Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // 26 // 23 // >> 24 // $Id: G4OpBoundaryProcess.hh,v 1.10 2004/09/27 22:31:47 gum Exp $ >> 25 // GEANT4 tag $Name: op-V06-02-02 $ 27 // 26 // 28 // << 27 // 29 ////////////////////////////////////////////// 28 //////////////////////////////////////////////////////////////////////// 30 // Optical Photon Boundary Process Class Defin 29 // Optical Photon Boundary Process Class Definition 31 ////////////////////////////////////////////// 30 //////////////////////////////////////////////////////////////////////// 32 // 31 // 33 // File: G4OpBoundaryProcess.hh 32 // File: G4OpBoundaryProcess.hh 34 // Description: Discrete Process -- reflection 33 // Description: Discrete Process -- reflection/refraction at 35 // optical in 34 // optical interfaces 36 // Version: 1.1 35 // Version: 1.1 37 // Created: 1997-06-18 36 // Created: 1997-06-18 38 // Modified: 2005-07-28 add G4ProcessType t << 37 // Modified: 1999-10-29 add method and class descriptors 39 // 1999-10-29 add method and clas << 38 // 1999-10-10 - Fill NewMomentum/NewPolarization in 40 // 1999-10-10 - Fill NewMomentum/ << 41 // DoAbsorption. The 39 // DoAbsorption. These members need to be 42 // filled since DoIt << 40 // filled since DoIt calls 43 // aParticleChange.S 41 // aParticleChange.SetMomentumChange etc. 44 // upon return (than 42 // upon return (thanks to: Clark McGrew) 45 // 2006-11-04 - add capability of << 46 // off a metal surfa << 47 // of refraction - T << 48 // Hauptman (Dept. o << 49 // 2009-11-10 - add capability of << 50 // with Look-Up-Tabl << 51 // optical reflectan << 52 // treatments - Than << 53 // William Moses (La << 54 // 2013-06-01 - add the capabilit << 55 // of a dichronic fi << 56 // 2017-02-24 - add capability of << 57 // with Look-Up-Tabl << 58 // 43 // 59 // Author: Peter Gumplinger 44 // Author: Peter Gumplinger 60 // adopted from work by Werner Ke 45 // adopted from work by Werner Keil - April 2/96 >> 46 // mail: gum@triumf.ca 61 // 47 // >> 48 // CVS version tag: 62 ////////////////////////////////////////////// 49 //////////////////////////////////////////////////////////////////////// 63 50 64 #ifndef G4OpBoundaryProcess_h 51 #ifndef G4OpBoundaryProcess_h 65 #define G4OpBoundaryProcess_h 1 52 #define G4OpBoundaryProcess_h 1 66 53 67 #include "G4OpticalPhoton.hh" << 54 ///////////// 68 #include "G4OpticalSurface.hh" << 55 // Includes 69 #include "G4RandomTools.hh" << 56 ///////////// >> 57 >> 58 #include "globals.hh" >> 59 #include "templates.hh" >> 60 #include "geomdefs.hh" >> 61 #include "Randomize.hh" >> 62 #include "G4Step.hh" 70 #include "G4VDiscreteProcess.hh" 63 #include "G4VDiscreteProcess.hh" >> 64 #include "G4DynamicParticle.hh" >> 65 #include "G4Material.hh" >> 66 #include "G4LogicalBorderSurface.hh" >> 67 #include "G4LogicalSkinSurface.hh" >> 68 #include "G4OpticalSurface.hh" >> 69 #include "G4OpticalPhoton.hh" >> 70 #include "G4TransportationManager.hh" 71 71 72 enum G4OpBoundaryProcessStatus << 72 // Class Description: 73 { << 73 // Discrete Process -- reflection/refraction at optical interfaces. 74 Undefined, << 74 // Class inherits publicly from G4VDiscreteProcess. 