Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // >> 27 // $Id: G4OpBoundaryProcess.hh,v 1.18 2008/11/07 17:59:37 gum Exp $ >> 28 // GEANT4 tag $Name: geant4-09-02 $ 27 // 29 // 28 // << 30 // 29 ////////////////////////////////////////////// 31 //////////////////////////////////////////////////////////////////////// 30 // Optical Photon Boundary Process Class Defin 32 // Optical Photon Boundary Process Class Definition 31 ////////////////////////////////////////////// 33 //////////////////////////////////////////////////////////////////////// 32 // 34 // 33 // File: G4OpBoundaryProcess.hh 35 // File: G4OpBoundaryProcess.hh 34 // Description: Discrete Process -- reflection 36 // Description: Discrete Process -- reflection/refraction at 35 // optical in 37 // optical interfaces 36 // Version: 1.1 38 // Version: 1.1 37 // Created: 1997-06-18 39 // Created: 1997-06-18 38 // Modified: 2005-07-28 add G4ProcessType t 40 // Modified: 2005-07-28 add G4ProcessType to constructor 39 // 1999-10-29 add method and clas 41 // 1999-10-29 add method and class descriptors 40 // 1999-10-10 - Fill NewMomentum/ << 42 // 1999-10-10 - Fill NewMomentum/NewPolarization in 41 // DoAbsorption. The 43 // DoAbsorption. These members need to be 42 // filled since DoIt << 44 // filled since DoIt calls 43 // aParticleChange.S 45 // aParticleChange.SetMomentumChange etc. 44 // upon return (than 46 // upon return (thanks to: Clark McGrew) 45 // 2006-11-04 - add capability of 47 // 2006-11-04 - add capability of calculating the reflectivity 46 // off a metal surfa 48 // off a metal surface by way of a complex index 47 // of refraction - T 49 // of refraction - Thanks to Sehwook Lee and John 48 // Hauptman (Dept. o 50 // Hauptman (Dept. of Physics - Iowa State Univ.) 49 // 2009-11-10 - add capability of << 50 // with Look-Up-Tabl << 51 // optical reflectan << 52 // treatments - Than << 53 // William Moses (La << 54 // 2013-06-01 - add the capabilit << 55 // of a dichronic fi << 56 // 2017-02-24 - add capability of << 57 // with Look-Up-Tabl << 58 // 51 // 59 // Author: Peter Gumplinger 52 // Author: Peter Gumplinger 60 // adopted from work by Werner Ke 53 // adopted from work by Werner Keil - April 2/96 >> 54 // mail: gum@triumf.ca 61 // 55 // >> 56 // CVS version tag: 62 ////////////////////////////////////////////// 57 //////////////////////////////////////////////////////////////////////// 63 58 64 #ifndef G4OpBoundaryProcess_h 59 #ifndef G4OpBoundaryProcess_h 65 #define G4OpBoundaryProcess_h 1 60 #define G4OpBoundaryProcess_h 1 66 61 67 #include "G4OpticalPhoton.hh" << 62 ///////////// 68 #include "G4OpticalSurface.hh" << 63 // Includes >> 64 ///////////// >> 65 >> 66 #include "globals.hh" >> 67 #include "templates.hh" >> 68 #include "geomdefs.hh" >> 69 #include "Randomize.hh" >> 70 69 #include "G4RandomTools.hh" 71 #include "G4RandomTools.hh" >> 72 #include "G4RandomDirection.hh" >> 73 >> 74 #include "G4Step.hh" 70 #include "G4VDiscreteProcess.hh" 75 #include "G4VDiscreteProcess.hh" >> 76 #include "G4DynamicParticle.hh" >> 77 #include "G4Material.hh" >> 78 #include "G4LogicalBorderSurface.hh" >> 79 #include "G4LogicalSkinSurface.hh" >> 80 #include "G4OpticalSurface.hh" >> 81 #include "G4OpticalPhoton.hh" >> 82 #include "G4TransportationManager.hh" 71 83 72 enum G4OpBoundaryProcessStatus << 84 // Class Description: 73 { << 85 // Discrete Process -- reflection/refraction at optical interfaces. 