Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // >> 27 // $Id: G4OpBoundaryProcess.hh,v 1.16 2007/10/15 21:16:24 gum Exp $ >> 28 // GEANT4 tag $Name: geant4-09-01-patch-03 $ 27 // 29 // 28 // << 30 // 29 ////////////////////////////////////////////// 31 //////////////////////////////////////////////////////////////////////// 30 // Optical Photon Boundary Process Class Defin 32 // Optical Photon Boundary Process Class Definition 31 ////////////////////////////////////////////// 33 //////////////////////////////////////////////////////////////////////// 32 // 34 // 33 // File: G4OpBoundaryProcess.hh 35 // File: G4OpBoundaryProcess.hh 34 // Description: Discrete Process -- reflection 36 // Description: Discrete Process -- reflection/refraction at 35 // optical in 37 // optical interfaces 36 // Version: 1.1 38 // Version: 1.1 37 // Created: 1997-06-18 39 // Created: 1997-06-18 38 // Modified: 2005-07-28 add G4ProcessType t 40 // Modified: 2005-07-28 add G4ProcessType to constructor 39 // 1999-10-29 add method and clas 41 // 1999-10-29 add method and class descriptors 40 // 1999-10-10 - Fill NewMomentum/ << 42 // 1999-10-10 - Fill NewMomentum/NewPolarization in 41 // DoAbsorption. The 43 // DoAbsorption. These members need to be 42 // filled since DoIt << 44 // filled since DoIt calls 43 // aParticleChange.S 45 // aParticleChange.SetMomentumChange etc. 44 // upon return (than 46 // upon return (thanks to: Clark McGrew) 45 // 2006-11-04 - add capability of 47 // 2006-11-04 - add capability of calculating the reflectivity 46 // off a metal surfa 48 // off a metal surface by way of a complex index 47 // of refraction - T 49 // of refraction - Thanks to Sehwook Lee and John 48 // Hauptman (Dept. o 50 // Hauptman (Dept. of Physics - Iowa State Univ.) 49 // 2009-11-10 - add capability of << 50 // with Look-Up-Tabl << 51 // optical reflectan << 52 // treatments - Than << 53 // William Moses (La << 54 // 2013-06-01 - add the capabilit << 55 // of a dichronic fi << 56 // 2017-02-24 - add capability of << 57 // with Look-Up-Tabl << 58 // 51 // 59 // Author: Peter Gumplinger 52 // Author: Peter Gumplinger 60 // adopted from work by Werner Ke 53 // adopted from work by Werner Keil - April 2/96 >> 54 // mail: gum@triumf.ca 61 // 55 // >> 56 // CVS version tag: 62 ////////////////////////////////////////////// 57 //////////////////////////////////////////////////////////////////////// 63 58 64 #ifndef G4OpBoundaryProcess_h 59 #ifndef G4OpBoundaryProcess_h 65 #define G4OpBoundaryProcess_h 1 60 #define G4OpBoundaryProcess_h 1 66 61 67 #include "G4OpticalPhoton.hh" << 62 ///////////// 68 #include "G4OpticalSurface.hh" << 63 // Includes 69 #include "G4RandomTools.hh" << 64 ///////////// >> 65 >> 66 #include "globals.hh" >> 67 #include "templates.hh" >> 68 #include "geomdefs.hh" >> 69 #include "Randomize.hh" >> 70 #include "G4Step.hh" 70 #include "G4VDiscreteProcess.hh" 71 #include "G4VDiscreteProcess.hh" >> 72 #include "G4DynamicParticle.hh" >> 73 #include "G4Material.hh" >> 74 #include "G4LogicalBorderSurface.hh" >> 75 #include "G4LogicalSkinSurface.hh" >> 76 #include "G4OpticalSurface.hh" >> 77 #include "G4OpticalPhoton.hh" >> 78 #include "G4TransportationManager.hh" 71 79 72 enum G4OpBoundaryProcessStatus << 80 // Class Description: 73 { << 81 // Discrete Process -- reflection/refraction at optical interfaces. 