75 Transmission, << 75 // Class Description - End: 76 FresnelRefraction, << 76 77 FresnelReflection, << 77 ///////////////////// 78 TotalInternalReflection, << 78 // Class Definition 79 LambertianReflection, << 79 ///////////////////// 80 LobeReflection, << 80 81 SpikeReflection, << 81 enum G4OpBoundaryProcessStatus { Undefined, 82 BackScattering, << 82 FresnelRefraction, FresnelReflection, 83 Absorption, << 83 TotalInternalReflection, 84 Detection, << 84 LambertianReflection, LobeReflection, 85 NotAtBoundary, << 85 SpikeReflection, BackScattering, 86 SameMaterial, << 86 Absorption, Detection, NotAtBoundary, 87 StepTooSmall, << 87 SameMaterial, StepTooSmall, NoRINDEX }; 88 NoRINDEX, << 89 PolishedLumirrorAirReflection, << 90 PolishedLumirrorGlueReflection, << 91 PolishedAirReflection, << 92 PolishedTeflonAirReflection, << 93 PolishedTiOAirReflection, << 94 PolishedTyvekAirReflection, << 95 PolishedVM2000AirReflection, << 96 PolishedVM2000GlueReflection, << 97 EtchedLumirrorAirReflection, << 98 EtchedLumirrorGlueReflection, << 99 EtchedAirReflection, << 100 EtchedTeflonAirReflection, << 101 EtchedTiOAirReflection, << 102 EtchedTyvekAirReflection, << 103 EtchedVM2000AirReflection, << 104 EtchedVM2000GlueReflection, << 105 GroundLumirrorAirReflection, << 106 GroundLumirrorGlueReflection, << 107 GroundAirReflection, << 108 GroundTeflonAirReflection, << 109 GroundTiOAirReflection, << 110 GroundTyvekAirReflection, << 111 GroundVM2000AirReflection, << 112 GroundVM2000GlueReflection, << 113 Dichroic, << 114 CoatedDielectricReflection, << 115 CoatedDielectricRefraction, << 116 CoatedDielectricFrustratedTransmission << 117 }; << 118 88 119 class G4OpBoundaryProcess : public G4VDiscrete << 89 class G4OpBoundaryProcess : public G4VDiscreteProcess 120 { 90 { 121 public: << 122 explicit G4OpBoundaryProcess(const G4String& << 123 G4ProcessType t << 124 virtual ~G4OpBoundaryProcess(); << 125 91 126 virtual G4bool IsApplicable( << 92 private: 127 const G4ParticleDefinition& aParticleType) << 93 128 // Returns true -> 'is applicable' only for << 94 ////////////// >> 95 // Operators >> 96 ////////////// >> 97 >> 98 // G4OpBoundaryProcess& operator=(const G4OpBoundaryProcess &right); 129 99 130 virtual G4double GetMeanFreePath(const G4Tra << 100 // G4OpBoundaryProcess(const G4OpBoundaryProcess &right); 131 G4ForceCond << 132 // Returns infinity; i. e. the process does << 133 // 'Forced' condition for the DoIt to be inv << 134 // at a boundary will any action be taken. << 135 101 136 G4VParticleChange* PostStepDoIt(const G4Trac << 102 public: // Without description 137 const G4Step << 138 // This is the method implementing boundary << 139 103 140 virtual G4OpBoundaryProcessStatus GetStatus( << 104 //////////////////////////////// 141 // Returns the current status. << 105 // Constructors and Destructor >> 106 //////////////////////////////// 142 107 143 virtual void SetInvokeSD(G4bool); << 108 G4OpBoundaryProcess(const G4String& processName = "OpBoundary"); 144 // Set flag for call to InvokeSD method. << 145 109 146 virtual void PreparePhysicsTable(const G4Par << 110 ~G4OpBoundaryProcess(); 147 111 148 virtual void Initialise(); << 112 //////////// >> 113 // Methods >> 114 //////////// 149 115 150 void SetVerboseLevel(G4int); << 116 public: // With description 151 117 152 private: << 118 G4bool IsApplicable(const G4ParticleDefinition& aParticleType); 153 G4OpBoundaryProcess(const G4OpBoundaryProces << 119 // Returns true -> 'is applicable' only for an optical photon. 154 G4OpBoundaryProcess& operator=(const G4OpBou << 155 120 156 G4bool G4BooleanRand(const G4double prob) co << 121 G4double GetMeanFreePath(const G4Track& , >> 122 G4double , >> 123 G4ForceCondition* condition); >> 124 // Returns infinity; i. e. the process does not limit the step, >> 125 // but sets the 'Forced' condition for the DoIt to be invoked at >> 126 // every step. However, only at a boundary will any action be >> 127 // taken. 