Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/optical/src/G4OpBoundaryProcess.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/optical/src/G4OpBoundaryProcess.cc (Version 11.3.0) and /processes/optical/src/G4OpBoundaryProcess.cc (Version 10.6.p2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 //////////////////////////////////////////////     26 ////////////////////////////////////////////////////////////////////////
 27 // Optical Photon Boundary Process Class Imple     27 // Optical Photon Boundary Process Class Implementation
 28 //////////////////////////////////////////////     28 ////////////////////////////////////////////////////////////////////////
 29 //                                                 29 //
 30 // File:        G4OpBoundaryProcess.cc             30 // File:        G4OpBoundaryProcess.cc
 31 // Description: Discrete Process -- reflection     31 // Description: Discrete Process -- reflection/refraction at
 32 //                                  optical in     32 //                                  optical interfaces
 33 // Version:     1.1                                33 // Version:     1.1
 34 // Created:     1997-06-18                         34 // Created:     1997-06-18
 35 // Modified:    1998-05-25 - Correct parallel      35 // Modified:    1998-05-25 - Correct parallel component of polarization
 36 //                           (thanks to: Stefa     36 //                           (thanks to: Stefano Magni + Giovanni Pieri)
 37 //              1998-05-28 - NULL Rindex point     37 //              1998-05-28 - NULL Rindex pointer before reuse
 38 //                           (thanks to: Stefa     38 //                           (thanks to: Stefano Magni)
 39 //              1998-06-11 - delete *sint1 in      39 //              1998-06-11 - delete *sint1 in oblique reflection
 40 //                           (thanks to: Giova     40 //                           (thanks to: Giovanni Pieri)
 41 //              1998-06-19 - move from GetLoca <<  41 //              1998-06-19 - move from GetLocalExitNormal() to the new 
 42 //                           method: GetLocalE     42 //                           method: GetLocalExitNormal(&valid) to get
 43 //                           the surface norma     43 //                           the surface normal in all cases
 44 //              1998-11-07 - NULL OpticalSurfa     44 //              1998-11-07 - NULL OpticalSurface pointer before use
 45 //                           comparison not sh     45 //                           comparison not sharp for: std::abs(cost1) < 1.0
 46 //                           remove sin1, sin2     46 //                           remove sin1, sin2 in lines 556,567
 47 //                           (thanks to Stefan     47 //                           (thanks to Stefano Magni)
 48 //              1999-10-10 - Accommodate chang     48 //              1999-10-10 - Accommodate changes done in DoAbsorption by
 49 //                           changing logic in     49 //                           changing logic in DielectricMetal
 50 //              2001-10-18 - avoid Linux (gcc-     50 //              2001-10-18 - avoid Linux (gcc-2.95.2) warning about variables
 51 //                           might be used uni     51 //                           might be used uninitialized in this function
 52 //                           moved E2_perp, E2     52 //                           moved E2_perp, E2_parl and E2_total out of 'if'
 53 //              2003-11-27 - Modified line 168     53 //              2003-11-27 - Modified line 168-9 to reflect changes made to
 54 //                           G4OpticalSurface      54 //                           G4OpticalSurface class ( by Fan Lei)
 55 //              2004-02-02 - Set theStatus = U     55 //              2004-02-02 - Set theStatus = Undefined at start of DoIt
 56 //              2005-07-28 - add G4ProcessType     56 //              2005-07-28 - add G4ProcessType to constructor
 57 //              2006-11-04 - add capability of     57 //              2006-11-04 - add capability of calculating the reflectivity
 58 //                           off a metal surfa <<  58 //                           off a metal surface by way of a complex index 
 59 //                           of refraction - T <<  59 //                           of refraction - Thanks to Sehwook Lee and John 
 60 //                           Hauptman (Dept. o     60 //                           Hauptman (Dept. of Physics - Iowa State Univ.)
 61 //              2009-11-10 - add capability of     61 //              2009-11-10 - add capability of simulating surface reflections
 62 //                           with Look-Up-Tabl     62 //                           with Look-Up-Tables (LUT) containing measured
 63 //                           optical reflectan     63 //                           optical reflectance for a variety of surface
 64 //                           treatments - Than     64 //                           treatments - Thanks to Martin Janecek and
 65 //                           William Moses (La     65 //                           William Moses (Lawrence Berkeley National Lab.)
 66 //              2013-06-01 - add the capabilit     66 //              2013-06-01 - add the capability of simulating the transmission
 67 //                           of a dichronic fi     67 //                           of a dichronic filter
 68 //              2017-02-24 - add capability of     68 //              2017-02-24 - add capability of simulating surface reflections
 69 //                           with Look-Up-Tabl     69 //                           with Look-Up-Tables (LUT) developed in DAVIS
 70 //                                                 70 //
 71 // Author:      Peter Gumplinger                   71 // Author:      Peter Gumplinger
 72 //    adopted from work by Werner Keil - April     72 //    adopted from work by Werner Keil - April 2/96
                                                   >>  73 // mail:        gum@triumf.ca
 73 //                                                 74 //
 74 //////////////////////////////////////////////     75 ////////////////////////////////////////////////////////////////////////
 75                                                    76 
 76 #include "G4OpBoundaryProcess.hh"              << 
 77                                                << 
 78 #include "G4ios.hh"                                77 #include "G4ios.hh"
 79 #include "G4GeometryTolerance.hh"              <<  78 #include "G4PhysicalConstants.hh"
 80 #include "G4LogicalBorderSurface.hh"           << 
 81 #include "G4LogicalSkinSurface.hh"             << 
 82 #include "G4OpProcessSubType.hh"                   79 #include "G4OpProcessSubType.hh"
 83 #include "G4OpticalParameters.hh"              <<  80 
                                                   >>  81 #include "G4OpBoundaryProcess.hh"
                                                   >>  82 #include "G4GeometryTolerance.hh"
                                                   >>  83 
                                                   >>  84 #include "G4VSensitiveDetector.hh"
 84 #include "G4ParallelWorldProcess.hh"               85 #include "G4ParallelWorldProcess.hh"
 85 #include "G4PhysicalConstants.hh"              <<  86 
 86 #include "G4SystemOfUnits.hh"                      87 #include "G4SystemOfUnits.hh"
 87 #include "G4TransportationManager.hh"          << 
 88 #include "G4VSensitiveDetector.hh"             << 
 89                                                    88 
 90 //....oooOO0OOooo........oooOO0OOooo........oo     89 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
                                                   >>  90 
 91 G4OpBoundaryProcess::G4OpBoundaryProcess(const     91 G4OpBoundaryProcess::G4OpBoundaryProcess(const G4String& processName,
 92                                          G4Pro <<  92                                                G4ProcessType type)
 93   : G4VDiscreteProcess(processName, ptype)     <<  93   : G4VDiscreteProcess(processName, type)
 94 {                                                  94 {
 95   Initialise();                                <<  95   if ( verboseLevel > 0) {
 96                                                << 
 97   if(verboseLevel > 0)                         << 
 98   {                                            << 
 99     G4cout << GetProcessName() << " is created     96     G4cout << GetProcessName() << " is created " << G4endl;
100   }                                                97   }
                                                   >>  98 
101   SetProcessSubType(fOpBoundary);                  99   SetProcessSubType(fOpBoundary);
102                                                   100 
103   fStatus           = Undefined;               << 101   theStatus = Undefined;
104   fModel            = glisur;                  << 102   theModel = glisur;
105   fFinish           = polished;                << 103   theFinish = polished;
106   fReflectivity     = 1.;                      << 104   theReflectivity  = 1.;
107   fEfficiency       = 0.;                      << 105   theEfficiency    = 0.;
108   fTransmittance    = 0.;                      << 106   theTransmittance = 0.;
109   fSurfaceRoughness = 0.;                      << 
110   fProb_sl          = 0.;                      << 
111   fProb_ss          = 0.;                      << 
112   fProb_bs          = 0.;                      << 
113                                                << 
114   fRealRIndexMPV  = nullptr;                   << 
115   fImagRIndexMPV  = nullptr;                   << 
116   fMaterial1      = nullptr;                   << 
117   fMaterial2      = nullptr;                   << 
118   fOpticalSurface = nullptr;                   << 
119   fCarTolerance   = G4GeometryTolerance::GetIn << 
120                                                << 
121   f_iTE = f_iTM   = 0;                         << 
122   fPhotonMomentum = 0.;                        << 
123   fRindex1 = fRindex2 = 1.;                    << 
124   fSint1              = 0.;                    << 
125   fDichroicVector     = nullptr;               << 
126 }                                              << 
127                                                   107 
128 //....oooOO0OOooo........oooOO0OOooo........oo << 108   theSurfaceRoughness = 0.;
129 G4OpBoundaryProcess::~G4OpBoundaryProcess() =  << 
130                                                   109 
131 //....oooOO0OOooo........oooOO0OOooo........oo << 110   prob_sl = 0.;
132 void G4OpBoundaryProcess::PreparePhysicsTable( << 111   prob_ss = 0.;
133 {                                              << 112   prob_bs = 0.;
134   Initialise();                                << 113 
                                                   >> 114   //PropertyPointer  = nullptr;
                                                   >> 115   //PropertyPointer1 = nullptr;
                                                   >> 116   //PropertyPointer2 = nullptr;
                                                   >> 117 
                                                   >> 118   fRealRIndexMPV = nullptr;
                                                   >> 119   fImagRIndexMPV = nullptr;
                                                   >> 120 
                                                   >> 121   Material1 = nullptr;
                                                   >> 122   Material2 = nullptr;
                                                   >> 123 
                                                   >> 124   OpticalSurface = nullptr;
                                                   >> 125 
                                                   >> 126   kCarTolerance = G4GeometryTolerance::GetInstance()->GetSurfaceTolerance();
                                                   >> 127 
                                                   >> 128   iTE = iTM = 0;
                                                   >> 129   thePhotonMomentum = 0.;
                                                   >> 130   Rindex1 = Rindex2 = 1.;
                                                   >> 131   cost1 = cost2 = sint1 = sint2 = 0.;
                                                   >> 132 
                                                   >> 133   idx = idy = 0;
                                                   >> 134   DichroicVector = nullptr;
                                                   >> 135 
                                                   >> 136   fInvokeSD = true;
135 }                                                 137 }
136                                                   138 
137 //....oooOO0OOooo........oooOO0OOooo........oo    139 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
138 void G4OpBoundaryProcess::Initialise()         << 140 
139 {                                              << 141 G4OpBoundaryProcess::~G4OpBoundaryProcess()
140   G4OpticalParameters* params = G4OpticalParam << 142 {}
141   SetInvokeSD(params->GetBoundaryInvokeSD());  << 
142   SetVerboseLevel(params->GetBoundaryVerboseLe << 
143 }                                              << 
144                                                   143 
145 //....oooOO0OOooo........oooOO0OOooo........oo    144 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
146 G4VParticleChange* G4OpBoundaryProcess::PostSt << 145 
147                                                << 146 G4VParticleChange*
                                                   >> 147 G4OpBoundaryProcess::PostStepDoIt(const G4Track& aTrack, const G4Step& aStep)
148 {                                                 148 {
149   fStatus = Undefined;                         << 149   theStatus = Undefined;
                                                   >> 150 
150   aParticleChange.Initialize(aTrack);             151   aParticleChange.Initialize(aTrack);
151   aParticleChange.ProposeVelocity(aTrack.GetVe    152   aParticleChange.ProposeVelocity(aTrack.GetVelocity());
152                                                   153 
153   // Get hyperStep from  G4ParallelWorldProces    154   // Get hyperStep from  G4ParallelWorldProcess
154   //  NOTE: PostSetpDoIt of this process to be << 155   //  NOTE: PostSetpDoIt of this process should be
155   //  G4ParallelWorldProcess!                  << 156   //        invoked after G4ParallelWorldProcess!
                                                   >> 157 
156   const G4Step* pStep = &aStep;                   158   const G4Step* pStep = &aStep;
                                                   >> 159 
157   const G4Step* hStep = G4ParallelWorldProcess    160   const G4Step* hStep = G4ParallelWorldProcess::GetHyperStep();
158   if(hStep != nullptr)                         << 
159     pStep = hStep;                             << 
160                                                   161 
161   if(pStep->GetPostStepPoint()->GetStepStatus( << 162   if (hStep) pStep = hStep;
162   {                                            << 163 
163     fMaterial1 = pStep->GetPreStepPoint()->Get << 164   G4bool isOnBoundary = (pStep->GetPostStepPoint()->GetStepStatus() == fGeomBoundary);
164     fMaterial2 = pStep->GetPostStepPoint()->Ge << 165 
165   }                                            << 166   if (isOnBoundary) {
166   else                                         << 167     Material1 = pStep->GetPreStepPoint()->GetMaterial();
167   {                                            << 168     Material2 = pStep->GetPostStepPoint()->GetMaterial();
168     fStatus = NotAtBoundary;                   << 169   } else {
169     if(verboseLevel > 1)                       << 170     theStatus = NotAtBoundary;
170       BoundaryProcessVerbose();                << 171     if (verboseLevel > 0) BoundaryProcessVerbose();
171     return G4VDiscreteProcess::PostStepDoIt(aT    172     return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
172   }                                               173   }
173                                                   174 
174   G4VPhysicalVolume* thePrePV  = pStep->GetPre << 175   G4VPhysicalVolume* thePrePV  = pStep->GetPreStepPoint() ->GetPhysicalVolume();
175   G4VPhysicalVolume* thePostPV = pStep->GetPos    176   G4VPhysicalVolume* thePostPV = pStep->GetPostStepPoint()->GetPhysicalVolume();
176                                                   177 
177   if(verboseLevel > 1)                         << 178   if (verboseLevel > 0) {
178   {                                            << 
179     G4cout << " Photon at Boundary! " << G4end    179     G4cout << " Photon at Boundary! " << G4endl;
180     if(thePrePV != nullptr)                    << 180     if (thePrePV)  G4cout << " thePrePV:  " << thePrePV->GetName()  << G4endl;
181       G4cout << " thePrePV:  " << thePrePV->Ge << 181     if (thePostPV) G4cout << " thePostPV: " << thePostPV->GetName() << G4endl;
182     if(thePostPV != nullptr)                   << 
183       G4cout << " thePostPV: " << thePostPV->G << 
184   }                                               182   }
185                                                   183 
186   G4double stepLength = aTrack.GetStepLength() << 184   if (aTrack.GetStepLength() <= kCarTolerance/2.) {
187   if(stepLength <= fCarTolerance)              << 185     theStatus = StepTooSmall;
188   {                                            << 186     if (verboseLevel > 0) BoundaryProcessVerbose();
189     fStatus = StepTooSmall;                    << 
190     if(verboseLevel > 1)                       << 
191       BoundaryProcessVerbose();                << 
192                                                << 
193     G4MaterialPropertyVector* groupvel = nullp << 
194     G4MaterialPropertiesTable* aMPT = fMateria << 
195     if(aMPT != nullptr)                        << 
196     {                                          << 
197       groupvel = aMPT->GetProperty(kGROUPVEL); << 
198     }                                          << 
199                                                << 
200     if(groupvel != nullptr)                    << 
201     {                                          << 
202       aParticleChange.ProposeVelocity(         << 
203         groupvel->Value(fPhotonMomentum, idx_g << 
204     }                                          << 
205     return G4VDiscreteProcess::PostStepDoIt(aT    187     return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
206   }                                               188   }
207   else if (stepLength <= 10.*fCarTolerance &&  << 
208   {  // see bug 2510                           << 
209     ++fNumSmallStepWarnings;                   << 
210     if(verboseLevel > 0)                       << 
211     {                                          << 
212       G4ExceptionDescription ed;               << 
213       ed << "G4OpBoundaryProcess: "            << 
214          << "Opticalphoton step length: " << s << 
215          << "This is larger than the threshold << 
216             "to set status StepTooSmall." << G << 
217          << "Boundary scattering may be incorr << 
218       if(fNumSmallStepWarnings == 10)          << 
219       {                                        << 
220         ed << G4endl << "*** Step size warning << 
221       }                                        << 
222       G4Exception("G4OpBoundaryProcess", "OpBo << 
223     }                                          << 
224   }                                            << 
225                                                   189 
226   const G4DynamicParticle* aParticle = aTrack.    190   const G4DynamicParticle* aParticle = aTrack.GetDynamicParticle();
227                                                   191 
228   fPhotonMomentum  = aParticle->GetTotalMoment << 192   thePhotonMomentum = aParticle->GetTotalMomentum();
229   fOldMomentum     = aParticle->GetMomentumDir << 193   OldMomentum       = aParticle->GetMomentumDirection();
230   fOldPolarization = aParticle->GetPolarizatio << 194   OldPolarization   = aParticle->GetPolarization();
231                                                << 195 
232   if(verboseLevel > 1)                         << 196   if ( verboseLevel > 0 ) {
233   {                                            << 197     G4cout << " Old Momentum Direction: " << OldMomentum     << G4endl;
234     G4cout << " Old Momentum Direction: " << f << 198     G4cout << " Old Polarization:       " << OldPolarization << G4endl;
235            << " Old Polarization:       " << f << 
236   }                                               199   }
237                                                   200 
238   G4ThreeVector theGlobalPoint = pStep->GetPos    201   G4ThreeVector theGlobalPoint = pStep->GetPostStepPoint()->GetPosition();
                                                   >> 202 
239   G4bool valid;                                   203   G4bool valid;
                                                   >> 204   //  Use the new method for Exit Normal in global coordinates,
                                                   >> 205   //    which provides the normal more reliably.