74 Undefined, << 82 // Class inherits publicly from G4VDiscreteProcess. 75 Transmission, << 83 // Class Description - End: 76 FresnelRefraction, << 84 77 FresnelReflection, << 85 ///////////////////// 78 TotalInternalReflection, << 86 // Class Definition 79 LambertianReflection, << 87 ///////////////////// 80 LobeReflection, << 88 81 SpikeReflection, << 89 enum G4OpBoundaryProcessStatus { Undefined, 82 BackScattering, << 90 FresnelRefraction, FresnelReflection, 83 Absorption, << 91 TotalInternalReflection, 84 Detection, << 92 LambertianReflection, LobeReflection, 85 NotAtBoundary, << 93 SpikeReflection, BackScattering, 86 SameMaterial, << 94 Absorption, Detection, NotAtBoundary, 87 StepTooSmall, << 95 SameMaterial, StepTooSmall, NoRINDEX }; 88 NoRINDEX, << 89 PolishedLumirrorAirReflection, << 90 PolishedLumirrorGlueReflection, << 91 PolishedAirReflection, << 92 PolishedTeflonAirReflection, << 93 PolishedTiOAirReflection, << 94 PolishedTyvekAirReflection, << 95 PolishedVM2000AirReflection, << 96 PolishedVM2000GlueReflection, << 97 EtchedLumirrorAirReflection, << 98 EtchedLumirrorGlueReflection, << 99 EtchedAirReflection, << 100 EtchedTeflonAirReflection, << 101 EtchedTiOAirReflection, << 102 EtchedTyvekAirReflection, << 103 EtchedVM2000AirReflection, << 104 EtchedVM2000GlueReflection, << 105 GroundLumirrorAirReflection, << 106 GroundLumirrorGlueReflection, << 107 GroundAirReflection, << 108 GroundTeflonAirReflection, << 109 GroundTiOAirReflection, << 110 GroundTyvekAirReflection, << 111 GroundVM2000AirReflection, << 112 GroundVM2000GlueReflection, << 113 Dichroic, << 114 CoatedDielectricReflection, << 115 CoatedDielectricRefraction, << 116 CoatedDielectricFrustratedTransmission << 117 }; << 118 96 119 class G4OpBoundaryProcess : public G4VDiscrete 97 class G4OpBoundaryProcess : public G4VDiscreteProcess 120 { 98 { 121 public: << 122 explicit G4OpBoundaryProcess(const G4String& << 123 G4ProcessType t << 124 virtual ~G4OpBoundaryProcess(); << 125 99 126 virtual G4bool IsApplicable( << 100 private: 127 const G4ParticleDefinition& aParticleType) << 101 128 // Returns true -> 'is applicable' only for << 102 ////////////// >> 103 // Operators >> 104 ////////////// >> 105 >> 106 // G4OpBoundaryProcess& operator=(const G4OpBoundaryProcess &right); >> 107 >> 108 // G4OpBoundaryProcess(const G4OpBoundaryProcess &right); 129 109 130 virtual G4double GetMeanFreePath(const G4Tra << 110 public: // Without description 131 G4ForceCond << 132 // Returns infinity; i. e. the process does << 133 // 'Forced' condition for the DoIt to be inv << 134 // at a boundary will any action be taken. << 135 111 136 G4VParticleChange* PostStepDoIt(const G4Trac << 112 //////////////////////////////// 137 const G4Step << 113 // Constructors and Destructor 138 // This is the method implementing boundary << 114 //////////////////////////////// 139 115 140 virtual G4OpBoundaryProcessStatus GetStatus( << 116 G4OpBoundaryProcess(const G4String& processName = "OpBoundary", 141 // Returns the current status. << 117 G4ProcessType type = fOptical); 142 118 143 virtual void SetInvokeSD(G4bool); << 119 ~G4OpBoundaryProcess(); 144 // Set flag for call to InvokeSD method. << 145 120 146 virtual void PreparePhysicsTable(const G4Par << 121 //////////// >> 122 // Methods >> 123 //////////// 147 124 148 virtual void Initialise(); << 125 public: // With description 149 126 150 void SetVerboseLevel(G4int); << 127 G4bool IsApplicable(const G4ParticleDefinition& aParticleType); >> 128 // Returns true -> 'is applicable' only for an optical photon. 