 
1655       fNewMomentum = fOldMomentum - (2. * Pdo << 
1656                                               << 
1657       if (fSint1 > 0.0) {   // incident ray o << 
1658                                               << 
1659         E2_parl = fRindex2 * E2_parl / fRinde << 
1660         E2_perp = E2_perp - E1_perp;          << 
1661         E2_total = E2_perp * E2_perp + E2_par << 
1662         A_paral = fNewMomentum.cross(A_trans) << 
1663         A_paral = A_paral.unit();             << 
1664         E2_abs = std::sqrt(E2_total);         << 
1665         C_parl = E2_parl / E2_abs;            << 
1666         C_perp = E2_perp / E2_abs;            << 
1667                                               << 
1668         fNewPolarization = C_parl * A_paral + << 
1669                                               << 
1670       }                                       << 
1671       else                                    << 
1672       {               // incident ray perpend << 
1673         if (fRindex2 > fRindex1)              << 
1674         {                                     << 
1675           fNewPolarization = -fOldPolarizatio << 
1676         }                                     << 
1677         else                                  << 
1678         {                                     << 
1679           fNewPolarization = fOldPolarization << 
1680         }                                     << 
1681       }                                       << 
1682                                               << 
1683     } else { // photon gets transmitted       << 
1684       if (verboseLevel > 2)                   << 
1685         G4cout << "Transmission from " << fMa << 
1686                << fMaterial2->GetName() << G4 << 
1687                                               << 
1688       //Inside = !Inside;                     << 
1689       through = true;                         << 
1690                                               << 
1691       if (fEfficiency > 0.)                   << 
1692       {                                       << 
1693         DoAbsorption();                       << 
1694         return;                               << 
1695       }                                       << 
1696       else                                    << 
1697       {                                       << 
1698         if (sintTL >= 1.0)                    << 
1699         {                                     << 
1700           fStatus = CoatedDielectricFrustrate << 
1701         }                                     << 
1702         else                                  << 
1703         {                                     << 
1704           fStatus = CoatedDielectricRefractio << 
1705         }                                     << 
1706                                               << 
1707         if (fSint1 > 0.0) {      // incident  << 
1708                                               << 
1709           alpha = cost1 - cost2 * (fRindex2 / << 
1710           fNewMomentum = fOldMomentum + alpha << 
1711           fNewMomentum = fNewMomentum.unit(); << 
1712           A_paral = fNewMomentum.cross(A_tran << 
1713           A_paral = A_paral.unit();           << 
1714           E2_abs = std::sqrt(E2_total);       << 
1715           C_parl = E2_parl / E2_abs;          << 
1716           C_perp = E2_perp / E2_abs;          << 
1717                                               << 
1718           fNewPolarization = C_parl * A_paral << 
1719                                               << 
1720         }                                     << 
1721         else                                  << 
1722         {                  // incident ray pe << 
1723           fNewMomentum = fOldMomentum;        << 
1724           fNewPolarization = fOldPolarization << 
1725         }                                     << 
1726       }                                       << 
1727     }                                         << 
1728                                               << 
1729     fOldMomentum = fNewMomentum.unit();       << 
1730     fOldPolarization = fNewPolarization.unit( << 
1731     if ((fStatus == CoatedDielectricFrustrate << 
1732         (fStatus == CoatedDielectricRefractio << 
1733     {                                         << 
1734       done = (fNewMomentum * fGlobalNormal <= << 
1735     }                                         << 
1736     else                                      << 
1737     {                                         << 
1738       done = (fNewMomentum * fGlobalNormal >= << 
1739     }                                         << 
1740                                               << 
1741   } while (!done);                            << 
1742 }                                             << 
1743                                               << 