74 Undefined, << 86 // Class inherits publicly from G4VDiscreteProcess. 75 Transmission, << 87 // Class Description - End: 76 FresnelRefraction, << 88 77 FresnelReflection, << 89 ///////////////////// 78 TotalInternalReflection, << 90 // Class Definition 79 LambertianReflection, << 91 ///////////////////// 80 LobeReflection, << 92 81 SpikeReflection, << 93 enum G4OpBoundaryProcessStatus { Undefined, 82 BackScattering, << 94 FresnelRefraction, FresnelReflection, 83 Absorption, << 95 TotalInternalReflection, 84 Detection, << 96 LambertianReflection, LobeReflection, 85 NotAtBoundary, << 97 SpikeReflection, BackScattering, 86 SameMaterial, << 98 Absorption, Detection, NotAtBoundary, 87 StepTooSmall, << 99 SameMaterial, StepTooSmall, NoRINDEX }; 88 NoRINDEX, << 89 PolishedLumirrorAirReflection, << 90 PolishedLumirrorGlueReflection, << 91 PolishedAirReflection, << 92 PolishedTeflonAirReflection, << 93 PolishedTiOAirReflection, << 94 PolishedTyvekAirReflection, << 95 PolishedVM2000AirReflection, << 96 PolishedVM2000GlueReflection, << 97 EtchedLumirrorAirReflection, << 98 EtchedLumirrorGlueReflection, << 99 EtchedAirReflection, << 100 EtchedTeflonAirReflection, << 101 EtchedTiOAirReflection, << 102 EtchedTyvekAirReflection, << 103 EtchedVM2000AirReflection, << 104 EtchedVM2000GlueReflection, << 105 GroundLumirrorAirReflection, << 106 GroundLumirrorGlueReflection, << 107 GroundAirReflection, << 108 GroundTeflonAirReflection, << 109 GroundTiOAirReflection, << 110 GroundTyvekAirReflection, << 111 GroundVM2000AirReflection, << 112 GroundVM2000GlueReflection, << 113 Dichroic, << 114 CoatedDielectricReflection, << 115 CoatedDielectricRefraction, << 116 CoatedDielectricFrustratedTransmission << 117 }; << 118 100 119 class G4OpBoundaryProcess : public G4VDiscrete 101 class G4OpBoundaryProcess : public G4VDiscreteProcess 120 { 102 { 121 public: << 122 explicit G4OpBoundaryProcess(const G4String& << 123 G4ProcessType t << 124 virtual ~G4OpBoundaryProcess(); << 125 103 126 virtual G4bool IsApplicable( << 104 private: 127 const G4ParticleDefinition& aParticleType) << 128 // Returns true -> 'is applicable' only for << 129 105 130 virtual G4double GetMeanFreePath(const G4Tra << 106 ////////////// 131 G4ForceCond << 107 // Operators 132 // Returns infinity; i. e. the process does << 108 ////////////// 133 // 'Forced' condition for the DoIt to be inv << 134 // at a boundary will any action be taken. << 135 109 136 G4VParticleChange* PostStepDoIt(const G4Trac << 110 // G4OpBoundaryProcess& operator=(const G4OpBoundaryProcess &right); 137 const G4Step << 138 // This is the method implementing boundary << 139 111 140 virtual G4OpBoundaryProcessStatus GetStatus( << 112 // G4OpBoundaryProcess(const G4OpBoundaryProcess &right); 141 // Returns the current status. << 142 113 143 virtual void SetInvokeSD(G4bool); << 114 public: // Without description 144 // Set flag for call to InvokeSD method. << 145 115 146 virtual void PreparePhysicsTable(const G4Par << 116 //////////////////////////////// >> 117 // Constructors and Destructor >> 118 //////////////////////////////// 147 119 148 virtual void Initialise(); << 120 G4OpBoundaryProcess(const G4String& processName = "OpBoundary", >> 121 G4ProcessType type = fOptical); 149 122 150 void SetVerboseLevel(G4int); << 123 ~G4OpBoundaryProcess(); 151 124 152 private: << 125 //////////// 153 G4OpBoundaryProcess(const G4OpBoundaryProces << 126 // Methods 154 G4OpBoundaryProcess& operator=(const G4OpBou << 127 //////////// 155 128 156 G4bool G4BooleanRand(const G4double prob) co << 129 public: // With description 157 130 158 G4ThreeVector GetFacetNormal(const G4ThreeVe << 131 G4bool IsApplicable(const G4ParticleDefinition& aParticleType); 159 const G4ThreeVe << 132 // Returns true -> 'is applicable' only for an optical photon. 