240                                                   206 
241   // ID of Navigator which limits step            207   // ID of Navigator which limits step
242   G4int hNavId = G4ParallelWorldProcess::GetHy    208   G4int hNavId = G4ParallelWorldProcess::GetHypNavigatorID();
243   auto iNav    = G4TransportationManager::GetT << 209   std::vector<G4Navigator*>::iterator iNav =
244                 ->GetActiveNavigatorsIterator( << 210      G4TransportationManager::GetTransportationManager()->GetActiveNavigatorsIterator();
245   fGlobalNormal = (iNav[hNavId])->GetGlobalExi << 211   theGlobalNormal = (iNav[hNavId])->GetGlobalExitNormal(theGlobalPoint, &valid);
246                                                   212 
247   if(valid)                                    << 213   if (valid) {
248   {                                            << 214     theGlobalNormal = -theGlobalNormal;
249     fGlobalNormal = -fGlobalNormal;            << 
250   }                                               215   }
251   else                                            216   else
252   {                                               217   {
253     G4ExceptionDescription ed;                    218     G4ExceptionDescription ed;
254     ed << " G4OpBoundaryProcess/PostStepDoIt()    219     ed << " G4OpBoundaryProcess/PostStepDoIt(): "
255        << " The Navigator reports that it retu << 220            << " The Navigator reports that it returned an invalid normal"
256     G4Exception(                               << 221            << G4endl;
257       "G4OpBoundaryProcess::PostStepDoIt", "Op << 222     G4Exception("G4OpBoundaryProcess::PostStepDoIt", "OpBoun01",
258       "Invalid Surface Normal - Geometry must  << 223                 EventMustBeAborted,ed,
                                                   >> 224                 "Invalid Surface Normal - Geometry must return valid surface normal");
259   }                                               225   }
260                                                   226 
261   if(fOldMomentum * fGlobalNormal > 0.0)       << 227   if (OldMomentum * theGlobalNormal > 0.0) {
262   {                                            << 
263 #ifdef G4OPTICAL_DEBUG                            228 #ifdef G4OPTICAL_DEBUG
264     G4ExceptionDescription ed;                    229     G4ExceptionDescription ed;
265     ed << " G4OpBoundaryProcess/PostStepDoIt() << 230     ed << " G4OpBoundaryProcess/PostStepDoIt(): "
266           "wrong direction. "                  << 231        << " theGlobalNormal points in a wrong direction. "
267        << G4endl                               << 
268        << "   The momentum of the photon arriv << 
269        << "   must exit the volume cross in th << 
270        << "   So it MUST have dot < 0 with the << 
271           "volume (globalNormal)."             << 
272        << G4endl << "   >> The dot product of  << 
273        << fOldMomentum * fGlobalNormal << G4en << 
274        << "     Old Momentum  (during step)    << 
275        << "     Global Normal (Exiting New Vol << 
276        << G4endl;                                 232        << G4endl;
                                                   >> 233     ed << "    The momentum of the photon arriving at interface (oldMomentum)"
                                                   >> 234        << " must exit the volume cross in the step. " << G4endl;
                                                   >> 235     ed << "  So it MUST have dot < 0 with the normal that Exits the new volume (globalNormal)." << G4endl;
                                                   >> 236     ed << "  >> The dot product of oldMomentum and global Normal is " << OldMomentum*theGlobalNormal << G4endl;
                                                   >> 237     ed << "     Old Momentum  (during step)     = " << OldMomentum << G4endl;
                                                   >> 238     ed << "     Global Normal (Exiting New Vol) = " << theGlobalNormal << G4endl;
                                                   >> 239     ed << G4endl;
277     G4Exception("G4OpBoundaryProcess::PostStep    240     G4Exception("G4OpBoundaryProcess::PostStepDoIt", "OpBoun02",
278                 EventMustBeAborted,  // Or Jus << 241                 EventMustBeAborted,  // Or JustWarning to see if it happens repeatedbly on one ray
279                                      // repeat << 
280                 ed,                               242                 ed,
281                 "Invalid Surface Normal - Geom << 243                "Invalid Surface Normal - Geometry must return valid surface normal pointing in the right direction");
282                 "normal pointing in the right  << 
283 #else                                             244 #else
284     fGlobalNormal = -fGlobalNormal;            << 245     theGlobalNormal = -theGlobalNormal;
285 #endif                                            246 #endif
286   }                                               247   }
287                                                   248 
288   G4MaterialPropertyVector* rIndexMPV = nullpt << 249   G4MaterialPropertiesTable* aMaterialPropertiesTable;
289   G4MaterialPropertiesTable* MPT = fMaterial1- << 250   G4MaterialPropertyVector* RindexMPV = nullptr;
290   if(MPT != nullptr)                           << 251 
291   {                                            << 252   aMaterialPropertiesTable = Material1->GetMaterialPropertiesTable();
292     rIndexMPV = MPT->GetProperty(kRINDEX);     << 253   if (aMaterialPropertiesTable) {
293   }                                            << 254     RindexMPV = aMaterialPropertiesTable->GetProperty(kRINDEX);
294   if(rIndexMPV != nullptr)                     << 255   }
295   {                                            << 256   else {
296     fRindex1 = rIndexMPV->Value(fPhotonMomentu << 257     theStatus = NoRINDEX;
297   }                                            << 258     if (verboseLevel > 0) BoundaryProcessVerbose();
298   else                                         << 259     aParticleChange.ProposeLocalEnergyDeposit(thePhotonMomentum);
299   {                                            << 
300     fStatus = NoRINDEX;                        << 
301     if(verboseLevel > 1)                       << 
302       BoundaryProcessVerbose();                << 
303     aParticleChange.ProposeLocalEnergyDeposit( << 
304     aParticleChange.ProposeTrackStatus(fStopAn    260     aParticleChange.ProposeTrackStatus(fStopAndKill);
305     return G4VDiscreteProcess::PostStepDoIt(aT    261     return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
                                                   >> 262   }
                                                   >> 263 
                                                   >> 264   if (RindexMPV) {
                                                   >> 265     Rindex1 = RindexMPV->Value(thePhotonMomentum);
306   }                                               266   }
                                                   >> 267   else {
                                                   >> 268     theStatus = NoRINDEX;
                                                   >> 269     if (verboseLevel > 0) BoundaryProcessVerbose();
                                                   >> 270     aParticleChange.ProposeLocalEnergyDeposit(thePhotonMomentum);
                                                   >> 271     aParticleChange.ProposeTrackStatus(fStopAndKill);
                                                   >> 272     return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
                                                   >> 273   }
                                                   >> 274 
                                                   >> 275   theReflectivity     = 1.;
                                                   >> 276   theEfficiency       = 0.;
                                                   >> 277   theTransmittance    = 0.;
                                                   >> 278   theSurfaceRoughness = 0.;
                                                   >> 279 
                                                   >> 280   theModel  = glisur;
                                                   >> 281   theFinish = polished;
307                                                   282 
308   fReflectivity      = 1.;                     << 
309   fEfficiency        = 0.;                     << 
310   fTransmittance     = 0.;                     << 
311   fSurfaceRoughness  = 0.;                     << 
312   fModel             = glisur;                 << 
313   fFinish            = polished;               << 
314   G4SurfaceType type = dielectric_dielectric;     283   G4SurfaceType type = dielectric_dielectric;
315                                                   284 
316   rIndexMPV       = nullptr;                   << 285   RindexMPV = nullptr;
317   fOpticalSurface = nullptr;                   << 286   OpticalSurface = nullptr;
318                                                   287 
319   G4LogicalSurface* surface =                  << 288   G4LogicalSurface* Surface = nullptr;
320     G4LogicalBorderSurface::GetSurface(thePreP << 289 
321   if(surface == nullptr)                       << 290   Surface = G4LogicalBorderSurface::GetSurface(thePrePV, thePostPV);
322   {                                            << 291 
323     if(thePostPV->GetMotherLogical() == thePre << 292   if (Surface == nullptr) {
324     {                                          << 293     G4bool enteredDaughter =
325       surface = G4LogicalSkinSurface::GetSurfa << 294       (thePostPV->GetMotherLogical() == thePrePV ->GetLogicalVolume());
326       if(surface == nullptr)                   << 295     if (enteredDaughter) {
327       {                                        << 296       Surface = G4LogicalSkinSurface::GetSurface(thePostPV->GetLogicalVolume());
328         surface =                              << 297       if (Surface == nullptr) {
329           G4LogicalSkinSurface::GetSurface(the << 298         Surface = G4LogicalSkinSurface::GetSurface(thePrePV->GetLogicalVolume());
330       }                                           299       }
331     }                                          << 300     }
332     else                                       << 301     else {
333     {                                          << 302       Surface = G4LogicalSkinSurface::GetSurface(thePrePV->GetLogicalVolume());
334       surface = G4LogicalSkinSurface::GetSurfa << 303       if (Surface == nullptr) {
335       if(surface == nullptr)                   << 304         Surface = G4LogicalSkinSurface::GetSurface(thePostPV->GetLogicalVolume());
336       {                                        << 
337         surface =                              << 
338           G4LogicalSkinSurface::GetSurface(the << 
339       }                                           305       }
340     }                                          << 306     }
341   }                                            << 307   }
342                                                   308 
343   if(surface != nullptr)                       << 309   if (Surface) {
344   {                                            << 310     OpticalSurface = dynamic_cast<G4OpticalSurface*> (Surface->GetSurfaceProperty());
345     fOpticalSurface =                          << 
346       dynamic_cast<G4OpticalSurface*>(surface- << 
347   }                                               311   }
348   if(fOpticalSurface != nullptr)               << 312 
349   {                                            << 313   if (OpticalSurface) {
350     type    = fOpticalSurface->GetType();      << 314     type      = OpticalSurface->GetType();
351     fModel  = fOpticalSurface->GetModel();     << 315     theModel  = OpticalSurface->GetModel();
352     fFinish = fOpticalSurface->GetFinish();    << 316     theFinish = OpticalSurface->GetFinish();
353                                                << 317 
354     G4MaterialPropertiesTable* sMPT =          << 318     aMaterialPropertiesTable = OpticalSurface->GetMaterialPropertiesTable();
355       fOpticalSurface->GetMaterialPropertiesTa << 319 
356     if(sMPT != nullptr)                        << 320     if (aMaterialPropertiesTable) {
357     {                                          << 321 
358       if(fFinish == polishedbackpainted || fFi << 322       if (theFinish == polishedbackpainted || theFinish == groundbackpainted) {
359       {                                        << 323         RindexMPV = aMaterialPropertiesTable->GetProperty(kRINDEX);
360         rIndexMPV = sMPT->GetProperty(kRINDEX) << 324         if (RindexMPV) {
361         if(rIndexMPV != nullptr)               << 325           Rindex2 = RindexMPV->Value(thePhotonMomentum);
362         {                                      << 
363           fRindex2 = rIndexMPV->Value(fPhotonM << 
364         }                                         326         }
365         else                                   << 327         else {
366         {                                      << 328           theStatus = NoRINDEX;
367           fStatus = NoRINDEX;                  << 329           if (verboseLevel > 0) BoundaryProcessVerbose();
368           if(verboseLevel > 1)                 << 330           aParticleChange.ProposeLocalEnergyDeposit(thePhotonMomentum);
369             BoundaryProcessVerbose();          << 
370           aParticleChange.ProposeLocalEnergyDe << 
371           aParticleChange.ProposeTrackStatus(f    331           aParticleChange.ProposeTrackStatus(fStopAndKill);
372           return G4VDiscreteProcess::PostStepD    332           return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
373         }                                         333         }
374       }                                           334       }
375                                                   335 
376       fRealRIndexMPV = sMPT->GetProperty(kREAL << 336       fRealRIndexMPV = aMaterialPropertiesTable->GetProperty(kREALRINDEX);
377       fImagRIndexMPV = sMPT->GetProperty(kIMAG << 337       fImagRIndexMPV = aMaterialPropertiesTable->GetProperty(kIMAGINARYRINDEX);
378       f_iTE = f_iTM = 1;                       << 338 
379                                                << 339       iTE = 1;
380       G4MaterialPropertyVector* pp;            << 340       iTM = 1;
381       if((pp = sMPT->GetProperty(kREFLECTIVITY << 341 
382       {                                        << 342       G4MaterialPropertyVector* PropertyPointer = aMaterialPropertiesTable->GetProperty(kREFLECTIVITY);
383         fReflectivity = pp->Value(fPhotonMomen << 343       if (PropertyPointer) {
384       }                                        << 344         theReflectivity = PropertyPointer->Value(thePhotonMomentum);
385       else if(fRealRIndexMPV && fImagRIndexMPV << 345       } else if (fRealRIndexMPV && fImagRIndexMPV) {
386       {                                        << 
387         CalculateReflectivity();                  346         CalculateReflectivity();
388       }                                           347       }
389                                                   348 
390       if((pp = sMPT->GetProperty(kEFFICIENCY)) << 349       PropertyPointer = aMaterialPropertiesTable->GetProperty(kEFFICIENCY);
391       {                                        << 350       if (PropertyPointer) {
392         fEfficiency = pp->Value(fPhotonMomentu << 351         theEfficiency = PropertyPointer->Value(thePhotonMomentum);
393       }                                        << 352       }
394       if((pp = sMPT->GetProperty(kTRANSMITTANC << 353 
395       {                                        << 354       PropertyPointer = aMaterialPropertiesTable->GetProperty(kTRANSMITTANCE);
396         fTransmittance = pp->Value(fPhotonMome << 355       if (PropertyPointer) {
397       }                                        << 356         theTransmittance = PropertyPointer->Value(thePhotonMomentum);
398       if(sMPT->ConstPropertyExists(kSURFACEROU << 357       }
399       {                                        << 358 
400         fSurfaceRoughness = sMPT->GetConstProp << 359       if (aMaterialPropertiesTable->ConstPropertyExists("SURFACEROUGHNESS")) {
401       }                                        << 360         theSurfaceRoughness = aMaterialPropertiesTable-> GetConstProperty(kSURFACEROUGHNESS);
402                                                << 361       }
403       if(fModel == unified)                    << 362 
404       {                                        << 363       if (theModel == unified) {
405         fProb_sl = (pp = sMPT->GetProperty(kSP << 364         PropertyPointer = aMaterialPropertiesTable->GetProperty(kSPECULARLOBECONSTANT);
406                      ? pp->Value(fPhotonMoment << 365         if (PropertyPointer) {
407                      : 0.;                     << 366           prob_sl = PropertyPointer->Value(thePhotonMomentum);
408         fProb_ss = (pp = sMPT->GetProperty(kSP << 367         } else {
409                      ? pp->Value(fPhotonMoment << 368           prob_sl = 0.0;
410                      : 0.;                     << 369         }
411         fProb_bs = (pp = sMPT->GetProperty(kBA << 370 
412                      ? pp->Value(fPhotonMoment << 371         PropertyPointer = aMaterialPropertiesTable->GetProperty(kSPECULARSPIKECONSTANT);
413                      : 0.;                     << 372         if (PropertyPointer) {
414       }                                        << 373           prob_ss = PropertyPointer->Value(thePhotonMomentum);
415     }  // end of if(sMPT)                      << 374         } else {
416     else if(fFinish == polishedbackpainted ||  << 375           prob_ss = 0.0;
417     {                                          << 376         }
418       aParticleChange.ProposeLocalEnergyDeposi << 377 
                                                   >> 378         PropertyPointer = aMaterialPropertiesTable->GetProperty(kBACKSCATTERCONSTANT);
                                                   >> 379         if (PropertyPointer) {
                                                   >> 380           prob_bs = PropertyPointer->Value(thePhotonMomentum);
                                                   >> 381         } else {
                                                   >> 382           prob_bs = 0.0;
                                                   >> 383         }
                                                   >> 384       }
                                                   >> 385     }  // end of if(aMaterialPropertiesTable)
                                                   >> 386     else if (theFinish == polishedbackpainted || theFinish == groundbackpainted ) {
                                                   >> 387       aParticleChange.ProposeLocalEnergyDeposit(thePhotonMomentum);
419       aParticleChange.ProposeTrackStatus(fStop    388       aParticleChange.ProposeTrackStatus(fStopAndKill);
420       return G4VDiscreteProcess::PostStepDoIt(    389       return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
421     }                                             390     }
422   }  // end of if(fOpticalSurface)             << 391   }  // end of if(OpticalSurface)
423                                                   392 