151 129 152 private: << 130 G4double GetMeanFreePath(const G4Track& , 153 G4OpBoundaryProcess(const G4OpBoundaryProces << 131 G4double , 154 G4OpBoundaryProcess& operator=(const G4OpBou << 132 G4ForceCondition* condition); >> 133 // Returns infinity; i. e. the process does not limit the step, >> 134 // but sets the 'Forced' condition for the DoIt to be invoked at >> 135 // every step. However, only at a boundary will any action be >> 136 // taken. 155 137 156 G4bool G4BooleanRand(const G4double prob) co << 138 G4VParticleChange* PostStepDoIt(const G4Track& aTrack, >> 139 const G4Step& aStep); >> 140 // This is the method implementing boundary processes. 157 141 158 G4ThreeVector GetFacetNormal(const G4ThreeVe << 142 G4OpticalSurfaceModel GetModel() const; 159 const G4ThreeVe << 143 // Returns the optical surface mode. 160 144 161 void DielectricMetal(); << 145 G4OpBoundaryProcessStatus GetStatus() const; 162 void DielectricDielectric(); << 146 // Returns the current status. 163 147 164 void DielectricLUT(); << 148 G4double GetIncidentAngle(); 165 void DielectricLUTDAVIS(); << 149 // Returns the incident angle of optical photon 166 150 167 void DielectricDichroic(); << 151 G4double GetReflectivity(G4double E1_perp, 168 void CoatedDielectricDielectric(); << 152 G4double E1_parl, >> 153 G4double incidentangle, >> 154 G4double RealRindex, >> 155 G4double ImaginaryRindex); >> 156 // Returns the Reflectivity on a metalic surface 169 157 170 void ChooseReflection(); << 158 void SetModel(G4OpticalSurfaceModel model); 171 void DoAbsorption(); << 159 // Set the optical surface model to be followed 172 void DoReflection(); << 160 // (glisur || unified). 173 161 174 G4double GetIncidentAngle(); << 162 private: 175 // Returns the incident angle of optical pho << 176 163 177 G4double GetReflectivity(G4double E1_perp, G << 164 void G4Swap(G4double* a, G4double* b) const; 178 G4double incidentan << 179 G4double ImaginaryR << 180 // Returns the Reflectivity on a metallic su << 181 165 182 G4double GetReflectivityThroughThinLayer(G4d << 166 void G4Swap(G4Material* a, G4Material* b) const; 183 G4d << 184 G4d << 185 // Returns the Reflectivity on a coated surf << 186 167 187 void CalculateReflectivity(); << 168 void G4VectorSwap(G4ThreeVector* vec1, G4ThreeVector* vec2) const; 188 169 189 void BoundaryProcessVerbose() const; << 170 G4bool G4BooleanRand(const G4double prob) const; 190 171 191 // Invoke SD for post step point if the phot << 172 G4ThreeVector G4IsotropicRand() const; 192 G4bool InvokeSD(const G4Step* step); << 193 173 194 G4ThreeVector fOldMomentum; << 174 G4ThreeVector G4LambertianRand(const G4ThreeVector& normal); 195 G4ThreeVector fOldPolarization; << 196 175 197 G4ThreeVector fNewMomentum; << 176 G4ThreeVector G4PlaneVectorRand(const G4ThreeVector& normal) const; 198 G4ThreeVector fNewPolarization; << 199 177 200 G4ThreeVector fGlobalNormal; << 178 G4ThreeVector GetFacetNormal(const G4ThreeVector& Momentum, 201 G4ThreeVector fFacetNormal; << 179 const G4ThreeVector& Normal) const; 202 180 203 const G4Material* fMaterial1; << 181 void DielectricMetal(); 204 const G4Material* fMaterial2; << 182 void DielectricDielectric(); 205 183 206 