160 133 161 void DielectricMetal(); << 134 G4double GetMeanFreePath(const G4Track& , 162 void DielectricDielectric(); << 135 G4double , >> 136 G4ForceCondition* condition); >> 137 // Returns infinity; i. e. the process does not limit the step, >> 138 // but sets the 'Forced' condition for the DoIt to be invoked at >> 139 // every step. However, only at a boundary will any action be >> 140 // taken. 163 141 164 void DielectricLUT(); << 142 G4VParticleChange* PostStepDoIt(const G4Track& aTrack, 165 void DielectricLUTDAVIS(); << 143 const G4Step& aStep); >> 144 // This is the method implementing boundary processes. 166 145 167 void DielectricDichroic(); << 146 G4OpticalSurfaceModel GetModel() const; 168 void CoatedDielectricDielectric(); << 147 // Returns the optical surface mode. 169 148 170 void ChooseReflection(); << 149 G4OpBoundaryProcessStatus GetStatus() const; 171 void DoAbsorption(); << 150 // Returns the current status. 172 void DoReflection(); << 173 151 174 G4double GetIncidentAngle(); << 152 G4double GetIncidentAngle(); 175 // Returns the incident angle of optical pho << 153 // Returns the incident angle of optical photon 176 154 177 G4double GetReflectivity(G4double E1_perp, G << 155 G4double GetReflectivity(G4double E1_perp, 178 G4double incidentan << 156 G4double E1_parl, 179 G4double ImaginaryR << 157 G4double incidentangle, 180 // Returns the Reflectivity on a metallic su << 158 G4double RealRindex, >> 159 G4double ImaginaryRindex); >> 160 // Returns the Reflectivity on a metalic surface 181 161 182 G4double GetReflectivityThroughThinLayer(G4d << 162 void SetModel(G4OpticalSurfaceModel model); 183 G4d << 163 // Set the optical surface model to be followed 184 G4d << 164 // (glisur || unified). 185 // Returns the Reflectivity on a coated surf << 186 165 187 void CalculateReflectivity(); << 166 private: 188 167 189 void BoundaryProcessVerbose() const; << 168 G4bool G4BooleanRand(const G4double prob) const; 190 169 191 // Invoke SD for post step point if the phot << 170 G4ThreeVector GetFacetNormal(const G4ThreeVector& Momentum, 192 G4bool InvokeSD(const G4Step* step); << 171 const G4ThreeVector& Normal) const; 193 172 194 G4ThreeVector fOldMomentum; << 173 void DielectricMetal(); 195 G4ThreeVector fOldPolarization; << 174 void DielectricDielectric(); 196 175 197 G4ThreeVector fNewMomentum; << 176 void ChooseReflection(); 198 G4ThreeVector fNewPolarization; << 177 void DoAbsorption(); >> 178 void DoReflection(); 199 179 200 G4ThreeVector fGlobalNormal; << 180 private: 201 G4ThreeVector fFacetNormal; << 202 181 203 const G4Material* fMaterial1; << 182 G4double thePhotonMomentum; 204 const G4Material* fMaterial2; << 205 183 206 G4OpticalSurface* fOpticalSurface; << 184 G4ThreeVector OldMomentum; >> 185 G4ThreeVector OldPolarization; 207 186 208 G4MaterialPropertyVector* fRealRIndexMPV; << 187 G4ThreeVector NewMomentum; 209 G4MaterialPropertyVector* fImagRIndexMPV; << 188 G4ThreeVector NewPolarization; 210 G4Physics2DVector* fDichroicVector; << 211 189 212 G4double fPhotonMomentum; << 190 G4ThreeVector theGlobalNormal; 213 G4double fRindex1; << 191 G4ThreeVector theFacetNormal; 214 G4double