424   //  DIELECTRIC-DIELECTRIC                       393   //  DIELECTRIC-DIELECTRIC
425   if(type == dielectric_dielectric)            << 394   if (type == dielectric_dielectric) {
426   {                                            << 395     if (theFinish == polished || theFinish == ground) {
427     if(fFinish == polished || fFinish == groun << 396       if (Material1 == Material2) {
428     {                                          << 397         theStatus = SameMaterial;
429       if(fMaterial1 == fMaterial2)             << 398         if (verboseLevel > 0) BoundaryProcessVerbose();
430       {                                        << 399         return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
431         fStatus = SameMaterial;                << 400       }
432         if(verboseLevel > 1)                   << 401       aMaterialPropertiesTable = Material2->GetMaterialPropertiesTable();
433           BoundaryProcessVerbose();            << 402       if (aMaterialPropertiesTable) RindexMPV = aMaterialPropertiesTable->GetProperty(kRINDEX);
434         return G4VDiscreteProcess::PostStepDoI << 403       if (RindexMPV) {
435       }                                        << 404         Rindex2 = RindexMPV->Value(thePhotonMomentum);
436       MPT       = fMaterial2->GetMaterialPrope << 405       }
437       rIndexMPV = nullptr;                     << 406       else {
438       if(MPT != nullptr)                       << 407         theStatus = NoRINDEX;
439       {                                        << 408         if (verboseLevel > 0) BoundaryProcessVerbose();
440         rIndexMPV = MPT->GetProperty(kRINDEX); << 409         aParticleChange.ProposeLocalEnergyDeposit(thePhotonMomentum);
441       }                                        << 
442       if(rIndexMPV != nullptr)                 << 
443       {                                        << 
444         fRindex2 = rIndexMPV->Value(fPhotonMom << 
445       }                                        << 
446       else                                     << 
447       {                                        << 
448         fStatus = NoRINDEX;                    << 
449         if(verboseLevel > 1)                   << 
450           BoundaryProcessVerbose();            << 
451         aParticleChange.ProposeLocalEnergyDepo << 
452         aParticleChange.ProposeTrackStatus(fSt    410         aParticleChange.ProposeTrackStatus(fStopAndKill);
453         return G4VDiscreteProcess::PostStepDoI    411         return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
454       }                                           412       }
455     }                                             413     }
456     if(fFinish == polishedbackpainted || fFini << 414     if (theFinish == polishedbackpainted || theFinish == groundbackpainted) {
457     {                                          << 
458       DielectricDielectric();                     415       DielectricDielectric();
459     }                                             416     }
460     else                                       << 417     else {
461     {                                          << 
462       G4double rand = G4UniformRand();            418       G4double rand = G4UniformRand();
463       if(rand > fReflectivity + fTransmittance << 419       if (rand > theReflectivity) {
464       {                                        << 420         if (rand > theReflectivity + theTransmittance) {
465         DoAbsorption();                        << 421           DoAbsorption();
466       }                                        << 422         } else {
467       else if(rand > fReflectivity)            << 423           theStatus       = Transmission;
468       {                                        << 424           NewMomentum     = OldMomentum;
469         fStatus          = Transmission;       << 425           NewPolarization = OldPolarization;
470         fNewMomentum     = fOldMomentum;       << 
471         fNewPolarization = fOldPolarization;   << 
472       }                                        << 
473       else                                     << 
474       {                                        << 
475         if(fFinish == polishedfrontpainted)    << 
476         {                                      << 
477           DoReflection();                      << 
478         }                                         426         }
479         else if(fFinish == groundfrontpainted) << 427       }
480         {                                      << 428       else {
481           fStatus = LambertianReflection;      << 429         if (theFinish == polishedfrontpainted) { DoReflection(); }
                                                   >> 430         else if (theFinish == groundfrontpainted) {
                                                   >> 431           theStatus = LambertianReflection;
482           DoReflection();                         432           DoReflection();
483         }                                         433         }
484         else                                   << 434         else { DielectricDielectric(); }
485         {                                      << 
486           DielectricDielectric();              << 
487         }                                      << 
488       }                                           435       }
489     }                                             436     }
490   }                                               437   }
491   else if(type == dielectric_metal)            << 438 
492   {                                            << 439   else if (type == dielectric_metal) {
493     DielectricMetal();                            440     DielectricMetal();
494   }                                               441   }
495   else if(type == dielectric_LUT)              << 442 
496   {                                            << 443   else if (type == dielectric_LUT) {
497     DielectricLUT();                              444     DielectricLUT();
498   }                                               445   }
499   else if(type == dielectric_LUTDAVIS)         << 446 
500   {                                            << 447   else if (type == dielectric_LUTDAVIS) {
501     DielectricLUTDAVIS();                         448     DielectricLUTDAVIS();
502   }                                               449   }
503   else if(type == dielectric_dichroic)         << 450 
504   {                                            << 451   else if (type == dielectric_dichroic) {
505     DielectricDichroic();                         452     DielectricDichroic();
506   }                                               453   }
507   else if(type == coated)                      << 454 
508   {                                            << 455   else {
509     CoatedDielectricDielectric();              << 456     G4cerr << " Error: G4BoundaryProcess: illegal boundary type " << G4endl;
510   }                                            << 
511   else                                         << 
512   {                                            << 
513     if(fNumBdryTypeWarnings <= 10)             << 
514     {                                          << 
515       ++fNumBdryTypeWarnings;                  << 
516       if(verboseLevel > 0)                     << 
517       {                                        << 
518         G4ExceptionDescription ed;             << 
519         ed << " PostStepDoIt(): Illegal bounda << 
520         if(fNumBdryTypeWarnings == 10)         << 
521         {                                      << 
522           ed << "** Boundary type warnings sto << 
523         }                                      << 
524         G4Exception("G4OpBoundaryProcess", "Op << 
525       }                                        << 
526     }                                          << 
527     return G4VDiscreteProcess::PostStepDoIt(aT    457     return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
528   }                                               458   }
529                                                   459 
530   fNewMomentum     = fNewMomentum.unit();      << 460   NewMomentum = NewMomentum.unit();
531   fNewPolarization = fNewPolarization.unit();  << 461   NewPolarization = NewPolarization.unit();
532                                                   462 
533   if(verboseLevel > 1)                         << 463   if (verboseLevel > 0) {
534   {                                            << 464     G4cout << " New Momentum Direction: " << NewMomentum     << G4endl;
535     G4cout << " New Momentum Direction: " << f << 465     G4cout << " New Polarization:       " << NewPolarization << G4endl;
536            << " New Polarization:       " << f << 
537     BoundaryProcessVerbose();                     466     BoundaryProcessVerbose();
538   }                                               467   }
539                                                   468 
540   aParticleChange.ProposeMomentumDirection(fNe << 469   aParticleChange.ProposeMomentumDirection(NewMomentum);
541   aParticleChange.ProposePolarization(fNewPola << 470   aParticleChange.ProposePolarization(NewPolarization);
542                                                   471 
543   if(fStatus == FresnelRefraction || fStatus = << 472   if (theStatus == FresnelRefraction || theStatus == Transmission ) {
544   {                                            << 473     G4MaterialPropertyVector* groupvel =
545     // not all surface types check that fMater << 474       Material2->GetMaterialPropertiesTable()->GetProperty(kGROUPVEL);
546     G4MaterialPropertiesTable* aMPT = fMateria << 475     if (groupvel) {
547     G4MaterialPropertyVector* groupvel = nullp << 476       aParticleChange.ProposeVelocity(groupvel->Value(thePhotonMomentum));
548     if(aMPT != nullptr)                        << 
549     {                                          << 
550       groupvel = aMPT->GetProperty(kGROUPVEL); << 
551     }                                          << 
552     if(groupvel != nullptr)                    << 
553     {                                          << 
554       aParticleChange.ProposeVelocity(         << 
555         groupvel->Value(fPhotonMomentum, idx_g << 
556     }                                             477     }
557   }                                               478   }
558                                                   479 
559   if(fStatus == Detection && fInvokeSD)        << 480   if (theStatus == Detection && fInvokeSD) InvokeSD(pStep);
560     InvokeSD(pStep);                           << 481 
561   return G4VDiscreteProcess::PostStepDoIt(aTra    482   return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
562 }                                                 483 }
563                                                   484 
564 //....oooOO0OOooo........oooOO0OOooo........oo    485 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
                                                   >> 486 
565 void G4OpBoundaryProcess::BoundaryProcessVerbo    487 void G4OpBoundaryProcess::BoundaryProcessVerbose() const
566 {                                                 488 {
567   G4cout << " *** ";                           << 489   if ( theStatus == Undefined )
568   if(fStatus == Undefined)                     << 490           G4cout << " *** Undefined *** " << G4endl;
569     G4cout << "Undefined";                     << 491   if ( theStatus == Transmission )
570   else if(fStatus == Transmission)             << 492           G4cout << " *** Transmission *** " << G4endl;
571     G4cout << "Transmission";                  << 493   if ( theStatus == FresnelRefraction )
572   else if(fStatus == FresnelRefraction)        << 494           G4cout << " *** FresnelRefraction *** " << G4endl;
573     G4cout << "FresnelRefraction";             << 495   if ( theStatus == FresnelReflection )
574   else if(fStatus == FresnelReflection)        << 496           G4cout << " *** FresnelReflection *** " << G4endl;
575     G4cout << "FresnelReflection";             << 497   if ( theStatus == TotalInternalReflection )
576   else if(fStatus == TotalInternalReflection)  << 498           G4cout << " *** TotalInternalReflection *** " << G4endl;
577     G4cout << "TotalInternalReflection";       << 499   if ( theStatus == LambertianReflection )
578   else if(fStatus == LambertianReflection)     << 500           G4cout << " *** LambertianReflection *** " << G4endl;
579     G4cout << "LambertianReflection";          << 501   if ( theStatus == LobeReflection )
580   else if(fStatus == LobeReflection)           << 502           G4cout << " *** LobeReflection *** " << G4endl;
581     G4cout << "LobeReflection";                << 503   if ( theStatus == SpikeReflection )
582   else if(fStatus == SpikeReflection)          << 504           G4cout << " *** SpikeReflection *** " << G4endl;
583     G4cout << "SpikeReflection";               << 505   if ( theStatus == BackScattering )
584   else if(fStatus == BackScattering)           << 506           G4cout << " *** BackScattering *** " << G4endl;
585     G4cout << "BackScattering";                << 507   if ( theStatus == PolishedLumirrorAirReflection )
586   else if(fStatus == PolishedLumirrorAirReflec << 508           G4cout << " *** PolishedLumirrorAirReflection *** " << G4endl;
587     G4cout << "PolishedLumirrorAirReflection"; << 509   if ( theStatus == PolishedLumirrorGlueReflection )
588   else if(fStatus == PolishedLumirrorGlueRefle << 510           G4cout << " *** PolishedLumirrorGlueReflection *** " << G4endl;
589     G4cout << "PolishedLumirrorGlueReflection" << 511   if ( theStatus == PolishedAirReflection )
590   else if(fStatus == PolishedAirReflection)    << 512           G4cout << " *** PolishedAirReflection *** " << G4endl;
591     G4cout << "PolishedAirReflection";         << 513   if ( theStatus == PolishedTeflonAirReflection )
592   else if(fStatus == PolishedTeflonAirReflecti << 514           G4cout << " *** PolishedTeflonAirReflection *** " << G4endl;
593     G4cout << "PolishedTeflonAirReflection";   << 515   if ( theStatus == PolishedTiOAirReflection )
594   else if(fStatus == PolishedTiOAirReflection) << 516           G4cout << " *** PolishedTiOAirReflection *** " << G4endl;
595     G4cout << "PolishedTiOAirReflection";      << 517   if ( theStatus == PolishedTyvekAirReflection )
596   else if(fStatus == PolishedTyvekAirReflectio << 518           G4cout << " *** PolishedTyvekAirReflection *** " << G4endl;
597     G4cout << "PolishedTyvekAirReflection";    << 519   if ( theStatus == PolishedVM2000AirReflection )
598   else if(fStatus == PolishedVM2000AirReflecti << 520           G4cout << " *** PolishedVM2000AirReflection *** " << G4endl;
599     G4cout << "PolishedVM2000AirReflection";   << 521   if ( theStatus == PolishedVM2000GlueReflection )
600   else if(fStatus == PolishedVM2000GlueReflect << 522           G4cout << " *** PolishedVM2000GlueReflection *** " << G4endl;
601     G4cout << "PolishedVM2000GlueReflection";  << 523   if ( theStatus == EtchedLumirrorAirReflection )
602   else if(fStatus == EtchedLumirrorAirReflecti << 524           G4cout << " *** EtchedLumirrorAirReflection *** " << G4endl;
603     G4cout << "EtchedLumirrorAirReflection";   << 525   if ( theStatus == EtchedLumirrorGlueReflection )
604   else if(fStatus == EtchedLumirrorGlueReflect << 526           G4cout << " *** EtchedLumirrorGlueReflection *** " << G4endl;
605     G4cout << "EtchedLumirrorGlueReflection";  << 527   if ( theStatus == EtchedAirReflection )
606   else if(fStatus == EtchedAirReflection)      << 528           G4cout << " *** EtchedAirReflection *** " << G4endl;
607     G4cout << "EtchedAirReflection";           << 529   if ( theStatus == EtchedTeflonAirReflection )
608   else if(fStatus == EtchedTeflonAirReflection << 530           G4cout << " *** EtchedTeflonAirReflection *** " << G4endl;
609     G4cout << "EtchedTeflonAirReflection";     << 531   if ( theStatus == EtchedTiOAirReflection )
610   else if(fStatus == EtchedTiOAirReflection)   << 532           G4cout << " *** EtchedTiOAirReflection *** " << G4endl;
611     G4cout << "EtchedTiOAirReflection";        << 533   if ( theStatus == EtchedTyvekAirReflection )
612   else if(fStatus == EtchedTyvekAirReflection) << 534           G4cout << " *** EtchedTyvekAirReflection *** " << G4endl;
613     G4cout << "EtchedTyvekAirReflection";      << 535   if ( theStatus == EtchedVM2000AirReflection )
614   else if(fStatus == EtchedVM2000AirReflection << 536           G4cout << " *** EtchedVM2000AirReflection *** " << G4endl;
615     G4cout << "EtchedVM2000AirReflection";     << 537   if ( theStatus == EtchedVM2000GlueReflection )
616   else if(fStatus == EtchedVM2000GlueReflectio << 538           G4cout << " *** EtchedVM2000GlueReflection *** " << G4endl;
617     G4cout << "EtchedVM2000GlueReflection";    << 539   if ( theStatus == GroundLumirrorAirReflection )
618   else if(fStatus == GroundLumirrorAirReflecti << 540           G4cout << " *** GroundLumirrorAirReflection *** " << G4endl;
619     G4cout << "GroundLumirrorAirReflection";   << 541   if ( theStatus == GroundLumirrorGlueReflection )
620   else if(fStatus == GroundLumirrorGlueReflect << 542           G4cout << " *** GroundLumirrorGlueReflection *** " << G4endl;
621     G4cout << "GroundLumirrorGlueReflection";  << 543   if ( theStatus == GroundAirReflection )
622   else if(fStatus == GroundAirReflection)      << 544           G4cout << " *** GroundAirReflection *** " << G4endl;
623     G4cout << "GroundAirReflection";           << 545   if ( theStatus == GroundTeflonAirReflection )
624   else if(fStatus == GroundTeflonAirReflection << 546           G4cout << " *** GroundTeflonAirReflection *** " << G4endl;
625     G4cout << "GroundTeflonAirReflection";     << 547   if ( theStatus == GroundTiOAirReflection )
626   else if(fStatus == GroundTiOAirReflection)   << 548           G4cout << " *** GroundTiOAirReflection *** " << G4endl;
627     G4cout << "GroundTiOAirReflection";        << 549   if ( theStatus == GroundTyvekAirReflection )
628   else if(fStatus == GroundTyvekAirReflection) << 550           G4cout << " *** GroundTyvekAirReflection *** " << G4endl;
629     G4cout << "GroundTyvekAirReflection";      << 551   if ( theStatus == GroundVM2000AirReflection )
630   else if(fStatus == GroundVM2000AirReflection << 552           G4cout << " *** GroundVM2000AirReflection *** " << G4endl;
631     G4cout << "GroundVM2000AirReflection";     << 553   if ( theStatus == GroundVM2000GlueReflection )
632   else if(fStatus == GroundVM2000GlueReflectio << 554           G4cout << " *** GroundVM2000GlueReflection *** " << G4endl;
633     G4cout << "GroundVM2000GlueReflection";    << 555   if ( theStatus == Absorption )
634   else if(fStatus == Absorption)               << 556           G4cout << " *** Absorption *** " << G4endl;
635     G4cout << "Absorption";                    << 557   if ( theStatus == Detection )
636   else if(fStatus == Detection)                << 558           G4cout << " *** Detection *** " << G4endl;
637     G4cout << "Detection";                     << 559   if ( theStatus == NotAtBoundary )
638   else if(fStatus == NotAtBoundary)            << 560           G4cout << " *** NotAtBoundary *** " << G4endl;
639     G4cout << "NotAtBoundary";                 << 561   if ( theStatus == SameMaterial )
640   else if(fStatus == SameMaterial)             << 562           G4cout << " *** SameMaterial *** " << G4endl;