G4OpticalSurface* fOpticalSurface; << 184 void ChooseReflection(); >> 185 void DoAbsorption(); >> 186 void DoReflection(); 207 187 208 G4MaterialPropertyVector* fRealRIndexMPV; << 188 private: 209 G4MaterialPropertyVector* fImagRIndexMPV; << 210 G4Physics2DVector* fDichroicVector; << 211 189 212 G4double fPhotonMomentum; << 190 G4double thePhotonMomentum; 213 G4double fRindex1; << 214 G4double fRindex2; << 215 191 216 G4double fSint1; << 192 G4ThreeVector OldMomentum; >> 193 G4ThreeVector OldPolarization; 217 194 218 G4double fReflectivity; << 195 G4ThreeVector NewMomentum; 219 G4double fEfficiency; << 196 G4ThreeVector NewPolarization; 220 G4double fTransmittance; << 221 G4double fSurfaceRoughness; << 222 197 223 G4double fProb_sl, fProb_ss, fProb_bs; << 198 G4ThreeVector theGlobalNormal; 224 G4double fCarTolerance; << 199 G4ThreeVector theFacetNormal; 225 200 226 // Used by CoatedDielectricDielectric() << 201 G4Material* Material1; 227 G4double fCoatedRindex, fCoatedThickness; << 202 G4Material* Material2; 228 203 229 G4OpBoundaryProcessStatus fStatus; << 204 G4OpticalSurface* OpticalSurface; 230 G4OpticalSurfaceModel fModel; << 231 G4OpticalSurfaceFinish fFinish; << 232 205 233 G4int f_iTE, f_iTM; << 206 G4double Rindex1; >> 207 G4double Rindex2; 234 208 235 G4int fNumSmallStepWarnings = 0; // number o << 209 G4double cost1, cost2, sint1, sint2; 236 G4int fNumBdryTypeWarnings = 0; // number o << 237 210 238 size_t idx_dichroicX = 0; << 211 G4OpBoundaryProcessStatus theStatus; 239 size_t idx_dichroicY = 0; << 240 size_t idx_rindex1 = 0; << 241 size_t idx_rindex_surface = 0; << 242 size_t idx_reflect = 0; << 243 size_t idx_eff = 0; << 244 size_t idx_trans = 0; << 245 size_t idx_lobe = 0; << 246 size_t idx_spike = 0; << 247 size_t idx_back = 0; << 248 size_t idx_rindex2 = 0; << 249 size_t idx_groupvel = 0; << 250 size_t idx_rrindex = 0; << 251 size_t idx_irindex = 0; << 252 size_t idx_coatedrindex = 0; << 253 212 254 // Used by CoatedDielectricDielectric() << 213 G4OpticalSurfaceModel theModel; 255 G4bool fCoatedFrustratedTransmission = true; << 256 214 257 G4bool fInvokeSD; << 215 G4OpticalSurfaceFinish theFinish; >> 216 >> 217 G4double theReflectivity; >> 218 G4double theEfficiency; >> 219 G4double prob_sl, prob_ss, prob_bs; >> 220 >> 221 G4int iTE, iTM; >> 222 >> 223 G4double kCarTolerance; 258 }; 224 }; 259 225 260 //////////////////// 226 //////////////////// 261 // Inline methods 227 // Inline methods 262 //////////////////// 228 //////////////////// 263 229 264 inline G4bool G4OpBoundaryProcess::G4BooleanRa << 230 inline >> 231 void G4OpBoundaryProcess::G4Swap(G4double* a, G4double* b) const 265 { 232 { 266 // Returns a random boolean variable with th << 233 // swaps the contents of the objects pointed >> 234 // to by 'a' and 'b'! >> 235 >> 236 G4double temp; >> 237 >> 238 temp = *a; >> 239 *a = *b; >> 240 *b = temp; >> 241 } >> 242 >> 243 inline >> 244 void G4OpBoundaryProcess::G4Swap(G4Material* a, G4Material* b) const >> 245 { >> 246 // ONLY swaps the pointers; i.e. what used to be pointed >> 247 // to by 'a' is now pointed to by 'b' and vice versa! >> 248 >> 249 G4Material* temp = a; >> 250 >> 251 a = b; >> 252 b = temp; >> 253 } >> 254 >> 255 inline >> 256 void G4OpBoundaryProcess::G4VectorSwap(G4ThreeVector* vec1, >> 257 G4ThreeVector* vec2) const >> 258 { >> 259 // swaps the contents of the objects