fRindex2; << 215 192 216 G4double fSint1; << 193 G4Material* Material1; >> 194 G4Material* Material2; 217 195 218 G4double fReflectivity; << 196 G4OpticalSurface* OpticalSurface; 219 G4double fEfficiency; << 220 G4double fTransmittance; << 221 G4double fSurfaceRoughness; << 222 197 223 G4double fProb_sl, fProb_ss, fProb_bs; << 198 G4double Rindex1; 224 G4double fCarTolerance; << 199 G4double Rindex2; 225 200 226 // Used by CoatedDielectricDielectric() << 201 G4double cost1, cost2, sint1, sint2; 227 G4double fCoatedRindex, fCoatedThickness; << 228 202 229 G4OpBoundaryProcessStatus fStatus; << 203 G4OpBoundaryProcessStatus theStatus; 230 G4OpticalSurfaceModel fModel; << 231 G4OpticalSurfaceFinish fFinish; << 232 204 233 G4int f_iTE, f_iTM; << 205 G4OpticalSurfaceModel theModel; 234 206 235 G4int fNumSmallStepWarnings = 0; // number o << 207 G4OpticalSurfaceFinish theFinish; 236 G4int fNumBdryTypeWarnings = 0; // number o << 237 208 238 size_t idx_dichroicX = 0; << 209 G4double theReflectivity; 239 size_t idx_dichroicY = 0; << 210 G4double theEfficiency; 240 size_t idx_rindex1 = 0; << 211 G4double prob_sl, prob_ss, prob_bs; 241 size_t idx_rindex_surface = 0; << 242 size_t idx_reflect = 0; << 243 size_t idx_eff = 0; << 244 size_t idx_trans = 0; << 245 size_t idx_lobe = 0; << 246 size_t idx_spike = 0; << 247 size_t idx_back = 0; << 248 size_t idx_rindex2 = 0; << 249 size_t idx_groupvel = 0; << 250 size_t idx_rrindex = 0; << 251 size_t idx_irindex = 0; << 252 size_t idx_coatedrindex = 0; << 253 212 254 // Used by CoatedDielectricDielectric() << 213 G4int iTE, iTM; 255 G4bool fCoatedFrustratedTransmission = true; << 256 214 257 G4bool fInvokeSD; << 215 G4double kCarTolerance; 258 }; 216 }; 259 217 260 //////////////////// 218 //////////////////// 261 // Inline methods 219 // Inline methods 262 //////////////////// 220 //////////////////// 263 221 264 inline G4bool G4OpBoundaryProcess::G4BooleanRa << 222 inline >> 223 G4bool G4OpBoundaryProcess::G4BooleanRand(const G4double prob) const 265 { 224 { 266 // Returns a random boolean variable with th << 225 /* Returns a random boolean variable with the specified probability */ >> 226 267 return (G4UniformRand() < prob); 227 return (G4UniformRand() < prob); 268 } 228 } 269 229 270 inline G4bool G4OpBoundaryProcess::IsApplicabl << 230 inline 271 const G4ParticleDefinition& aParticleType) << 231 G4bool G4OpBoundaryProcess::IsApplicable(const G4ParticleDefinition& >> 232 aParticleType) 272 { 233 { 273 return (&aParticleType == G4OpticalPhoton::O << 234 return ( &aParticleType == G4OpticalPhoton::OpticalPhoton() ); 274 } 235 } 275 236 276 inline G4OpBoundaryProcessStatus G4OpBoundaryP << 237 inline >> 238 G4OpticalSurfaceModel G4OpBoundaryProcess::GetModel() const 277 { 239 { 278 return fStatus; << 240 return theModel; 279 } 241 } 280 242 281 inline void G4OpBoundaryProcess::ChooseReflect << 243 inline >> 244 G4OpBoundaryProcessStatus G4OpBoundaryProcess::GetStatus() const 282 { 245 { 283 G4double rand = G4UniformRand(); << 246 return theStatus; 284 if(rand < fProb_ss) << 285 { << 286 fStatus = SpikeReflection; << 287 fFacetNormal = fGlobalNormal; << 288 } << 289 else if(rand < fProb_ss + fProb_sl) << 290 { << 291 fStatus = LobeReflection; << 292 } << 293 else if(rand < fProb_ss + fProb_sl + fProb_b << 294 { << 295 fStatus = BackScattering; << 296 } << 297 else << 298 { << 299 fStatus = LambertianReflection; << 300 } << 301 } 247 } 302 248 303 inline void