641     G4cout << "SameMaterial";                  << 563   if ( theStatus == StepTooSmall )
642   else if(fStatus == StepTooSmall)             << 564           G4cout << " *** StepTooSmall *** " << G4endl;
643     G4cout << "StepTooSmall";                  << 565   if ( theStatus == NoRINDEX )
644   else if(fStatus == NoRINDEX)                 << 566           G4cout << " *** NoRINDEX *** " << G4endl;
645     G4cout << "NoRINDEX";                      << 567   if ( theStatus == Dichroic )
646   else if(fStatus == Dichroic)                 << 568           G4cout << " *** Dichroic Transmission *** " << G4endl;
647     G4cout << "Dichroic Transmission";         << 
648   else if(fStatus == CoatedDielectricReflectio << 
649     G4cout << "Coated Dielectric Reflection";  << 
650   else if(fStatus == CoatedDielectricRefractio << 
651     G4cout << "Coated Dielectric Refraction";  << 
652   else if(fStatus == CoatedDielectricFrustrate << 
653     G4cout << "Coated Dielectric Frustrated Tr << 
654                                                << 
655   G4cout << " ***" << G4endl;                  << 
656 }                                                 569 }
657                                                   570 
658 //....oooOO0OOooo........oooOO0OOooo........oo    571 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
659 G4ThreeVector G4OpBoundaryProcess::GetFacetNor << 572 
660   const G4ThreeVector& momentum, const G4Three << 573 G4ThreeVector
                                                   >> 574 G4OpBoundaryProcess::GetFacetNormal(const G4ThreeVector& Momentum,
                                                   >> 575                   const G4ThreeVector&  Normal ) const
661 {                                                 576 {
662   G4ThreeVector facetNormal;                   << 577   G4ThreeVector FacetNormal;
663   if(fModel == unified || fModel == LUT || fMo << 578 
664   {                                            << 579   if (theModel == unified || theModel == LUT || theModel== DAVIS) {
665     /* This function codes alpha to a random v << 580 
                                                   >> 581     /* This function code alpha to a random value taken from the
666     distribution p(alpha) = g(alpha; 0, sigma_    582     distribution p(alpha) = g(alpha; 0, sigma_alpha)*std::sin(alpha),
667     for alpha > 0 and alpha < 90, where g(alph << 583     for alpha > 0 and alpha < 90, where g(alpha; 0, sigma_alpha)
668     gaussian distribution with mean 0 and stan << 584     is a gaussian distribution with mean 0 and standard deviation
                                                   >> 585     sigma_alpha.  */
                                                   >> 586 
                                                   >> 587     G4double alpha;
669                                                   588 
670     G4double sigma_alpha = 0.0;                   589     G4double sigma_alpha = 0.0;
671     if(fOpticalSurface)                        << 590     if (OpticalSurface) sigma_alpha = OpticalSurface->GetSigmaAlpha();
672       sigma_alpha = fOpticalSurface->GetSigmaA << 591 
673     if(sigma_alpha == 0.0)                     << 592     if (sigma_alpha == 0.0) return FacetNormal = Normal;
674     {                                          << 593 
675       return normal;                           << 594     G4double f_max = std::min(1.0, 4.*sigma_alpha);
676     }                                          << 595 
677                                                << 596     G4double phi, SinAlpha, CosAlpha, SinPhi, CosPhi, unit_x, unit_y, unit_z;
678     G4double f_max = std::min(1.0, 4. * sigma_ << 597     G4ThreeVector tmpNormal;
679     G4double alpha, phi, sinAlpha;             << 598 
680                                                << 599     do {
681     do                                         << 600       do {
682     {  // Loop checking, 13-Aug-2015, Peter Gu << 601         alpha = G4RandGauss::shoot(0.0, sigma_alpha);
683       do                                       << 602         // Loop checking, 13-Aug-2015, Peter Gumplinger
684       {  // Loop checking, 13-Aug-2015, Peter  << 603       } while (G4UniformRand()*f_max > std::sin(alpha) || alpha >= halfpi);
685         alpha    = G4RandGauss::shoot(0.0, sig << 604 
686         sinAlpha = std::sin(alpha);            << 605       phi = G4UniformRand()*twopi;
687       } while(G4UniformRand() * f_max > sinAlp << 606 
688                                                << 607       SinAlpha = std::sin(alpha);
689       phi = G4UniformRand() * twopi;           << 608       CosAlpha = std::cos(alpha);
690       facetNormal.set(sinAlpha * std::cos(phi) << 609       SinPhi   = std::sin(phi);
691                       std::cos(alpha));        << 610       CosPhi   = std::cos(phi);
692       facetNormal.rotateUz(normal);            << 611 
693     } while(momentum * facetNormal >= 0.0);    << 612       unit_x   = SinAlpha * CosPhi;
694   }                                            << 613       unit_y   = SinAlpha * SinPhi;
695   else                                         << 614       unit_z   = CosAlpha;
696   {                                            << 615 
                                                   >> 616       FacetNormal.setX(unit_x);
                                                   >> 617       FacetNormal.setY(unit_y);
                                                   >> 618       FacetNormal.setZ(unit_z);
                                                   >> 619 
                                                   >> 620       tmpNormal = Normal;
                                                   >> 621 
                                                   >> 622       FacetNormal.rotateUz(tmpNormal);
                                                   >> 623       // Loop checking, 13-Aug-2015, Peter Gumplinger
                                                   >> 624     } while (Momentum * FacetNormal >= 0.0);
                                                   >> 625   }
                                                   >> 626   else {
697     G4double polish = 1.0;                        627     G4double polish = 1.0;
698     if(fOpticalSurface)                        << 628     if (OpticalSurface) polish = OpticalSurface->GetPolish();
699       polish = fOpticalSurface->GetPolish();   << 629 
700     if(polish < 1.0)                           << 630     if (polish < 1.0) {
701     {                                          << 631       do {
702       do                                       << 
703       {  // Loop checking, 13-Aug-2015, Peter  << 
704         G4ThreeVector smear;                      632         G4ThreeVector smear;
705         do                                     << 633         do {
706         {  // Loop checking, 13-Aug-2015, Pete << 634           smear.setX(2.*G4UniformRand()-1.0);
707           smear.setX(2. * G4UniformRand() - 1. << 635           smear.setY(2.*G4UniformRand()-1.0);
708           smear.setY(2. * G4UniformRand() - 1. << 636           smear.setZ(2.*G4UniformRand()-1.0);
709           smear.setZ(2. * G4UniformRand() - 1. << 637           // Loop checking, 13-Aug-2015, Peter Gumplinger
710         } while(smear.mag2() > 1.0);           << 638         } while (smear.mag() > 1.0);
711         facetNormal = normal + (1. - polish) * << 639         smear = (1.-polish) * smear;
712       } while(momentum * facetNormal >= 0.0);  << 640         FacetNormal = Normal + smear;
713       facetNormal = facetNormal.unit();        << 641         // Loop checking, 13-Aug-2015, Peter Gumplinger
714     }                                          << 642       } while (Momentum * FacetNormal >= 0.0);
715     else                                       << 643       FacetNormal = FacetNormal.unit();
716     {                                          << 
717       facetNormal = normal;                    << 
718     }                                             644     }
719   }                                            << 645     else {
720   return facetNormal;                          << 646       FacetNormal = Normal;
                                                   >> 647     }
                                                   >> 648   }
                                                   >> 649   return FacetNormal;
721 }                                                 650 }
722                                                   651 
723 //....oooOO0OOooo........oooOO0OOooo........oo    652 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
                                                   >> 653 
724 void G4OpBoundaryProcess::DielectricMetal()       654 void G4OpBoundaryProcess::DielectricMetal()
725 {                                                 655 {
726   G4int n = 0;                                    656   G4int n = 0;
727   G4double rand;                               << 657   G4double rand, PdotN, EdotN;
728   G4ThreeVector A_trans;                       << 658   G4ThreeVector A_trans, A_paral;
                                                   >> 659 
                                                   >> 660   do {
                                                   >> 661     n++;
729                                                   662 
730   do                                           << 
731   {                                            << 
732     ++n;                                       << 
733     rand = G4UniformRand();                       663     rand = G4UniformRand();
734     if(rand > fReflectivity && n == 1)         << 664     if (rand > theReflectivity && n == 1) {
735     {                                          << 665       if (rand > theReflectivity + theTransmittance) {
736       if(rand > fReflectivity + fTransmittance << 
737       {                                        << 
738         DoAbsorption();                           666         DoAbsorption();
739       }                                        << 667       } else {
740       else                                     << 668         theStatus       = Transmission;
741       {                                        << 669         NewMomentum     = OldMomentum;
742         fStatus          = Transmission;       << 670         NewPolarization = OldPolarization;
743         fNewMomentum     = fOldMomentum;       << 
744         fNewPolarization = fOldPolarization;   << 
745       }                                           671       }
746       break;                                      672       break;
747     }                                             673     }
748     else                                       << 674     else {
749     {                                          << 675       if (fRealRIndexMPV && fImagRIndexMPV) {
750       if(fRealRIndexMPV && fImagRIndexMPV)     << 676         if (n > 1) {
751       {                                        << 
752         if(n > 1)                              << 
753         {                                      << 
754           CalculateReflectivity();                677           CalculateReflectivity();
755           if(!G4BooleanRand(fReflectivity))    << 678           if (!G4BooleanRand(theReflectivity)) {
756           {                                    << 
757             DoAbsorption();                       679             DoAbsorption();
758             break;                                680             break;
759           }                                       681           }
760         }                                         682         }
761       }                                           683       }
762       if(fModel == glisur || fFinish == polish << 684 
763       {                                        << 685       if (theModel == glisur || theFinish == polished) {
764         DoReflection();                           686         DoReflection();
765       }                                        << 687       } else {
766       else                                     << 688         if (n == 1) ChooseReflection();
767       {                                        << 689         if (theStatus == LambertianReflection) {
768         if(n == 1)                             << 
769           ChooseReflection();                  << 
770         if(fStatus == LambertianReflection)    << 
771         {                                      << 
772           DoReflection();                         690           DoReflection();
773         }                                         691         }
774         else if(fStatus == BackScattering)     << 692         else if (theStatus == BackScattering) {
775         {                                      << 693           NewMomentum = -OldMomentum;
776           fNewMomentum     = -fOldMomentum;    << 694           NewPolarization = -OldPolarization;
777           fNewPolarization = -fOldPolarization << 695         }
778         }                                      << 696         else {
779         else                                   << 697           if (theStatus == LobeReflection) {
780         {                                      << 698             if (fRealRIndexMPV && fImagRIndexMPV){
781           if(fStatus == LobeReflection)        << 699               //
782           {                                    << 700             } else {
783             if(!fRealRIndexMPV || !fImagRIndex << 701               theFacetNormal = GetFacetNormal(OldMomentum,theGlobalNormal);
784             {                                  << 
785               fFacetNormal = GetFacetNormal(fO << 
786             }                                     702             }
787             // else                            << 
788             //  case of complex rindex needs t << 
789           }                                       703           }
790           fNewMomentum =                       << 
791             fOldMomentum - 2. * fOldMomentum * << 
792                                                   704 
793           if(f_iTE > 0 && f_iTM > 0)           << 705           PdotN       = OldMomentum * theFacetNormal;
794           {                                    << 706           NewMomentum = OldMomentum - (2.*PdotN)*theFacetNormal;
795             fNewPolarization =                 << 707           EdotN       = OldPolarization * theFacetNormal;
796               -fOldPolarization +              << 708 
797               (2. * fOldPolarization * fFacetN << 709           if (sint1 > 0.0) {
                                                   >> 710             A_trans = OldMomentum.cross(theFacetNormal);
                                                   >> 711             A_trans = A_trans.unit();
                                                   >> 712           } else {
                                                   >> 713             A_trans  = OldPolarization;
798           }                                       714           }
799           else if(f_iTE > 0)                   << 715           A_paral = NewMomentum.cross(A_trans);
800           {                                    << 716           A_paral = A_paral.unit();
801             A_trans = (fSint1 > 0.0) ? fOldMom << 717 
802                                      : fOldPol << 718           if (iTE > 0 && iTM > 0) {
803             fNewPolarization = -A_trans;       << 719             NewPolarization = -OldPolarization + (2.*EdotN)*theFacetNormal;
804           }                                    << 720           } else if (iTE > 0) {
805           else if(f_iTM > 0)                   << 721             NewPolarization = -A_trans;
806           {                                    << 722           } else if (iTM >0 ) {
807             fNewPolarization =                 << 723             NewPolarization = -A_paral;
808               -fNewMomentum.cross(A_trans).uni << 
809           }                                       724           }
810         }                                         725         }
811       }                                           726       }
812       fOldMomentum     = fNewMomentum;         << 727 
813       fOldPolarization = fNewPolarization;     << 728       OldMomentum = NewMomentum;
814     }                                          << 729       OldPolarization = NewPolarization;
815     // Loop checking, 13-Aug-2015, Peter Gumpl << 730     }
816   } while(fNewMomentum * fGlobalNormal < 0.0); << 731 
                                                   >> 732   // Loop checking, 13-Aug-2015, Peter Gumplinger
                                                   >> 733   } while (NewMomentum * theGlobalNormal < 0.0);
817 }                                                 734 }
818                                                   735 
819 //....oooOO0OOooo........oooOO0OOooo........oo    736 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
                                                   >> 737 
820 void G4OpBoundaryProcess::DielectricLUT()         738 void G4OpBoundaryProcess::DielectricLUT()
821 {                                                 739 {
822   G4int thetaIndex, phiIndex;                     740   G4int thetaIndex, phiIndex;
823   G4double angularDistVal, thetaRad, phiRad;   << 741   G4double AngularDistributionValue, thetaRad, phiRad, EdotN;
824   G4ThreeVector perpVectorTheta, perpVectorPhi << 742   G4ThreeVector PerpendicularVectorTheta, PerpendicularVectorPhi;
825                                                   743 
826   fStatus = G4OpBoundaryProcessStatus(         << 744   theStatus = G4OpBoundaryProcessStatus(G4int(theFinish) +
827     G4int(fFinish) + (G4int(NoRINDEX) - G4int( << 745                      (G4int(NoRINDEX)-G4int(groundbackpainted)));
828                                                   746 
829   G4int thetaIndexMax = fOpticalSurface->GetTh << 747   G4int thetaIndexMax = OpticalSurface->GetThetaIndexMax();
830   G4int phiIndexMax   = fOpticalSurface->GetPh << 748   G4int phiIndexMax   = OpticalSurface->GetPhiIndexMax();
831                                                   749 
832   G4double rand;                                  750   G4double rand;
833                                                   751 
834   do                                           << 752   do {
835   {                                            << 
836     rand = G4UniformRand();                       753     rand = G4UniformRand();
837     if(rand > fReflectivity)                   << 754     if (rand > theReflectivity) {
838     {                                          << 755       if (rand > theReflectivity + theTransmittance) {
839       if(rand > fReflectivity + fTransmittance << 
840       {                                        << 
841         DoAbsorption();                           756         DoAbsorption();
842       }                                        << 757       } else {
843       else                                     << 758         theStatus       = Transmission;
844       {                                        << 759         NewMomentum     = OldMomentum;
845         fStatus          = Transmission;       << 760         NewPolarization = OldPolarization;
846         fNewMomentum     = fOldMomentum;       << 
847         fNewPolarization = fOldPolarization;   << 
848       }                                           761       }
849       break;                                      762       break;