1744 //....oooOO0OOooo........oooOO0OOooo........o << 
1745 G4double G4OpBoundaryProcess::GetReflectivity << 
1746                    G4double E1_perp,          << 
1747                    G4double E1_parl,          << 
1748                    G4double wavelength, G4dou << 
1749   G4complex Reflectivity, Reflectivity_TE, Re << 
1750   G4double gammaTL, costTL;                   << 
1751                                               << 
1752   G4complex i(0, 1);                          << 
1753   G4complex rTM, rTE;                         << 
1754   G4complex r1toTL, rTLto2;                   << 
1755   G4double k0 = 2 * pi / wavelength;          << 
1756                                               << 
1757   // Angle > Angle limit                      << 
1758   if (sinTL >= 1.0) {                         << 
1759     if (fCoatedFrustratedTransmission) { //Fr << 
1760                                               << 
1761       if (cost1 > 0.0)                        << 
1762       {                                       << 
1763         gammaTL = std::sqrt(fRindex1 * fRinde << 
1764                    fCoatedRindex * fCoatedRin << 
1765       }                                       << 
1766       else                                    << 
1767       {                                       << 
1768         gammaTL = -std::sqrt(fRindex1 * fRind << 
1769                    fCoatedRindex * fCoatedRin << 
1770       }                                       << 
1771                                               << 
1772       // TE                                   << 
1773       r1toTL = (fRindex1 * cost1 - i * gammaT << 
1774       rTLto2 = (i * gammaTL - fRindex2 * cost << 
1775       if (cost1 != 0.0)                       << 
1776       {                                       << 
1777         rTE = (r1toTL + rTLto2 * std::exp(-2  << 
1778                  (1.0 + r1toTL * rTLto2 * std << 
1779       }                                       << 
1780       // TM                                   << 
1781       r1toTL = (fRindex1 * i * gammaTL - fCoa << 
1782                   (fRindex1 * i * gammaTL + f << 
1783       rTLto2 = (fCoatedRindex * fCoatedRindex << 
1784                   (fCoatedRindex * fCoatedRin << 
1785       if (cost1 != 0.0)                       << 
1786       {                                       << 
1787         rTM = (r1toTL + rTLto2 * std::exp(-2  << 
1788                  (1.0 + r1toTL * rTLto2 * std << 
1789       }                                       << 
1790     }                                         << 
1791     else                                      << 
1792     { //Total reflection                      << 
1793       return(1.);                             << 
1794     }                                         << 
1795   }                                           << 
1796                                               << 
1797   // Angle <= Angle limit                     << 
1798   else //if (sinTL < 1.0)                     << 
1799   {                                           << 
1800     if (cost1 > 0.0)                          << 
1801     {                                         << 
1802       costTL = std::sqrt(1. - sinTL * sinTL); << 
1803     }                                         << 
1804     else                                      << 
1805     {                                         << 
1806       costTL = -std::sqrt(1. - sinTL * sinTL) << 
1807     }                                         << 
1808     // TE                                     << 
1809     r1toTL = (fRindex1 * cost1 - fCoatedRinde << 
1810     rTLto2 = (fCoatedRindex * costTL - fRinde << 
1811     if (cost1 != 0.0)                         << 
1812     {                                         << 
1813       rTE = (r1toTL + rTLto2 * std::exp(2.0 * << 
1814             (1.0 + r1toTL * rTLto2 * std::exp << 
1815     }                                         << 
1816     // TM                                     << 
1817     r1toTL = (fRindex1 * costTL - fCoatedRind << 
1818     rTLto2 = (fCoatedRindex * cost2 - fRindex << 
1819     if (cost1 != 0.0)                         << 
1820     {                                         << 
1821       rTM = (r1toTL + rTLto2 * std::exp(2.0 * << 
1822             (1.0 + r1toTL * rTLto2 * std::exp << 
1823     }                                         << 
1824   }                                           << 
1825                                               << 
1826   Reflectivity_TE = (rTE * conj(rTE)) * (E1_p << 
1827   Reflectivity_TM = (rTM * conj(rTM)) * (E1_p << 
1828   Reflectivity = Reflectivity_TE + Reflectivi << 
1829                                               << 
1830   return real(Reflectivity);                  << 
1831 }                                                1475 }
1832                                                  1476