157 128 158 G4ThreeVector GetFacetNormal(const G4ThreeVe << 129 G4VParticleChange* PostStepDoIt(const G4Track& aTrack, 159 const G4ThreeVe << 130 const G4Step& aStep); >> 131 // This is the method implementing boundary processes. 160 132 161 void DielectricMetal(); << 133 G4OpticalSurfaceModel GetModel() const; 162 void DielectricDielectric(); << 134 // Returns the optical surface mode. 163 135 164 void DielectricLUT(); << 136 G4OpBoundaryProcessStatus GetStatus() const; 165 void DielectricLUTDAVIS(); << 137 // Returns the current status. 166 138 167 void DielectricDichroic(); << 139 void SetModel(G4OpticalSurfaceModel model); 168 void CoatedDielectricDielectric(); << 140 // Set the optical surface model to be followed >> 141 // (glisur || unified). 169 142 170 void ChooseReflection(); << 143 private: 171 void DoAbsorption(); << 172 void DoReflection(); << 173 144 174 G4double GetIncidentAngle(); << 145 void G4Swap(G4double* a, G4double* b) const; 175 // Returns the incident angle of optical pho << 176 146 177 G4double GetReflectivity(G4double E1_perp, G << 147 void G4Swap(G4Material* a, G4Material* b) const; 178 G4double incidentan << 179 G4double ImaginaryR << 180 // Returns the Reflectivity on a metallic su << 181 148 182 G4double GetReflectivityThroughThinLayer(G4d << 149 void G4VectorSwap(G4ThreeVector* vec1, G4ThreeVector* vec2) const; 183 G4d << 184 G4d << 185 // Returns the Reflectivity on a coated surf << 186 150 187 void CalculateReflectivity(); << 151 G4bool G4BooleanRand(const G4double prob) const; 188 152 189 void BoundaryProcessVerbose() const; << 153 G4ThreeVector G4IsotropicRand() const; 190 154 191 // Invoke SD for post step point if the phot << 155 G4ThreeVector G4LambertianRand(const G4ThreeVector& normal); 192 G4bool InvokeSD(const G4Step* step); << 193 156 194 G4ThreeVector fOldMomentum; << 157 G4ThreeVector G4PlaneVectorRand(const G4ThreeVector& normal) const; 195 G4ThreeVector fOldPolarization; << 196 158 197 G4ThreeVector fNewMomentum; << 159 G4ThreeVector GetFacetNormal(const G4ThreeVector& Momentum, 198 G4ThreeVector fNewPolarization; << 160 const G4ThreeVector& Normal) const; 199 161 200 G4ThreeVector fGlobalNormal; << 162 void DielectricMetal(); 201 G4ThreeVector fFacetNormal; << 163 void DielectricDielectric(); 202 164 203 const G4Material* fMaterial1; << 165 void ChooseReflection(); 204 const G4Material* fMaterial2; << 166 void DoAbsorption(); >> 167 void DoReflection(); 205 168 206 G4OpticalSurface* fOpticalSurface; << 169 private: 207 170 208 G4MaterialPropertyVector* fRealRIndexMPV; << 171 G4double thePhotonMomentum; 209 G4MaterialPropertyVector* fImagRIndexMPV; << 210 G4Physics2DVector* fDichroicVector; << 211 172 212 G4double fPhotonMomentum; << 173 G4ThreeVector OldMomentum; 213 G4double fRindex1; << 174 G4ThreeVector OldPolarization; 214 G4double fRindex2; << 215 175 216 G4double fSint1; << 176 G4ThreeVector NewMomentum; >> 177 G4ThreeVector NewPolarization; 217 178 218 G4double fReflectivity; << 179 G4ThreeVector theGlobalNormal; 219 G4double fEfficiency; << 180 G4ThreeVector theFacetNormal; 220 G4double fTransmittance; << 221 G4double fSurfaceRoughness; << 222 181 223 G4double fProb_sl, fProb_ss, fProb_bs; << 182 G4Material* Material1; 224 G4double fCarTolerance; << 183 G4Material* Material2; 225 184 226 // Used by CoatedDielectricDielectric() << 185 