850     }                                             763     }
851     else                                       << 764     else {
852     {                                          << 
853       // Calculate Angle between Normal and Ph    765       // Calculate Angle between Normal and Photon Momentum
854       G4double anglePhotonToNormal = fOldMomen << 766       G4double anglePhotonToNormal = OldMomentum.angle(-theGlobalNormal);
855       // Round to closest integer: LBNL model  << 767       // Round it to closest integer
856       G4int angleIncident = (G4int)std::lrint( << 768       G4int angleIncident = G4int(std::floor(180./pi*anglePhotonToNormal+0.5));
857                                                   769 
858       // Take random angles THETA and PHI,        770       // Take random angles THETA and PHI,
859       // and see if below Probability - if not    771       // and see if below Probability - if not - Redo
860       do                                       << 772       do {
861       {                                        << 773         thetaIndex = G4RandFlat::shootInt(thetaIndexMax-1);
862         thetaIndex = (G4int)G4RandFlat::shootI << 774         phiIndex   = G4RandFlat::shootInt(phiIndexMax-1);
863         phiIndex   = (G4int)G4RandFlat::shootI << 
864         // Find probability with the new indec    775         // Find probability with the new indeces from LUT
865         angularDistVal = fOpticalSurface->GetA << 776         AngularDistributionValue = OpticalSurface->
866           angleIncident, thetaIndex, phiIndex) << 777           GetAngularDistributionValue(angleIncident, thetaIndex, phiIndex);
867         // Loop checking, 13-Aug-2015, Peter G    778         // Loop checking, 13-Aug-2015, Peter Gumplinger
868       } while(!G4BooleanRand(angularDistVal)); << 779       } while (!G4BooleanRand(AngularDistributionValue));
869                                                   780 
870       thetaRad = G4double(-90 + 4 * thetaIndex << 781       thetaRad = (-90 + 4*thetaIndex)*pi/180.;
871       phiRad   = G4double(-90 + 5 * phiIndex)  << 782       phiRad   = (-90 + 5*phiIndex)*pi/180.;
872       // Rotate Photon Momentum in Theta, then    783       // Rotate Photon Momentum in Theta, then in Phi
873       fNewMomentum = -fOldMomentum;            << 784       NewMomentum = -OldMomentum;
874                                                   785 
875       perpVectorTheta = fNewMomentum.cross(fGl << 786       PerpendicularVectorTheta = NewMomentum.cross(theGlobalNormal);
876       if(perpVectorTheta.mag() < fCarTolerance << 787       if (PerpendicularVectorTheta.mag() < kCarTolerance ) {
877       {                                        << 788         PerpendicularVectorTheta = NewMomentum.orthogonal();
878         perpVectorTheta = fNewMomentum.orthogo << 789       }
879       }                                        << 790       NewMomentum = NewMomentum.rotate(anglePhotonToNormal-thetaRad, PerpendicularVectorTheta);
880       fNewMomentum =                           << 791       PerpendicularVectorPhi = PerpendicularVectorTheta.cross(NewMomentum);
881         fNewMomentum.rotate(anglePhotonToNorma << 792       NewMomentum = NewMomentum.rotate(-phiRad,PerpendicularVectorPhi);
882       perpVectorPhi = perpVectorTheta.cross(fN << 
883       fNewMomentum  = fNewMomentum.rotate(-phi << 
884                                                   793 
885       // Rotate Polarization too:                 794       // Rotate Polarization too:
886       fFacetNormal     = (fNewMomentum - fOldM << 795       theFacetNormal = (NewMomentum - OldMomentum).unit();
887       fNewPolarization = -fOldPolarization +   << 796       EdotN = OldPolarization * theFacetNormal;
888                          (2. * fOldPolarizatio << 797       NewPolarization = -OldPolarization + (2.*EdotN)*theFacetNormal;
889     }                                             798     }
890     // Loop checking, 13-Aug-2015, Peter Gumpl    799     // Loop checking, 13-Aug-2015, Peter Gumplinger
891   } while(fNewMomentum * fGlobalNormal <= 0.0) << 800   } while (NewMomentum * theGlobalNormal <= 0.0);
892 }                                                 801 }
893                                                   802 
894 //....oooOO0OOooo........oooOO0OOooo........oo    803 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
                                                   >> 804 
895 void G4OpBoundaryProcess::DielectricLUTDAVIS()    805 void G4OpBoundaryProcess::DielectricLUTDAVIS()
896 {                                                 806 {
897   G4int angindex, random, angleIncident;          807   G4int angindex, random, angleIncident;
898   G4double reflectivityValue, elevation, azimu << 808   G4double ReflectivityValue, elevation, azimuth, EdotN;
899   G4double anglePhotonToNormal;                   809   G4double anglePhotonToNormal;
900                                                   810 
901   G4int lutbin  = fOpticalSurface->GetLUTbins( << 811   G4int LUTbin = OpticalSurface->GetLUTbins();
902   G4double rand = G4UniformRand();                812   G4double rand = G4UniformRand();
903                                                   813 
904   G4double sinEl;                              << 814   do {
905   G4ThreeVector u, vNorm, w;                   << 815     anglePhotonToNormal = OldMomentum.angle(-theGlobalNormal);
                                                   >> 816     angleIncident = G4int(std::floor(180./pi*anglePhotonToNormal+0.5));
906                                                   817 
907   do                                           << 818     ReflectivityValue = OpticalSurface->GetReflectivityLUTValue(angleIncident);
908   {                                            << 
909     anglePhotonToNormal = fOldMomentum.angle(- << 
910                                                   819 
911     // Davis model has 90 reflection bins: rou << 820     if (rand > ReflectivityValue) {
912     // don't allow angleIncident to be 90 for  << 821       if (theEfficiency > 0.) {
913     angleIncident = std::min(                  << 
914       static_cast<G4int>(std::floor(anglePhoto << 
915     reflectivityValue = fOpticalSurface->GetRe << 
916                                                << 
917     if(rand > reflectivityValue)               << 
918     {                                          << 
919       if(fEfficiency > 0.)                     << 
920       {                                        << 
921         DoAbsorption();                           822         DoAbsorption();
922         break;                                    823         break;
923       }                                           824       }
924       else                                     << 825       else {
925       {                                        << 826         theStatus = Transmission;
926         fStatus = Transmission;                << 827 
927                                                << 828         if (angleIncident <= 0.01) {
928         if(angleIncident <= 0.01)              << 829           NewMomentum = OldMomentum;
929         {                                      << 
930           fNewMomentum = fOldMomentum;         << 
931           break;                                  830           break;
932         }                                         831         }
933                                                   832 
934         do                                     << 833         do {
935         {                                      << 834           random   = G4RandFlat::shootInt(1, LUTbin+1);
936           random = (G4int)G4RandFlat::shootInt << 835           angindex = (((random*2)-1)) + angleIncident*LUTbin*2 + 3640000;
937           angindex =                           << 836 
938             (((random * 2) - 1)) + angleIncide << 837           azimuth  = OpticalSurface->GetAngularDistributionValueLUT(angindex-1);
939                                                << 838           elevation= OpticalSurface->GetAngularDistributionValueLUT(angindex);
940           azimuth =                            << 839         } while (elevation == 0. && azimuth == 0.);
941             fOpticalSurface->GetAngularDistrib << 840 
942           elevation = fOpticalSurface->GetAngu << 841         NewMomentum = -OldMomentum;
943         } while(elevation == 0. && azimuth ==  << 842 
944                                                << 843         G4ThreeVector v = theGlobalNormal.cross(-NewMomentum);
945         sinEl = std::sin(elevation);           << 844         G4ThreeVector vNorm = v/v.mag();
946         vNorm = (fGlobalNormal.cross(fOldMomen << 845         G4ThreeVector u = vNorm.cross(theGlobalNormal);
947         u     = vNorm.cross(fGlobalNormal) * ( << 846 
948         vNorm *= (sinEl * std::sin(azimuth));  << 847         u = u *= (std::sin(elevation) * std::cos(azimuth));
949         // fGlobalNormal shouldn't be modified << 848         v = vNorm *= (std::sin(elevation) * std::sin(azimuth));
950         w            = (fGlobalNormal *= std:: << 849         G4ThreeVector w = theGlobalNormal *= (std::cos(elevation));
951         fNewMomentum = u + vNorm + w;          << 850         NewMomentum = G4ThreeVector(u+v+w);
952                                                   851 
953         // Rotate Polarization too:               852         // Rotate Polarization too:
954         fFacetNormal     = (fNewMomentum - fOl << 853         theFacetNormal = (NewMomentum - OldMomentum).unit();
955         fNewPolarization = -fOldPolarization + << 854         EdotN = OldPolarization * theFacetNormal;
956                                                << 855         NewPolarization = -OldPolarization + (2.*EdotN)*theFacetNormal;
957       }                                           856       }
958     }                                             857     }
959     else                                       << 858     else {
960     {                                          << 859       theStatus = LobeReflection;
961       fStatus = LobeReflection;                << 860 
962                                                << 861       if (angleIncident == 0) {
963       if(angleIncident == 0)                   << 862          NewMomentum = -OldMomentum;
964       {                                        << 863          break;
965         fNewMomentum = -fOldMomentum;          << 
966         break;                                 << 
967       }                                           864       }
968                                                   865 
969       do                                       << 866       do {
970       {                                        << 867         random   = G4RandFlat::shootInt(1, LUTbin+1);
971         random   = (G4int)G4RandFlat::shootInt << 868         angindex = (((random*2)-1)) + (angleIncident-1) * LUTbin*2;
972         angindex = (((random * 2) - 1)) + (ang << 869 
973                                                << 870         azimuth   = OpticalSurface->GetAngularDistributionValueLUT(angindex-1);
974         azimuth = fOpticalSurface->GetAngularD << 871         elevation = OpticalSurface->GetAngularDistributionValueLUT(angindex);
975         elevation = fOpticalSurface->GetAngula << 872       } while (elevation == 0. && azimuth == 0.);
976       } while(elevation == 0. && azimuth == 0. << 
977                                                << 
978       sinEl = std::sin(elevation);             << 
979       vNorm = (fGlobalNormal.cross(fOldMomentu << 
980       u     = vNorm.cross(fGlobalNormal) * (si << 
981       vNorm *= (sinEl * std::sin(azimuth));    << 
982       // fGlobalNormal shouldn't be modified h << 
983       w = (fGlobalNormal *= std::cos(elevation << 
984                                                   873 
985       fNewMomentum = u + vNorm + w;            << 874       NewMomentum = -OldMomentum;
                                                   >> 875 
                                                   >> 876       G4ThreeVector v     = theGlobalNormal.cross(-NewMomentum);
                                                   >> 877       G4ThreeVector vNorm = v/v.mag();
                                                   >> 878       G4ThreeVector u     = vNorm.cross(theGlobalNormal);
                                                   >> 879 
                                                   >> 880       u = u *= (std::sin(elevation) * std::cos(azimuth));
                                                   >> 881       v = vNorm *= (std::sin(elevation) * std::sin(azimuth));
                                                   >> 882       G4ThreeVector w = theGlobalNormal*=(std::cos(elevation));
                                                   >> 883 
                                                   >> 884       NewMomentum = G4ThreeVector(u+v+w);
986                                                   885 
987       // Rotate Polarization too: (needs revis    886       // Rotate Polarization too: (needs revision)
988       fNewPolarization = fOldPolarization;     << 887       NewPolarization = OldPolarization;
989     }                                             888     }
990   } while(fNewMomentum * fGlobalNormal <= 0.0) << 889   } while (NewMomentum * theGlobalNormal <= 0.0);
991 }                                                 890 }
992                                                   891 
993 //....oooOO0OOooo........oooOO0OOooo........oo    892 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
                                                   >> 893 
994 void G4OpBoundaryProcess::DielectricDichroic()    894 void G4OpBoundaryProcess::DielectricDichroic()
995 {                                                 895 {
996   // Calculate Angle between Normal and Photon    896   // Calculate Angle between Normal and Photon Momentum
997   G4double anglePhotonToNormal = fOldMomentum. << 897   G4double anglePhotonToNormal = OldMomentum.angle(-theGlobalNormal);
998                                                   898 
999   // Round it to closest integer                  899   // Round it to closest integer
1000   G4double angleIncident = std::floor(180. /  << 900   G4double angleIncident = std::floor(180./pi*anglePhotonToNormal+0.5);
1001                                                  901 
1002   if(!fDichroicVector)                        << 902   if (!DichroicVector) {
1003   {                                           << 903      if (OpticalSurface) DichroicVector = OpticalSurface->GetDichroicVector();
1004     if(fOpticalSurface)                       << 
1005       fDichroicVector = fOpticalSurface->GetD << 
1006   }                                              904   }
1007                                                  905 
1008   if(fDichroicVector)                         << 906   if (DichroicVector) {
1009   {                                           << 907      G4double wavelength = h_Planck*c_light/thePhotonMomentum;
1010     G4double wavelength = h_Planck * c_light  << 908      theTransmittance = DichroicVector->Value(wavelength/nm,angleIncident,idx,idy)*perCent;
1011     fTransmittance      = fDichroicVector->Va << 909      //   G4cout << "wavelength: " << std::floor(wavelength/nm)
1012                                             i << 910      //                            << "nm" << G4endl;
1013                      perCent;                 << 911      //   G4cout << "Incident angle: " << angleIncident << "deg" << G4endl;
1014     //   G4cout << "wavelength: " << std::flo << 912      //   G4cout << "Transmittance: "
1015     //                            << "nm" <<  << 913      //          << std::floor(theTransmittance/perCent) << "%" << G4endl;
1016     //   G4cout << "Incident angle: " << angl << 914   } else {
1017     //   G4cout << "Transmittance: "          << 
1018     //          << std::floor(fTransmittance/ << 
1019   }                                           << 
1020   else                                        << 
1021   {                                           << 
1022     G4ExceptionDescription ed;                   915     G4ExceptionDescription ed;
1023     ed << " G4OpBoundaryProcess/DielectricDic    916     ed << " G4OpBoundaryProcess/DielectricDichroic(): "
1024        << " The dichroic surface has no G4Phy << 917        << " The dichroic surface has no G4Physics2DVector"
                                                   >> 918        << G4endl;
1025     G4Exception("G4OpBoundaryProcess::Dielect    919     G4Exception("G4OpBoundaryProcess::DielectricDichroic", "OpBoun03",
1026                 FatalException, ed,           << 920                 FatalException,ed,
1027                 "A dichroic surface must have    921                 "A dichroic surface must have an associated G4Physics2DVector");
1028   }                                              922   }
1029                                                  923 
1030   if(!G4BooleanRand(fTransmittance))          << 924   if (!G4BooleanRand(theTransmittance)) { // Not transmitted, so reflect
1031   {  // Not transmitted, so reflect           << 925     if (theModel == glisur || theFinish == polished) {
1032     if(fModel == glisur || fFinish == polishe << 
1033     {                                         << 
1034       DoReflection();                            926       DoReflection();
1035     }                                         << 927     } else {
1036     else                                      << 
1037     {                                         << 
1038       ChooseReflection();                        928       ChooseReflection();
1039       if(fStatus == LambertianReflection)     << 929       if (theStatus == LambertianReflection) {
1040       {                                       << 
1041         DoReflection();                          930         DoReflection();
1042       }                                       << 931       } else if (theStatus == BackScattering) {
1043       else if(fStatus == BackScattering)      << 932         NewMomentum = -OldMomentum;
1044       {                                       << 933         NewPolarization = -OldPolarization;
1045         fNewMomentum     = -fOldMomentum;     << 934       } else {
1046         fNewPolarization = -fOldPolarization; << 
1047       }                                       << 
1048       else                                    << 
1049       {                                       << 
1050         G4double PdotN, EdotN;                   935         G4double PdotN, EdotN;
1051         do                                    << 936         do {
1052         {                                     << 937           if (theStatus == LobeReflection) {
1053           if(fStatus == LobeReflection)       << 938             theFacetNormal = GetFacetNormal(OldMomentum, theGlobalNormal);
1054           {                                   << 
1055             fFacetNormal = GetFacetNormal(fOl << 
1056           }                                      939           }
1057           PdotN        = fOldMomentum * fFace << 940           PdotN = OldMomentum * theFacetNormal;
1058           fNewMomentum = fOldMomentum - (2. * << 941           NewMomentum = OldMomentum - (2.*PdotN)*theFacetNormal;
1059           // Loop checking, 13-Aug-2015, Pete    942           // Loop checking, 13-Aug-2015, Peter Gumplinger
1060         } while(fNewMomentum * fGlobalNormal  << 943         } while (NewMomentum * theGlobalNormal <= 0.0);