pointed >> 260 // to by 'vec1' and 'vec2'! >> 261 >> 262 G4ThreeVector temp; >> 263 >> 264 temp = *vec1; >> 265 *vec1 = *vec2; >> 266 *vec2 = temp; >> 267 } >> 268 >> 269 inline >> 270 G4bool G4OpBoundaryProcess::G4BooleanRand(const G4double prob) const >> 271 { >> 272 /* Returns a random boolean variable with the specified probability */ >> 273 267 return (G4UniformRand() < prob); 274 return (G4UniformRand() < prob); 268 } 275 } 269 276 270 inline G4bool G4OpBoundaryProcess::IsApplicabl << 277 inline 271 const G4ParticleDefinition& aParticleType) << 278 G4ThreeVector G4OpBoundaryProcess::G4IsotropicRand() const 272 { 279 { 273 return (&aParticleType == G4OpticalPhoton::O << 280 /* Returns a random isotropic unit vector. */ >> 281 >> 282 G4ThreeVector vect; >> 283 G4double len2; >> 284 >> 285 do { >> 286 >> 287 vect.setX(G4UniformRand() - 0.5); >> 288 vect.setY(G4UniformRand() - 0.5); >> 289 vect.setZ(G4UniformRand() - 0.5); >> 290 >> 291 len2 = vect.mag2(); >> 292 >> 293 } while (len2 < 0.01 || len2 > 0.25); >> 294 >> 295 return vect.unit(); 274 } 296 } 275 297 276 inline G4OpBoundaryProcessStatus G4OpBoundaryP << 298 inline >> 299 G4ThreeVector G4OpBoundaryProcess:: >> 300 G4LambertianRand(const G4ThreeVector& normal) 277 { 301 { 278 return fStatus; << 302 /* Returns a random lambertian unit vector. */ 279 } << 303 280 << 304 G4ThreeVector vect; 281 inline void G4OpBoundaryProcess::ChooseReflect << 305 G4double ndotv; 282 { << 306 283 G4double rand = G4UniformRand(); << 307 do { 284 if(rand < fProb_ss) << 308 vect = G4IsotropicRand(); 285 { << 309 286 fStatus = SpikeReflection; << 310 ndotv = normal * vect; 287 fFacetNormal = fGlobalNormal; << 311 288 } << 312 if (ndotv < 0.0) { 289 else if(rand < fProb_ss + fProb_sl) << 313 vect = -vect; 290 { << 314 ndotv = -ndotv; 291 fStatus = LobeReflection; << 292 } << 293 else if(rand < fProb_ss + fProb_sl + fProb_b << 294 { << 295 fStatus = BackScattering; << 296 } << 297 else << 298 { << 299 fStatus = LambertianReflection; << 300 } << 301 } << 302 << 303 inline void G4OpBoundaryProcess::DoAbsorption( << 304 { << 305 fStatus = Absorption; << 306 << 307 if(G4BooleanRand(fEfficiency)) << 308 { << 309 // EnergyDeposited =/= 0 means: photon has << 310 fStatus = Detection; << 311 aParticleChange.ProposeLocalEnergyDeposit( << 312 } << 313 else << 314 { << 315 aParticleChange.ProposeLocalEnergyDeposit( << 316 } << 317 << 318 fNewMomentum = fOldMomentum; << 319 fNewPolarization = fOldPolarization; << 320 << 321 aParticleChange.ProposeTrackStatus(fStopAndK << 322 } << 323 << 324 inline void G4OpBoundaryProcess::DoReflection( << 325 { << 326 if(fStatus == LambertianReflection) << 327 { << 328 fNewMomentum = G4LambertianRand(fGlobalNor << 329 fFacetNormal = (fNewMomentum - fOldMomentu << 330 } << 331 else if(fFinish == ground) << 332 { << 333 fStatus = LobeReflection; << 334 if(!fRealRIndexMPV || !fImagRIndexMPV) << 335 { << 336 fFacetNormal = GetFacetNormal(fOldMoment << 337 } 315 } 338 // else << 316 339 // complex ref. index to be implemented << 317 } while (!G4BooleanRand(ndotv)); 340 fNewMomentum = << 318 return vect; 341 fOldMomentum - (2. * fOldMomentum * fFac << 319 } 342 } << 320 343 else << 321 inline 344 { << 322 G4ThreeVector G4OpBoundaryProcess:: 345 fStatus = SpikeReflection; << 323 G4PlaneVectorRand(const G4ThreeVector& normal) const 346 fFacetNormal = fGlobalNormal; << 