G4OpticalSurface* OpticalSurface; 227 G4double fCoatedRindex, fCoatedThickness; << 228 186 229 G4OpBoundaryProcessStatus fStatus; << 187 G4double Rindex1; 230 G4OpticalSurfaceModel fModel; << 188 G4double Rindex2; 231 G4OpticalSurfaceFinish fFinish; << 232 189 233 G4int f_iTE, f_iTM; << 190 G4double cost1, cost2, sint1, sint2; 234 191 235 G4int fNumSmallStepWarnings = 0; // number o << 192 G4OpBoundaryProcessStatus theStatus; 236 G4int fNumBdryTypeWarnings = 0; // number o << 237 193 238 size_t idx_dichroicX = 0; << 194 G4OpticalSurfaceModel theModel; 239 size_t idx_dichroicY = 0; << 240 size_t idx_rindex1 = 0; << 241 size_t idx_rindex_surface = 0; << 242 size_t idx_reflect = 0; << 243 size_t idx_eff = 0; << 244 size_t idx_trans = 0; << 245 size_t idx_lobe = 0; << 246 size_t idx_spike = 0; << 247 size_t idx_back = 0; << 248 size_t idx_rindex2 = 0; << 249 size_t idx_groupvel = 0; << 250 size_t idx_rrindex = 0; << 251 size_t idx_irindex = 0; << 252 size_t idx_coatedrindex = 0; << 253 195 254 // Used by CoatedDielectricDielectric() << 196 G4OpticalSurfaceFinish theFinish; 255 G4bool fCoatedFrustratedTransmission = true; << 197 >> 198 G4double theReflectivity; >> 199 G4double theEfficiency; >> 200 G4double prob_sl, prob_ss, prob_bs; 256 201 257 G4bool fInvokeSD; << 258 }; 202 }; 259 203 260 //////////////////// 204 //////////////////// 261 // Inline methods 205 // Inline methods 262 //////////////////// 206 //////////////////// 263 207 264 inline G4bool G4OpBoundaryProcess::G4BooleanRa << 208 inline >> 209 void G4OpBoundaryProcess::G4Swap(G4double* a, G4double* b) const >> 210 { >> 211 // swaps the contents of the objects pointed >> 212 // to by 'a' and 'b'! >> 213 >> 214 G4double temp; >> 215 >> 216 temp = *a; >> 217 *a = *b; >> 218 *b = temp; >> 219 } >> 220 >> 221 inline >> 222 void G4OpBoundaryProcess::G4Swap(G4Material* a, G4Material* b) const >> 223 { >> 224 // ONLY swaps the pointers; i.e. what used to be pointed >> 225 // to by 'a' is now pointed to by 'b' and vice versa! >> 226 >> 227 G4Material* temp = a; >> 228 >> 229 a = b; >> 230 b = temp; >> 231 } >> 232 >> 233 inline >> 234 void G4OpBoundaryProcess::G4VectorSwap(G4ThreeVector* vec1, >> 235 G4ThreeVector* vec2) const 265 { 236 { 266 // Returns a random boolean variable with th << 237 // swaps the contents of the objects pointed >> 238 // to by 'vec1' and 'vec2'! >> 239 >> 240 G4ThreeVector temp; >> 241 >> 242 temp = *vec1; >> 243 *vec1 = *vec2; >> 244 *vec2 = temp; >> 245 } >> 246 >> 247 inline >> 248 G4bool G4OpBoundaryProcess::G4BooleanRand(const G4double prob) const >> 249 { >> 250 /* Returns a random boolean variable with the specified probability */ >> 251 267 return (G4UniformRand() < prob); 252 return (G4UniformRand() < prob); 268 } 253 } 269 254 270 inline G4bool G4OpBoundaryProcess::IsApplicabl << 255 inline 271 const G4ParticleDefinition& aParticleType) << 256 G4ThreeVector G4OpBoundaryProcess::G4IsotropicRand() const 272 { 257 { 273 return (&aParticleType == G4OpticalPhoton::O << 258 /* Returns a random isotropic unit vector. */ >> 259 >> 260 G4ThreeVector vect; >> 261 G4double len2; >> 262 >> 263 do { >> 264 >> 265 vect.setX(G4UniformRand() - 0.5); >> 266 vect.setY(G4UniformRand() - 0.5); >> 267 vect.setZ(G4UniformRand() - 0.5); >> 268 >> 269 len2 = vect.mag2(); >> 270 >> 271 } while (len2 < 0.01 || len2 > 0.25); >> 272 >> 273 return vect.unit(); 274 } 274 } 275 275 276 inline G4OpBoundaryProcessStatus G4OpBoundaryP << 276 inline >> 277 G4ThreeVector