1061                                                  944 
1062         EdotN            = fOldPolarization * << 945         EdotN = OldPolarization * theFacetNormal;
1063         fNewPolarization = -fOldPolarization  << 946         NewPolarization = -OldPolarization + (2.*EdotN)*theFacetNormal;
1064       }                                          947       }
1065     }                                            948     }
1066   }                                           << 949   } else {
1067   else                                        << 950      theStatus       = Dichroic;
1068   {                                           << 951      NewMomentum     = OldMomentum;
1069     fStatus          = Dichroic;              << 952      NewPolarization = OldPolarization;
1070     fNewMomentum     = fOldMomentum;          << 
1071     fNewPolarization = fOldPolarization;      << 
1072   }                                              953   }
1073 }                                                954 }
1074                                                  955 
1075 //....oooOO0OOooo........oooOO0OOooo........o    956 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
                                                   >> 957 
1076 void G4OpBoundaryProcess::DielectricDielectri    958 void G4OpBoundaryProcess::DielectricDielectric()
1077 {                                                959 {
1078   G4bool inside = false;                      << 960   G4bool Inside = false;
1079   G4bool swap   = false;                      << 961   G4bool Swap   = false;
1080                                                  962 
1081   if(fFinish == polished)                     << 963   G4bool SurfaceRoughnessCriterionPass = true;
1082   {                                           << 964   if (theSurfaceRoughness != 0. && Rindex1 > Rindex2) {
1083     fFacetNormal = fGlobalNormal;             << 965     G4double wavelength = h_Planck*c_light/thePhotonMomentum;
                                                   >> 966     G4double SurfaceRoughnessCriterion =
                                                   >> 967       std::exp(-std::pow((4.*pi*theSurfaceRoughness*Rindex1*cost1/wavelength),2));
                                                   >> 968     SurfaceRoughnessCriterionPass = G4BooleanRand(SurfaceRoughnessCriterion);
1084   }                                              969   }
1085   else                                        << 
1086   {                                           << 
1087     fFacetNormal = GetFacetNormal(fOldMomentu << 
1088   }                                           << 
1089   G4double cost1 = -fOldMomentum * fFacetNorm << 
1090   G4double cost2 = 0.;                        << 
1091   G4double sint2 = 0.;                        << 
1092                                                  970 
1093   G4bool surfaceRoughnessCriterionPass = true << 971   leap:
1094   if(fSurfaceRoughness != 0. && fRindex1 > fR << 
1095   {                                           << 
1096     G4double wavelength                = h_Pl << 
1097     G4double surfaceRoughnessCriterion = std: << 
1098       (4. * pi * fSurfaceRoughness * fRindex1 << 
1099     surfaceRoughnessCriterionPass = G4Boolean << 
1100   }                                           << 
1101                                                  972 
1102 leap:                                         << 973   G4bool Through = false;
                                                   >> 974   G4bool Done    = false;
1103                                                  975 
1104   G4bool through = false;                     << 976   G4double PdotN, EdotN;
1105   G4bool done    = false;                     << 
1106                                                  977 
1107   G4ThreeVector A_trans, A_paral, E1pp, E1pl;    978   G4ThreeVector A_trans, A_paral, E1pp, E1pl;
1108   G4double E1_perp, E1_parl;                     979   G4double E1_perp, E1_parl;
1109   G4double s1, s2, E2_perp, E2_parl, E2_total << 980   G4double s1, s2, E2_perp, E2_parl, E2_total, TransCoeff;
1110   G4double E2_abs, C_parl, C_perp;               981   G4double E2_abs, C_parl, C_perp;
1111   G4double alpha;                                982   G4double alpha;
1112                                                  983 
1113   do                                          << 984   do {
1114   {                                           << 985     if (Through) {
1115     if(through)                               << 986       Swap = !Swap;
1116     {                                         << 987       Through = false;
1117       swap          = !swap;                  << 988       theGlobalNormal = -theGlobalNormal;
1118       through       = false;                  << 989       G4SwapPtr(Material1, Material2);
1119       fGlobalNormal = -fGlobalNormal;         << 990       G4SwapObj(&Rindex1, &Rindex2);
1120       G4SwapPtr(fMaterial1, fMaterial2);      << 991     }
1121       G4SwapObj(&fRindex1, &fRindex2);        << 992 
1122     }                                         << 993     if (theFinish == polished) {
1123                                               << 994       theFacetNormal = theGlobalNormal;
1124     if(fFinish == polished)                   << 995     }
1125     {                                         << 996     else {
1126       fFacetNormal = fGlobalNormal;           << 997       theFacetNormal = GetFacetNormal(OldMomentum, theGlobalNormal);
1127     }                                         << 998     }
1128     else                                      << 999 
1129     {                                         << 1000     PdotN = OldMomentum * theFacetNormal;
1130       fFacetNormal = GetFacetNormal(fOldMomen << 1001     EdotN = OldPolarization * theFacetNormal;
1131     }                                         << 1002 
1132                                               << 1003     cost1 = -PdotN;
1133     cost1 = -fOldMomentum * fFacetNormal;     << 1004     if (std::abs(cost1) < 1.0-kCarTolerance) {
1134     if(std::abs(cost1) < 1.0 - fCarTolerance) << 1005       sint1 = std::sqrt(1.-cost1*cost1);
1135     {                                         << 1006       sint2 = sint1*Rindex1/Rindex2;     // *** Snell's Law ***
1136       fSint1 = std::sqrt(1. - cost1 * cost1); << 1007         // this isn't a sine as we might expect from the name; can be > 1
1137       sint2  = fSint1 * fRindex1 / fRindex2;  << 1008     }
1138       // this isn't a sine as we might expect << 1009     else {
1139     }                                         << 1010       sint1 = 0.0;
1140     else                                      << 1011       sint2 = 0.0;
1141     {                                         << 
1142       fSint1 = 0.0;                           << 
1143       sint2  = 0.0;                           << 
1144     }                                            1012     }
1145                                                  1013 
1146     // TOTAL INTERNAL REFLECTION                 1014     // TOTAL INTERNAL REFLECTION
1147     if(sint2 >= 1.0)                          << 1015     if (sint2 >= 1.0) {
1148     {                                         << 1016       // Simulate total internal reflection
1149       swap = false;                           << 1017 
1150                                               << 1018       if (Swap) Swap = !Swap;
1151       fStatus = TotalInternalReflection;      << 1019 
1152       if(!surfaceRoughnessCriterionPass)      << 1020       theStatus = TotalInternalReflection;
1153         fStatus = LambertianReflection;       << 1021 
1154       if(fModel == unified && fFinish != poli << 1022       if (!SurfaceRoughnessCriterionPass) theStatus = LambertianReflection;
1155         ChooseReflection();                   << 1023 
1156       if(fStatus == LambertianReflection)     << 1024       if (theModel == unified && theFinish != polished) ChooseReflection();
1157       {                                       << 1025 
                                                   >> 1026       if (theStatus == LambertianReflection) {
1158         DoReflection();                          1027         DoReflection();
1159       }                                          1028       }
1160       else if(fStatus == BackScattering)      << 1029       else if (theStatus == BackScattering) {
1161       {                                       << 1030         NewMomentum = -OldMomentum;
1162         fNewMomentum     = -fOldMomentum;     << 1031         NewPolarization = -OldPolarization;
1163         fNewPolarization = -fOldPolarization; << 1032       }
1164       }                                       << 1033       else {
1165       else                                    << 1034         PdotN = OldMomentum * theFacetNormal;
1166       {                                       << 1035         NewMomentum = OldMomentum - (2.*PdotN)*theFacetNormal;
1167         fNewMomentum =                        << 1036         EdotN = OldPolarization * theFacetNormal;
1168           fOldMomentum - 2. * fOldMomentum *  << 1037         NewPolarization = -OldPolarization + (2.*EdotN)*theFacetNormal;
1169         fNewPolarization = -fOldPolarization  << 
1170                                               << 
1171       }                                          1038       }
1172     }                                            1039     }
1173     // NOT TIR                                   1040     // NOT TIR
1174     else if(sint2 < 1.0)                      << 1041     else if (sint2 < 1.0) {
1175     {                                         << 
1176       // Calculate amplitude for transmission    1042       // Calculate amplitude for transmission (Q = P x N)
1177       if(cost1 > 0.0)                         << 1043 
1178       {                                       << 1044       if (cost1 > 0.0) {
1179         cost2 = std::sqrt(1. - sint2 * sint2) << 1045         cost2 =  std::sqrt(1.-sint2*sint2);
1180       }                                       << 1046       }
1181       else                                    << 1047       else {
1182       {                                       << 1048         cost2 = -std::sqrt(1.-sint2*sint2);
1183         cost2 = -std::sqrt(1. - sint2 * sint2 << 
1184       }                                          1049       }
1185                                                  1050 
1186       if(fSint1 > 0.0)                        << 1051       if (sint1 > 0.0) {
1187       {                                       << 1052         A_trans = OldMomentum.cross(theFacetNormal);
1188         A_trans = (fOldMomentum.cross(fFacetN << 1053         A_trans = A_trans.unit();
1189         E1_perp = fOldPolarization * A_trans; << 1054         E1_perp = OldPolarization * A_trans;
1190         E1pp    = E1_perp * A_trans;             1055         E1pp    = E1_perp * A_trans;
1191         E1pl    = fOldPolarization - E1pp;    << 1056         E1pl    = OldPolarization - E1pp;
1192         E1_parl = E1pl.mag();                    1057         E1_parl = E1pl.mag();
1193       }                                          1058       }
1194       else                                    << 1059       else {
1195       {                                       << 1060         A_trans  = OldPolarization;
1196         A_trans = fOldPolarization;           << 1061         // Here we Follow Jackson's conventions and we set the
1197         // Here we Follow Jackson's conventio << 1062         // parallel component = 1 in case of a ray perpendicular
1198         // component = 1 in case of a ray per << 1063         // to the surface
1199         E1_perp = 0.0;                        << 1064         E1_perp  = 0.0;
1200         E1_parl = 1.0;                        << 1065         E1_parl  = 1.0;
1201       }                                       << 1066       }
1202                                               << 1067 
1203       s1       = fRindex1 * cost1;            << 1068       s1 = Rindex1*cost1;
1204       E2_perp  = 2. * s1 * E1_perp / (fRindex << 1069       E2_perp = 2.*s1*E1_perp/(Rindex1*cost1+Rindex2*cost2);
1205       E2_parl  = 2. * s1 * E1_parl / (fRindex << 1070       E2_parl = 2.*s1*E1_parl/(Rindex2*cost1+Rindex1*cost2);
1206       E2_total = E2_perp * E2_perp + E2_parl  << 1071       E2_total = E2_perp*E2_perp + E2_parl*E2_parl;
1207       s2       = fRindex2 * cost2 * E2_total; << 1072       s2 = Rindex2*cost2*E2_total;
1208                                               << 1073 
1209       // D.Sawkey, 24 May 24                  << 1074       if (theTransmittance > 0.) TransCoeff = theTransmittance;
1210       // Transmittance has already been taken << 1075       else if (cost1 != 0.0) TransCoeff = s2/s1;
1211       // For e.g. specular surfaces, the rati << 1076       else TransCoeff = 0.0;
1212       // reflection should be given by the ma << 
1213       // TRANSMITTANCE                        << 
1214       //if(fTransmittance > 0.)               << 
1215       //  transCoeff = fTransmittance;        << 
1216       //else if(cost1 != 0.0)                 << 
1217       if(cost1 != 0.0)                        << 
1218         transCoeff = s2 / s1;                 << 
1219       else                                    << 
1220         transCoeff = 0.0;                     << 
1221                                                  1077 
1222       // NOT TIR: REFLECTION                     1078       // NOT TIR: REFLECTION
1223       if(!G4BooleanRand(transCoeff))          << 1079       if (!G4BooleanRand(TransCoeff)) {
1224       {                                       << 1080         // Simulate reflection
1225         swap    = false;                      << 1081 
1226         fStatus = FresnelReflection;          << 1082         if (Swap) Swap = !Swap;
1227                                               << 1083 
1228         if(!surfaceRoughnessCriterionPass)    << 1084         theStatus = FresnelReflection;
1229           fStatus = LambertianReflection;     << 1085 
1230         if(fModel == unified && fFinish != po << 1086         if (!SurfaceRoughnessCriterionPass) theStatus = LambertianReflection;
1231           ChooseReflection();                 << 1087 
1232         if(fStatus == LambertianReflection)   << 1088         if (theModel == unified && theFinish != polished) ChooseReflection();
1233         {                                     << 1089 
                                                   >> 1090         if (theStatus == LambertianReflection) {
1234           DoReflection();                        1091           DoReflection();
1235         }                                        1092         }
1236         else if(fStatus == BackScattering)    << 1093         else if (theStatus == BackScattering) {
1237         {                                     << 1094           NewMomentum     = -OldMomentum;
1238           fNewMomentum     = -fOldMomentum;   << 1095           NewPolarization = -OldPolarization;
1239           fNewPolarization = -fOldPolarizatio << 1096         }
1240         }                                     << 1097         else {
1241         else                                  << 1098           PdotN = OldMomentum * theFacetNormal;
1242         {                                     << 1099           NewMomentum = OldMomentum - (2.*PdotN)*theFacetNormal;
1243           fNewMomentum =                      << 1100 
1244             fOldMomentum - 2. * fOldMomentum  << 1101           if (sint1 > 0.0) {   // incident ray oblique
1245           if(fSint1 > 0.0)                    << 1102             E2_parl   = Rindex2*E2_parl/Rindex1 - E1_parl;
1246           {  // incident ray oblique          << 1103             E2_perp   = E2_perp - E1_perp;
1247             E2_parl  = fRindex2 * E2_parl / f << 1104             E2_total  = E2_perp*E2_perp + E2_parl*E2_parl;
1248             E2_perp  = E2_perp - E1_perp;     << 1105             A_paral   = NewMomentum.cross(A_trans);
1249             E2_total = E2_perp * E2_perp + E2 << 1106             A_paral   = A_paral.unit();
1250             A_paral  = (fNewMomentum.cross(A_ << 1107             E2_abs    = std::sqrt(E2_total);
1251             E2_abs   = std::sqrt(E2_total);   << 1108             C_parl    = E2_parl/E2_abs;
1252             C_parl   = E2_parl / E2_abs;      << 1109             C_perp    = E2_perp/E2_abs;
1253             C_perp   = E2_perp / E2_abs;      << 
1254                                                  1110 
1255             fNewPolarization = C_parl * A_par << 1111             NewPolarization = C_parl*A_paral + C_perp*A_trans;
1256           }                                      1112           }
1257           else                                << 1113           else {               // incident ray perpendicular
1258           {  // incident ray perpendicular    << 1114             if (Rindex2 > Rindex1) {
1259             if(fRindex2 > fRindex1)           << 1115               NewPolarization = - OldPolarization;
1260             {                                 << 
1261               fNewPolarization = -fOldPolariz << 
1262             }                                    1116             }
1263             else                              << 1117             else {
1264             {                                 << 1118               NewPolarization =   OldPolarization;
1265               fNewPolarization = fOldPolariza << 
1266             }                                    1119             }
1267           }                                      1120           }
1268         }                                        1121         }
1269       }                                          1122       }
1270       // NOT TIR: TRANSMISSION                   1123       // NOT TIR: TRANSMISSION
1271       else                                    << 1124       else { // photon gets transmitted
1272       {                                       << 1125         // Simulate transmission/refraction
1273         inside  = !inside;                    << 
1274         through = true;                       << 
1275         fStatus = FresnelRefraction;          << 
1276                                               << 
1277         if(fSint1 > 0.0)                      << 
1278         {  // incident ray oblique            << 
1279           alpha        = cost1 - cost2 * (fRi << 
1280           fNewMomentum = (fOldMomentum + alph << 
1281           A_paral      = (fNewMomentum.cross( << 
1282           E2_abs       = std::sqrt(E2_total); << 
1283           C_parl       = E2_parl / E2_abs;    << 
1284           C_perp       = E2_perp / E2_abs;    << 
1285                                                  1126 
1286           fNewPolarization = C_parl * A_paral << 1127         Inside = !Inside;
                                                   >> 1128         Through = true;
                                                   >> 1129         theStatus = FresnelRefraction;
                                                   >> 1130 
                                                   >> 1131         if (sint1 > 0.0) {      // incident ray oblique
                                                   >> 1132           alpha = cost1 - cost2*(Rindex2/Rindex1);
                                                   >> 1133           NewMomentum = OldMomentum + alpha*theFacetNormal;
                                                   >> 1134           NewMomentum = NewMomentum.unit();