324 347 fNewMomentum = << 325 /* This function chooses a random vector within a plane given 348 fOldMomentum - (2. * fOldMomentum * fFac << 326 by the unit normal */ 349 } << 327 { 350 fNewPolarization = << 328 G4ThreeVector vec1 = normal.orthogonal(); 351 -fOldPolarization + (2. * fOldPolarization << 329 >> 330 G4ThreeVector vec2 = vec1.cross(normal); >> 331 >> 332 G4double phi = twopi*G4UniformRand(); >> 333 G4double cosphi = std::cos(phi); >> 334 G4double sinphi = std::sin(phi); >> 335 >> 336 return cosphi * vec1 + sinphi * vec2; >> 337 } >> 338 >> 339 inline >> 340 G4bool G4OpBoundaryProcess::IsApplicable(const G4ParticleDefinition& >> 341 aParticleType) >> 342 { >> 343 return ( &aParticleType == G4OpticalPhoton::OpticalPhoton() ); >> 344 } >> 345 >> 346 inline >> 347 G4OpticalSurfaceModel G4OpBoundaryProcess::GetModel() const >> 348 { >> 349 return theModel; >> 350 } >> 351 >> 352 inline >> 353 G4OpBoundaryProcessStatus G4OpBoundaryProcess::GetStatus() const >> 354 { >> 355 return theStatus; >> 356 } >> 357 >> 358 inline >> 359 void G4OpBoundaryProcess::SetModel(G4OpticalSurfaceModel model) >> 360 { >> 361 theModel = model; >> 362 } >> 363 >> 364 inline >> 365 void G4OpBoundaryProcess::ChooseReflection() >> 366 { >> 367 G4double rand = G4UniformRand(); >> 368 if ( rand >= 0.0 && rand < prob_ss ) { >> 369 theStatus = SpikeReflection; >> 370 theFacetNormal = theGlobalNormal; >> 371 } >> 372 else if ( rand >= prob_ss && >> 373 rand <= prob_ss+prob_sl) { >> 374 theStatus = LobeReflection; >> 375 } >> 376 else if ( rand > prob_ss+prob_sl && >> 377 rand < prob_ss+prob_sl+prob_bs ) { >> 378 theStatus = BackScattering; >> 379 } >> 380 else { >> 381 theStatus = LambertianReflection; >> 382 } >> 383 } >> 384 >> 385 inline >> 386 void G4OpBoundaryProcess::DoAbsorption() >> 387 { >> 388 theStatus = Absorption; >> 389 >> 390 if ( G4BooleanRand(theEfficiency) ) { >> 391 >> 392 // EnergyDeposited =/= 0 means: photon has been detected >> 393 theStatus = Detection; >> 394 aParticleChange.ProposeLocalEnergyDeposit(thePhotonMomentum); >> 395 } >> 396 else { >> 397 aParticleChange.ProposeLocalEnergyDeposit(0.0); >> 398 } >> 399 >> 400 NewMomentum = OldMomentum; >> 401 NewPolarization = OldPolarization; >> 402 >> 403 // aParticleChange.ProposeEnergy(0.0); >> 404 aParticleChange.ProposeTrackStatus(fStopAndKill); >> 405 } >> 406 >> 407 inline >> 408 void G4OpBoundaryProcess::DoReflection() >> 409 { >> 410 if ( theStatus == LambertianReflection ) { >> 411 >> 412 NewMomentum = G4LambertianRand(theGlobalNormal); >> 413 theFacetNormal = (NewMomentum - OldMomentum).unit(); >> 414 >> 415 } >> 416 else if ( theFinish == ground ) { >> 417 >> 418 theStatus = LobeReflection; >> 419 theFacetNormal = GetFacetNormal(OldMomentum,theGlobalNormal); >> 420 G4double PdotN = OldMomentum * theFacetNormal; >> 421 NewMomentum = OldMomentum - (2.*PdotN)*theFacetNormal; >> 422 >> 423 } >> 424 else { >> 425 >> 426 theStatus = SpikeReflection; >> 427 theFacetNormal = theGlobalNormal; >> 428 G4double PdotN = OldMomentum * theFacetNormal; >> 429 NewMomentum = OldMomentum - (2.*PdotN)*theFacetNormal; >> 430 >> 431 } >> 432 G4double EdotN = OldPolarization * theFacetNormal; >> 433 NewPolarization = -OldPolarization + (2.*EdotN)*theFacetNormal; 352 } 434 } 353 435 354 #endif /* G4OpBoundaryProcess_h */ 436 #endif /* G4OpBoundaryProcess_h */ 355 437