G4OpBoundaryProcess::DoAbsorption( << 249 inline >> 250 void G4OpBoundaryProcess::SetModel(G4OpticalSurfaceModel model) 304 { 251 { 305 fStatus = Absorption; << 252 theModel = model; >> 253 } 306 254 307 if(G4BooleanRand(fEfficiency)) << 255 inline 308 { << 256 void G4OpBoundaryProcess::ChooseReflection() 309 // EnergyDeposited =/= 0 means: photon has << 257 { 310 fStatus = Detection; << 258 G4double rand = G4UniformRand(); 311 aParticleChange.ProposeLocalEnergyDeposit( << 259 if ( rand >= 0.0 && rand < prob_ss ) { 312 } << 260 theStatus = SpikeReflection; 313 else << 261 theFacetNormal = theGlobalNormal; 314 { << 262 } 315 aParticleChange.ProposeLocalEnergyDeposit( << 263 else if ( rand >= prob_ss && 316 } << 264 rand <= prob_ss+prob_sl) { >> 265 theStatus = LobeReflection; >> 266 } >> 267 else if ( rand > prob_ss+prob_sl && >> 268 rand < prob_ss+prob_sl+prob_bs ) { >> 269 theStatus = BackScattering; >> 270 } >> 271 else { >> 272 theStatus = LambertianReflection; >> 273 } >> 274 } >> 275 >> 276 inline >> 277 void G4OpBoundaryProcess::DoAbsorption() >> 278 { >> 279 theStatus = Absorption; 317 280 318 fNewMomentum = fOldMomentum; << 281 if ( G4BooleanRand(theEfficiency) ) { 319 fNewPolarization = fOldPolarization; << 282 >> 283 // EnergyDeposited =/= 0 means: photon has been detected >> 284 theStatus = Detection; >> 285 aParticleChange.ProposeLocalEnergyDeposit(thePhotonMomentum); >> 286 } >> 287 else { >> 288 aParticleChange.ProposeLocalEnergyDeposit(0.0); >> 289 } 320 290 321 aParticleChange.ProposeTrackStatus(fStopAndK << 291 NewMomentum = OldMomentum; >> 292 NewPolarization = OldPolarization; >> 293 >> 294 // aParticleChange.ProposeEnergy(0.0); >> 295 aParticleChange.ProposeTrackStatus(fStopAndKill); 322 } 296 } 323 297 324 inline void G4OpBoundaryProcess::DoReflection( << 298 inline >> 299 void G4OpBoundaryProcess::DoReflection() 325 { 300 { 326 if(fStatus == LambertianReflection) << 301 if ( theStatus == LambertianReflection ) { 327 { << 302 328 fNewMomentum = G4LambertianRand(fGlobalNor << 303 NewMomentum = G4LambertianRand(theGlobalNormal); 329 fFacetNormal = (fNewMomentum - fOldMomentu << 304 theFacetNormal = (NewMomentum - OldMomentum).unit(); 330 } << 305 331 else if(fFinish == ground) << 306 } 332 { << 307 else if ( theFinish == ground ) { 333 fStatus = LobeReflection; << 308 334 if(!fRealRIndexMPV || !fImagRIndexMPV) << 309 theStatus = LobeReflection; 335 { << 310 theFacetNormal = GetFacetNormal(OldMomentum,theGlobalNormal); 336 fFacetNormal = GetFacetNormal(fOldMoment << 311 G4double PdotN = OldMomentum * theFacetNormal; 337 } << 312 NewMomentum = OldMomentum - (2.*PdotN)*theFacetNormal; 338 // else << 313 339 // complex ref. index to be implemented << 314 } 340 fNewMomentum = << 315 else { 341 fOldMomentum - (2. * fOldMomentum * fFac << 316 342 } << 317 theStatus = SpikeReflection; 343 else << 318 theFacetNormal = theGlobalNormal; 344 { << 319 G4double PdotN = OldMomentum * theFacetNormal; 345 fStatus = SpikeReflection; << 320 NewMomentum = OldMomentum - (2.*PdotN)*theFacetNormal; 346 fFacetNormal = fGlobalNormal; << 321 347 fNewMomentum = << 322 } 348 fOldMomentum - (2. * fOldMomentum * fFac << 323 G4double EdotN = OldPolarization * theFacetNormal; 349 } << 324 NewPolarization = -OldPolarization + (2.*EdotN)*theFacetNormal; 350 fNewPolarization = << 351 -fOldPolarization + (2. * fOldPolarization << 352 } 325 } 353 326 354 #endif /* G4OpBoundaryProcess_h */ 327 #endif /* G4OpBoundaryProcess_h */ 355 328