                                                   >> 1135           A_paral = NewMomentum.cross(A_trans);
                                                   >> 1136           A_paral = A_paral.unit();
                                                   >> 1137           E2_abs  = std::sqrt(E2_total);
                                                   >> 1138           C_parl  = E2_parl/E2_abs;
                                                   >> 1139           C_perp  = E2_perp/E2_abs;
                                                   >> 1140 
                                                   >> 1141           NewPolarization = C_parl*A_paral + C_perp*A_trans;
1287         }                                        1142         }
1288         else                                  << 1143         else {                  // incident ray perpendicular
1289         {  // incident ray perpendicular      << 1144           NewMomentum = OldMomentum;
1290           fNewMomentum     = fOldMomentum;    << 1145           NewPolarization = OldPolarization;
1291           fNewPolarization = fOldPolarization << 
1292         }                                        1146         }
1293       }                                          1147       }
1294     }                                            1148     }
1295                                                  1149 
1296     fOldMomentum     = fNewMomentum.unit();   << 1150     OldMomentum     = NewMomentum.unit();
1297     fOldPolarization = fNewPolarization.unit( << 1151     OldPolarization = NewPolarization.unit();
1298                                                  1152 
1299     if(fStatus == FresnelRefraction)          << 1153     if (theStatus == FresnelRefraction) {
1300     {                                         << 1154       Done = (NewMomentum * theGlobalNormal <= 0.0);
1301       done = (fNewMomentum * fGlobalNormal <= << 
1302     }                                         << 
1303     else                                      << 
1304     {                                         << 
1305       done = (fNewMomentum * fGlobalNormal >= << 
1306     }                                            1155     }
1307     // Loop checking, 13-Aug-2015, Peter Gump << 1156     else {
1308   } while(!done);                             << 1157       Done = (NewMomentum * theGlobalNormal >= -kCarTolerance);
                                                   >> 1158     }
1309                                                  1159 
1310   if(inside && !swap)                         << 1160        // Loop checking, 13-Aug-2015, Peter Gumplinger
1311   {                                           << 1161   } while (!Done);
1312     if(fFinish == polishedbackpainted || fFin << 1162 
1313     {                                         << 1163   if (Inside && !Swap) {
                                                   >> 1164     if (theFinish == polishedbackpainted || theFinish == groundbackpainted) {
1314       G4double rand = G4UniformRand();           1165       G4double rand = G4UniformRand();
1315       if(rand > fReflectivity + fTransmittanc << 1166       if (rand > theReflectivity) {
1316       {                                       << 1167         if (rand > theReflectivity + theTransmittance) {
1317         DoAbsorption();                       << 1168           DoAbsorption();
1318       }                                       << 1169         } else {
1319       else if(rand > fReflectivity)           << 1170           theStatus = Transmission;
1320       {                                       << 1171           NewMomentum = OldMomentum;
1321         fStatus          = Transmission;      << 1172           NewPolarization = OldPolarization;
1322         fNewMomentum     = fOldMomentum;      << 1173         }
1323         fNewPolarization = fOldPolarization;  << 1174       }
1324       }                                       << 1175       else {
1325       else                                    << 1176         if (theStatus != FresnelRefraction ) {
1326       {                                       << 1177           theGlobalNormal = -theGlobalNormal;
1327         if(fStatus != FresnelRefraction)      << 1178         }
1328         {                                     << 1179         else {
1329           fGlobalNormal = -fGlobalNormal;     << 1180           Swap = !Swap;
1330         }                                     << 1181           G4SwapPtr(Material1, Material2);
1331         else                                  << 1182           G4SwapObj(&Rindex1, &Rindex2);
1332         {                                     << 
1333           swap = !swap;                       << 
1334           G4SwapPtr(fMaterial1, fMaterial2);  << 
1335           G4SwapObj(&fRindex1, &fRindex2);    << 
1336         }                                        1183         }
1337         if(fFinish == groundbackpainted)      << 1184         if (theFinish == groundbackpainted) theStatus = LambertianReflection;
1338           fStatus = LambertianReflection;     << 
1339                                                  1185 
1340         DoReflection();                          1186         DoReflection();
1341                                                  1187 
1342         fGlobalNormal = -fGlobalNormal;       << 1188         theGlobalNormal = -theGlobalNormal;
1343         fOldMomentum  = fNewMomentum;         << 1189         OldMomentum = NewMomentum;
1344                                                  1190 
1345         goto leap;                               1191         goto leap;
1346       }                                          1192       }
1347     }                                            1193     }
1348   }                                              1194   }
1349 }                                                1195 }
1350                                                  1196 
1351 //....oooOO0OOooo........oooOO0OOooo........o    1197 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
1352 G4double G4OpBoundaryProcess::GetMeanFreePath << 1198 
                                                   >> 1199 G4double G4OpBoundaryProcess::GetMeanFreePath(const G4Track& ,
                                                   >> 1200                                               G4double ,
1353                                                  1201                                               G4ForceCondition* condition)
1354 {                                                1202 {
1355   *condition = Forced;                           1203   *condition = Forced;
1356   return DBL_MAX;                                1204   return DBL_MAX;
1357 }                                                1205 }
1358                                                  1206 
1359 //....oooOO0OOooo........oooOO0OOooo........o    1207 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
                                                   >> 1208 
1360 G4double G4OpBoundaryProcess::GetIncidentAngl    1209 G4double G4OpBoundaryProcess::GetIncidentAngle()
1361 {                                                1210 {
1362   return pi - std::acos(fOldMomentum * fFacet << 1211   G4double PdotN = OldMomentum * theFacetNormal;
1363                         (fOldMomentum.mag() * << 1212   G4double magP = OldMomentum.mag();
                                                   >> 1213   G4double magN = theFacetNormal.mag();
                                                   >> 1214   G4double incidentangle = pi - std::acos(PdotN/(magP*magN));
                                                   >> 1215 
                                                   >> 1216   return incidentangle;
1364 }                                                1217 }
1365                                                  1218 
1366 //....oooOO0OOooo........oooOO0OOooo........o    1219 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
                                                   >> 1220 
1367 G4double G4OpBoundaryProcess::GetReflectivity    1221 G4double G4OpBoundaryProcess::GetReflectivity(G4double E1_perp,
1368                                                  1222                                               G4double E1_parl,
1369                                                  1223                                               G4double incidentangle,
1370                                               << 1224                                               G4double RealRindex,
1371                                               << 1225                                               G4double ImaginaryRindex)
1372 {                                                1226 {
1373   G4complex reflectivity, reflectivity_TE, re << 1227   G4complex Reflectivity, Reflectivity_TE, Reflectivity_TM;
1374   G4complex N1(fRindex1, 0.), N2(realRindex,  << 1228   G4complex N1(Rindex1, 0.), N2(RealRindex, ImaginaryRindex);
1375   G4complex cosPhi;                           << 1229   G4complex CosPhi;
1376                                                  1230 
1377   G4complex u(1., 0.);  // unit number 1      << 1231   G4complex u(1.,0.);           //unit number 1
1378                                                  1232 
1379   G4complex numeratorTE;  // E1_perp=1 E1_par << 1233   G4complex numeratorTE;      // E1_perp=1 E1_parl=0 -> TE polarization
1380   G4complex numeratorTM;  // E1_parl=1 E1_per << 1234   G4complex numeratorTM;      // E1_parl=1 E1_perp=0 -> TM polarization
1381   G4complex denominatorTE, denominatorTM;        1235   G4complex denominatorTE, denominatorTM;
1382   G4complex rTM, rTE;                            1236   G4complex rTM, rTE;
1383                                                  1237 
1384   G4MaterialPropertiesTable* MPT = fMaterial1 << 1238   G4MaterialPropertiesTable* aMaterialPropertiesTable =
1385   G4MaterialPropertyVector* ppR  = MPT->GetPr << 1239                                     Material1->GetMaterialPropertiesTable();
1386   G4MaterialPropertyVector* ppI  = MPT->GetPr << 1240   G4MaterialPropertyVector* aPropertyPointerR =
1387   if(ppR && ppI)                              << 1241                       aMaterialPropertiesTable->GetProperty(kREALRINDEX);
1388   {                                           << 1242   G4MaterialPropertyVector* aPropertyPointerI =
1389     G4double rRindex = ppR->Value(fPhotonMome << 1243                       aMaterialPropertiesTable->GetProperty(kIMAGINARYRINDEX);
1390     G4double iRindex = ppI->Value(fPhotonMome << 1244   if (aPropertyPointerR && aPropertyPointerI) {
1391     N1               = G4complex(rRindex, iRi << 1245     G4double RRindex = aPropertyPointerR->Value(thePhotonMomentum);
                                                   >> 1246     G4double IRindex = aPropertyPointerI->Value(thePhotonMomentum);
                                                   >> 1247     N1 = G4complex(RRindex,IRindex);
1392   }                                              1248   }
1393                                                  1249 
1394   // Following two equations, rTM and rTE, ar    1250   // Following two equations, rTM and rTE, are from: "Introduction To Modern
1395   // Optics" written by Fowles                   1251   // Optics" written by Fowles
1396   cosPhi = std::sqrt(u - ((std::sin(incidenta << 
1397                           (N1 * N1) / (N2 * N << 
1398                                                  1252 
1399   numeratorTE   = N1 * std::cos(incidentangle << 1253   CosPhi = std::sqrt(u-((std::sin(incidentangle)*std::sin(incidentangle))*(N1*N1)/(N2*N2)));
1400   denominatorTE = N1 * std::cos(incidentangle << 1254 
1401   rTE           = numeratorTE / denominatorTE << 1255   numeratorTE   = N1*std::cos(incidentangle) - N2*CosPhi;
1402                                               << 1256   denominatorTE = N1*std::cos(incidentangle) + N2*CosPhi;
1403   numeratorTM   = N2 * std::cos(incidentangle << 1257   rTE = numeratorTE/denominatorTE;
1404   denominatorTM = N2 * std::cos(incidentangle << 1258 
1405   rTM           = numeratorTM / denominatorTM << 1259   numeratorTM   = N2*std::cos(incidentangle) - N1*CosPhi;
                                                   >> 1260   denominatorTM = N2*std::cos(incidentangle) + N1*CosPhi;
                                                   >> 1261   rTM = numeratorTM/denominatorTM;
1406                                                  1262 
1407   // This is my (PG) calculaton for reflectiv << 1263   // This is my calculaton for reflectivity on a metalic surface
1408   // depending on the fraction of TE and TM p    1264   // depending on the fraction of TE and TM polarization
1409   // when TE polarization, E1_parl=0 and E1_p    1265   // when TE polarization, E1_parl=0 and E1_perp=1, R=abs(rTE)^2 and
1410   // when TM polarization, E1_parl=1 and E1_p    1266   // when TM polarization, E1_parl=1 and E1_perp=0, R=abs(rTM)^2
1411                                                  1267 
1412   reflectivity_TE = (rTE * conj(rTE)) * (E1_p << 1268   Reflectivity_TE =  (rTE*conj(rTE))*(E1_perp*E1_perp)
1413                     (E1_perp * E1_perp + E1_p << 1269                     / (E1_perp*E1_perp + E1_parl*E1_parl);
1414   reflectivity_TM = (rTM * conj(rTM)) * (E1_p << 1270   Reflectivity_TM =  (rTM*conj(rTM))*(E1_parl*E1_parl)
1415                     (E1_perp * E1_perp + E1_p << 1271                     / (E1_perp*E1_perp + E1_parl*E1_parl);
1416   reflectivity = reflectivity_TE + reflectivi << 1272   Reflectivity    = Reflectivity_TE + Reflectivity_TM;
1417                                                  1273 
1418   do                                          << 1274   do {
1419   {                                           << 1275     if (G4UniformRand()*real(Reflectivity) > real(Reflectivity_TE)) {
1420     if(G4UniformRand() * real(reflectivity) > << 1276       iTE = -1;
1421     {                                         << 1277     } else {
1422       f_iTE = -1;                             << 1278       iTE = 1;
1423     }                                         << 1279     }
1424     else                                      << 1280     if (G4UniformRand()*real(Reflectivity) > real(Reflectivity_TM)) {
1425     {                                         << 1281       iTM = -1;
1426       f_iTE = 1;                              << 1282     } else {
1427     }                                         << 1283       iTM = 1;
1428     if(G4UniformRand() * real(reflectivity) > << 
1429     {                                         << 
1430       f_iTM = -1;                             << 
1431     }                                         << 
1432     else                                      << 
1433     {                                         << 
1434       f_iTM = 1;                              << 
1435     }                                            1284     }
1436     // Loop checking, 13-Aug-2015, Peter Gump    1285     // Loop checking, 13-Aug-2015, Peter Gumplinger
1437   } while(f_iTE < 0 && f_iTM < 0);            << 1286   } while (iTE < 0 && iTM < 0);
1438                                                  1287 
1439   return real(reflectivity);                  << 1288   return real(Reflectivity);
1440 }                                                1289 }
1441                                                  1290 
1442 //....oooOO0OOooo........oooOO0OOooo........o    1291 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
                                                   >> 1292 
1443 void G4OpBoundaryProcess::CalculateReflectivi    1293 void G4OpBoundaryProcess::CalculateReflectivity()
1444 {                                                1294 {
1445   G4double realRindex = fRealRIndexMPV->Value << 1295   G4double RealRindex      = fRealRIndexMPV->Value(thePhotonMomentum);
1446   G4double imaginaryRindex =                  << 1296   G4double ImaginaryRindex = fImagRIndexMPV->Value(thePhotonMomentum);
1447     fImagRIndexMPV->Value(fPhotonMomentum, id << 
1448                                                  1297 
1449   // calculate FacetNormal                       1298   // calculate FacetNormal
1450   if(fFinish == ground)                       << 1299   if (theFinish == ground) {
1451   {                                           << 1300     theFacetNormal = GetFacetNormal(OldMomentum, theGlobalNormal);
1452     fFacetNormal = GetFacetNormal(fOldMomentu << 1301   } else {
1453   }                                           << 1302     theFacetNormal = theGlobalNormal;
1454   else                                        << 
1455   {                                           << 
1456     fFacetNormal = fGlobalNormal;             << 
1457   }                                              1303   }
1458                                                  1304 
1459   G4double cost1 = -fOldMomentum * fFacetNorm << 1305   G4double PdotN = OldMomentum * theFacetNormal;
1460   if(std::abs(cost1) < 1.0 - fCarTolerance)   << 1306   cost1 = -PdotN;
1461   {                                           << 1307 
1462     fSint1 = std::sqrt(1. - cost1 * cost1);   << 1308   if (std::abs(cost1) < 1.0 - kCarTolerance) {
1463   }                                           << 1309     sint1 = std::sqrt(1. - cost1*cost1);
1464   else                                        << 1310   } else {
1465   {                                           << 1311     sint1 = 0.0;
1466     fSint1 = 0.0;                             << 
1467   }                                              1312   }
1468                                                  1313 
1469   G4ThreeVector A_trans, A_paral, E1pp, E1pl;    1314   G4ThreeVector A_trans, A_paral, E1pp, E1pl;
1470   G4double E1_perp, E1_parl;                     1315   G4double E1_perp, E1_parl;
1471                                                  1316 
1472   if(fSint1 > 0.0)                            << 1317   if (sint1 > 0.0) {
1473   {                                           << 1318     A_trans = OldMomentum.cross(theFacetNormal);
1474     A_trans = (fOldMomentum.cross(fFacetNorma << 1319     A_trans = A_trans.unit();
1475     E1_perp = fOldPolarization * A_trans;     << 1320     E1_perp = OldPolarization * A_trans;
1476     E1pp    = E1_perp * A_trans;                 1321     E1pp    = E1_perp * A_trans;
1477     E1pl    = fOldPolarization - E1pp;        << 1322     E1pl    = OldPolarization - E1pp;
1478     E1_parl = E1pl.mag();                        1323     E1_parl = E1pl.mag();
1479   }                                              1324   }
1480   else                                        << 1325   else {
1481   {                                           << 1326     A_trans  = OldPolarization;
1482     A_trans = fOldPolarization;               << 1327     // Here we Follow Jackson's conventions and we set the
1483     // Here we Follow Jackson's conventions a << 1328     // parallel component = 1 in case of a ray perpendicular
1484     // component = 1 in case of a ray perpend << 1329     // to the surface
1485     E1_perp = 0.0;                            << 1330     E1_perp  = 0.0;
1486     E1_parl = 1.0;                            << 1331     E1_parl  = 1.0;
1487   }                                              1332   }
1488                                                  1333 
                                                   >> 1334   //calculate incident angle
1489   G4double incidentangle = GetIncidentAngle()    1335   G4double incidentangle = GetIncidentAngle();
1490                                                  1336 
1491   // calculate the reflectivity depending on  << 1337   //calculate the reflectivity depending on incident angle,
1492   // polarization and complex refractive      << 1338   //polarization and complex refractive
1493   fReflectivity = GetReflectivity(E1_perp, E1 << 1339   theReflectivity = GetReflectivity(E1_perp, E1_parl, incidentangle,
1494                                   imaginaryRi << 1340                                     RealRindex, ImaginaryRindex);
1495 }                                                1341 }
1496                                                  1342 
1497 //....oooOO0OOooo........oooOO0OOooo........o    1343 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
                                                   >> 1344 
1498 G4bool G4OpBoundaryProcess::InvokeSD(const G4    1345 G4bool G4OpBoundaryProcess::InvokeSD(const G4Step* pStep)
1499 {                                                1346 {
1500   G4Step aStep = *pStep;                         1347   G4Step aStep = *pStep;
1501   aStep.AddTotalEnergyDeposit(fPhotonMomentum << 1348   aStep.AddTotalEnergyDeposit(thePhotonMomentum);
1502                                                  1349 
1503   G4VSensitiveDetector* sd = aStep.GetPostSte    1350   G4VSensitiveDetector* sd = aStep.GetPostStepPoint()->GetSensitiveDetector();
1504   if(sd != nullptr)                           << 1351   if (sd) return sd->Hit(&aStep);
1505     return sd->Hit(&aStep);                   << 1352   else return false;
1506   else                                        << 
1507     return false;                             << 
1508 }                                             << 
1509                                               << 
1510 //....oooOO0OOooo........oooOO0OOooo........o << 
1511 inline void G4OpBoundaryProcess::SetInvokeSD( << 
1512 {                                             << 
1513   fInvokeSD = flag;                           << 
1514   G4OpticalParameters::Instance()->SetBoundar << 
1515 }                                             << 
1516                                               << 
1517 //....oooOO0OOooo........oooOO0OOooo........o << 
1518 void G4OpBoundaryProcess::SetVerboseLevel(G4i << 
1519 {                                             << 
1520   verboseLevel = verbose;                     << 
1521   G4OpticalParameters::Instance()->SetBoundar << 
1522 }                                             << 
1523                                               << 
1524 //....oooOO0OOooo........oooOO0OOooo........o << 
1525 void G4OpBoundaryProcess::CoatedDielectricDie << 
1526 {                                             << 
1527   G4MaterialPropertyVector* pp = nullptr;     << 
1528                                               << 
1529   G4MaterialPropertiesTable* MPT = fMaterial2 << 
1530   if((pp = MPT->GetProperty(kRINDEX)))        << 
1531   {                                           << 
1532     fRindex2 = pp->Value(fPhotonMomentum, idx << 
1533   }                                           << 
1534                                               << 
1535   MPT = fOpticalSurface->GetMaterialPropertie << 
1536   if((pp = MPT->GetProperty(kCOATEDRINDEX)))  << 
1537   {                                           << 
1538     fCoatedRindex = pp->Value(fPhotonMomentum << 
1539   }                                           << 
1540   if(MPT->ConstPropertyExists(kCOATEDTHICKNES << 
1541   {                                           << 
1542     fCoatedThickness = MPT->GetConstProperty( << 
1543   }                                           << 
1544   if(MPT->ConstPropertyExists(kCOATEDFRUSTRAT << 
1545   {                                           << 
1546     fCoatedFrustratedTransmission =           << 
1547       (G4bool)MPT->GetConstProperty(kCOATEDFR << 
1548   }                                           << 
1549                                               << 
1550   G4double sintTL;                            << 
1551   G4double wavelength = h_Planck * c_light /  << 
1552   G4double PdotN;                             << 
1553   G4double E1_perp, E1_parl;                  << 
1554   G4double s1, E2_perp, E2_parl, E2_total, tr << 
1555   G4double E2_abs, C_parl, C_perp;            << 
1556   G4double alpha;                             << 
1557   G4ThreeVector A_trans, A_paral, E1pp, E1pl; << 
1558   //G4bool Inside  = false;                   << 
1559   //G4bool Swap    = false;                   << 
1560   G4bool through = false;                     << 
1561   G4bool done    = false;                     << 
1562                                               << 
1563   do {                                        << 
1564     if (through)                              << 
1565     {                                         << 
1566       //Swap = !Swap;                         << 
1567       through = false;                        << 
1568       fGlobalNormal = -fGlobalNormal;         << 
1569       G4SwapPtr(fMaterial1, fMaterial2);      << 
1570       G4SwapObj(&fRindex1, &fRindex2);        << 
1571     }                                         << 
1572                                               << 
1573     if(fFinish == polished)                   << 
1574     {                                         << 
1575       fFacetNormal = fGlobalNormal;           << 
1576     }                                         << 
1577     else                                      << 
1578     {                                         << 
1579       fFacetNormal = GetFacetNormal(fOldMomen << 
1580     }                                         << 
1581                                               << 
1582     PdotN = fOldMomentum * fFacetNormal;      << 
1583     G4double cost1 = -PdotN;                  << 
1584     G4double sint2, cost2 = 0.;               << 
1585                                               << 
1586     if (std::abs(cost1) < 1.0 - fCarTolerance << 
1587     {                                         << 
1588       fSint1 = std::sqrt(1. - cost1 * cost1); << 
1589       sint2 = fSint1 * fRindex1 / fRindex2;   << 
1590       sintTL = fSint1 * fRindex1 / fCoatedRin << 
1591     } else                                    << 
1592     {                                         << 
1593       fSint1 = 0.0;                           << 
1594       sint2 = 0.0;                            << 
1595       sintTL = 0.0;                           << 
1596     }                                         << 
1597                                               << 
1598     if (fSint1 > 0.0)                         << 
1599     {                                         << 
1600       A_trans = fOldMomentum.cross(fFacetNorm << 
1601       A_trans = A_trans.unit();               << 
1602       E1_perp = fOldPolarization * A_trans;   << 
1603       E1pp = E1_perp * A_trans;               << 
1604       E1pl = fOldPolarization - E1pp;         << 
1605       E1_parl = E1pl.mag();                   << 
1606     }                                         << 
1607     else                                      << 
1608     {                                         << 
1609       A_trans = fOldPolarization;             << 
1610       E1_perp = 0.0;                          << 
1611       E1_parl = 1.0;                          << 
1612     }                                         << 
1613                                               << 
1614     s1 = fRindex1 * cost1;                    << 
1615                                               << 
1616     if (cost1 > 0.0)                          << 
1617     {                                         << 
1618       cost2 = std::sqrt(1. - sint2 * sint2);  << 
1619     }                                         << 
1620     else                                      << 
1621     {                                         << 
1622       cost2 = -std::sqrt(1. - sint2 * sint2); << 
1623     }                                         << 
1624                                               << 
1625     transCoeff = 0.0;                         << 
1626                                               << 
1627     if (sintTL >= 1.0)                        << 
1628     { // --> Angle > Angle Limit              << 
1629       //Swap = false;                         << 
1630     }                                         << 
1631     E2_perp = 2. * s1 * E1_perp / (fRindex1 * << 
1632     E2_parl = 2. * s1 * E1_parl / (fRindex2 * << 
1633     E2_total = E2_perp * E2_perp + E2_parl *  << 
1634                                               << 
1635     transCoeff = 1. - GetReflectivityThroughT << 
1636                         sintTL, E1_perp, E1_p << 
1637     if (!G4BooleanRand(transCoeff))           << 
1638     {                                         << 
1639       if(verboseLevel > 2)                    << 
1640         G4cout << "Reflection from " << fMate << 
1641                << fMaterial2->GetName() << G4 << 
1642                                               << 
1643       //Swap = false;                         << 
1644                                               << 
1645       if (sintTL >= 1.0)                      << 
1646       {                                       << 
1647         fStatus = TotalInternalReflection;    << 
1648       }                                       << 
1649       else                                    << 
1650       {                                       << 
1651         fStatus = CoatedDielectricReflection; << 
1652       }                                       << 
1653                                               << 
1654       PdotN = fOldMomentum * fFacetNormal;    << 
1655       fNewMomentum = fOldMomentum - (2. * Pdo << 
1656                                               << 
1657       if (fSint1 > 0.0) {   // incident ray o << 
1658                                               << 
1659         E2_parl = fRindex2 * E2_parl / fRinde << 
1660         E2_perp = E2_perp - E1_perp;          << 
1661         E2_total = E2_perp * E2_perp + E2_par << 
1662         A_paral = fNewMomentum.cross(A_trans) << 
1663         A_paral = A_paral.unit();             << 
1664         E2_abs = std::sqrt(E2_total);         << 
1665         C_parl = E2_parl / E2_abs;            << 
1666         C_perp = E2_perp / E2_abs;            << 
1667                                               << 
1668         fNewPolarization = C_parl * A_paral + << 
1669                                               << 
1670       }                                       << 
1671       else                                    << 
1672       {               // incident ray perpend << 
1673         if (fRindex2 > fRindex1)              << 
1674         {                                     << 
1675           fNewPolarization = -fOldPolarizatio << 
1676         }                                     << 
1677         else                                  << 
1678         {                                     << 
1679           fNewPolarization = fOldPolarization << 
1680         }                                     << 
1681       }                                       << 
1682                                               << 
1683     } else { // photon gets transmitted       << 
1684       if (verboseLevel > 2)                   << 
1685         G4cout << "Transmission from " << fMa << 
1686                << fMaterial2->GetName() << G4 << 
1687                                               << 
1688       //Inside = !Inside;                     << 
1689       through = true;                         << 
1690                                               << 
1691       if (fEfficiency > 0.)                   << 
1692       {                                       << 
1693         DoAbsorption();                       << 
1694         return;                               << 
1695       }                                       << 
1696       else                                    << 
1697       {                                       << 
1698         if (sintTL >= 1.0)                    << 
1699         {                                     << 
1700           fStatus = CoatedDielectricFrustrate << 
1701         }                                     << 
1702         else                                  << 
1703         {                                     << 
1704           fStatus = CoatedDielectricRefractio << 
1705         }                                     << 
1706                                               << 
1707         if (fSint1 > 0.0) {      // incident  << 
1708                                               << 
1709           alpha = cost1 - cost2 * (fRindex2 / << 
1710           fNewMomentum = fOldMomentum + alpha << 
1711           fNewMomentum = fNewMomentum.unit(); << 
1712           A_paral = fNewMomentum.cross(A_tran << 
1713           A_paral = A_paral.unit();           << 
1714           E2_abs = std::sqrt(E2_total);       << 
1715           C_parl = E2_parl / E2_abs;          << 
1716           C_perp = E2_perp / E2_abs;          << 
1717                                               << 
1718           fNewPolarization = C_parl * A_paral << 
1719                                               << 
1720         }                                     << 
1721         else                                  << 
1722         {                  // incident ray pe << 
1723           fNewMomentum = fOldMomentum;        << 
1724           fNewPolarization = fOldPolarization << 
1725         }                                     << 
1726       }                                       << 
1727     }                                         << 
1728                                               << 
1729     fOldMomentum = fNewMomentum.unit();       << 
1730     fOldPolarization = fNewPolarization.unit( << 
1731     if ((fStatus == CoatedDielectricFrustrate << 
1732         (fStatus == CoatedDielectricRefractio << 
1733     {                                         << 
1734       done = (fNewMomentum * fGlobalNormal <= << 
1735     }                                         << 
1736     else                                      << 
1737     {                                         << 
1738       done = (fNewMomentum * fGlobalNormal >= << 
1739     }                                         << 
1740                                               << 
1741   } while (!done);                            << 
1742 }                                             << 
1743                                               << 
1744 //....oooOO0OOooo........oooOO0OOooo........o << 
1745 G4double G4OpBoundaryProcess::GetReflectivity << 
1746                    G4double E1_perp,          << 
1747                    G4double E1_parl,          << 
1748                    G4double wavelength, G4dou << 
1749   G4complex Reflectivity, Reflectivity_TE, Re << 
1750   G4double gammaTL, costTL;                   << 
1751                                               << 
1752   G4complex i(0, 1);                          << 
1753   G4complex rTM, rTE;                         << 
1754   G4complex r1toTL, rTLto2;                   << 
1755   G4double k0 = 2 * pi / wavelength;          << 
1756                                               << 
1757   // Angle > Angle limit                      << 
1758   if (sinTL >= 1.0) {                         << 
1759     if (fCoatedFrustratedTransmission) { //Fr << 
1760                                               << 
1761       if (cost1 > 0.0)                        << 
1762       {                                       << 
1763         gammaTL = std::sqrt(fRindex1 * fRinde << 
1764                    fCoatedRindex * fCoatedRin << 
1765       }                                       << 
1766       else                                    << 
1767       {                                       << 
1768         gammaTL = -std::sqrt(fRindex1 * fRind << 
1769                    fCoatedRindex * fCoatedRin << 
1770       }                                       << 
1771                                               << 
1772       // TE                                   << 
1773       r1toTL = (fRindex1 * cost1 - i * gammaT << 
1774       rTLto2 = (i * gammaTL - fRindex2 * cost << 
1775       if (cost1 != 0.0)                       << 
1776       {                                       << 
1777         rTE = (r1toTL + rTLto2 * std::exp(-2  << 
1778                  (1.0 + r1toTL * rTLto2 * std << 
1779       }                                       << 
1780       // TM                                   << 
1781       r1toTL = (fRindex1 * i * gammaTL - fCoa << 
1782                   (fRindex1 * i * gammaTL + f << 
1783       rTLto2 = (fCoatedRindex * fCoatedRindex << 
1784                   (fCoatedRindex * fCoatedRin << 
1785       if (cost1 != 0.0)                       << 
1786       {                                       << 
1787         rTM = (r1toTL + rTLto2 * std::exp(-2  << 
1788                  (1.0 + r1toTL * rTLto2 * std << 
1789       }                                       << 
1790     }                                         << 
1791     else                                      << 
1792     { //Total reflection                      << 
1793       return(1.);                             << 
1794     }                                         << 
1795   }                                           << 
1796                                               << 
1797   // Angle <= Angle limit                     << 
1798   else //if (sinTL < 1.0)                     << 
1799   {                                           << 
1800     if (cost1 > 0.0)                          << 
1801     {                                         << 
1802       costTL = std::sqrt(1. - sinTL * sinTL); << 
1803     }                                         << 
1804     else                                      << 
1805     {                                         << 
1806       costTL = -std::sqrt(1. - sinTL * sinTL) << 
1807     }                                         << 
1808     // TE                                     << 
1809     r1toTL = (fRindex1 * cost1 - fCoatedRinde << 
1810     rTLto2 = (fCoatedRindex * costTL - fRinde << 
1811     if (cost1 != 0.0)                         << 
1812     {                                         << 
1813       rTE = (r1toTL + rTLto2 * std::exp(2.0 * << 
1814             (1.0 + r1toTL * rTLto2 * std::exp << 
1815     }                                         << 
1816     // TM                                     << 
1817     r1toTL = (fRindex1 * costTL - fCoatedRind << 
1818     rTLto2 = (fCoatedRindex * cost2 - fRindex << 
1819     if (cost1 != 0.0)                         << 
1820     {                                         << 
1821       rTM = (r1toTL + rTLto2 * std::exp(2.0 * << 
1822             (1.0 + r1toTL * rTLto2 * std::exp << 
1823     }                                         << 
1824   }                                           << 
1825                                               << 
1826   Reflectivity_TE = (rTE * conj(rTE)) * (E1_p << 
1827   Reflectivity_TM = (rTM * conj(rTM)) * (E1_p << 
1828   Reflectivity = Reflectivity_TE + Reflectivi << 
1829                                               << 
1830   return real(Reflectivity);                  << 
1831 }                                                1353 }
1832                                                  1354