G4OpBoundaryProcess:: >> 278 G4LambertianRand(const G4ThreeVector& normal) 277 { 279 { 278 return fStatus; << 280 /* Returns a random lambertian unit vector. */ 279 } << 281 280 << 282 G4ThreeVector vect; 281 inline void G4OpBoundaryProcess::ChooseReflect << 283 G4double ndotv; 282 { << 284 283 G4double rand = G4UniformRand(); << 285 do { 284 if(rand < fProb_ss) << 286 vect = G4IsotropicRand(); 285 { << 287 286 fStatus = SpikeReflection; << 288 ndotv = normal * vect; 287 fFacetNormal = fGlobalNormal; << 289 288 } << 290 if (ndotv < 0.0) { 289 else if(rand < fProb_ss + fProb_sl) << 291 vect = -vect; 290 { << 292 ndotv = -ndotv; 291 fStatus = LobeReflection; << 292 } << 293 else if(rand < fProb_ss + fProb_sl + fProb_b << 294 { << 295 fStatus = BackScattering; << 296 } << 297 else << 298 { << 299 fStatus = LambertianReflection; << 300 } << 301 } << 302 << 303 inline void G4OpBoundaryProcess::DoAbsorption( << 304 { << 305 fStatus = Absorption; << 306 << 307 if(G4BooleanRand(fEfficiency)) << 308 { << 309 // EnergyDeposited =/= 0 means: photon has << 310 fStatus = Detection; << 311 aParticleChange.ProposeLocalEnergyDeposit( << 312 } << 313 else << 314 { << 315 aParticleChange.ProposeLocalEnergyDeposit( << 316 } << 317 << 318 fNewMomentum = fOldMomentum; << 319 fNewPolarization = fOldPolarization; << 320 << 321 aParticleChange.ProposeTrackStatus(fStopAndK << 322 } << 323 << 324 inline void G4OpBoundaryProcess::DoReflection( << 325 { << 326 if(fStatus == LambertianReflection) << 327 { << 328 fNewMomentum = G4LambertianRand(fGlobalNor << 329 fFacetNormal = (fNewMomentum - fOldMomentu << 330 } << 331 else if(fFinish == ground) << 332 { << 333 fStatus = LobeReflection; << 334 if(!fRealRIndexMPV || !fImagRIndexMPV) << 335 { << 336 fFacetNormal = GetFacetNormal(fOldMoment << 337 } 293 } 338 // else << 294 339 // complex ref. index to be implemented << 295 } while (!G4BooleanRand(ndotv)); 340 fNewMomentum = << 296 return vect; 341 fOldMomentum - (2. * fOldMomentum * fFac << 297 } 342 } << 298 343 else << 299 inline 344 { << 300 G4ThreeVector G4OpBoundaryProcess:: 345 fStatus = SpikeReflection; << 301 G4PlaneVectorRand(const G4ThreeVector& normal) const 346 fFacetNormal = fGlobalNormal; << 302 347 fNewMomentum = << 303 /* This function chooses a random vector within a plane given 348 fOldMomentum - (2. * fOldMomentum * fFac << 304 by the unit normal */ 349 } << 305 { 350 fNewPolarization = << 306 G4ThreeVector vec1 = normal.orthogonal(); 351 -fOldPolarization + (2. * fOldPolarization << 307 >> 308 G4ThreeVector vec2 = vec1.cross(normal); >> 309 >> 310 G4double phi = twopi*G4UniformRand(); >> 311 G4double cosphi = cos(phi); >> 312 G4double sinphi = sin(phi); >> 313 >> 314 return cosphi * vec1 + sinphi * vec2; >> 315 } >> 316 >> 317 inline >> 318 G4bool G4OpBoundaryProcess::IsApplicable(const G4ParticleDefinition& >> 319 aParticleType) >> 320 { >> 321 return ( &aParticleType == G4OpticalPhoton::OpticalPhoton() ); >> 322 } >> 323 >> 324 inline >> 325 G4OpticalSurfaceModel G4OpBoundaryProcess::GetModel() const >> 326 { >> 327 return theModel; >> 328 } >> 329 >> 330 inline >> 331 G4OpBoundaryProcessStatus G4OpBoundaryProcess::GetStatus() const >> 332 { >> 333 return theStatus; >> 334 } >> 335 >> 336 inline >> 337 void G4OpBoundaryProcess::SetModel(G4OpticalSurfaceModel model) >> 338 { >> 339 theModel = model; >> 340 } >> 341 >> 342 inline >> 343 void G4OpBoundaryProcess::ChooseReflection() >> 344 { >> 345 G4double rand = G4UniformRand(); >> 346 if ( rand >= 0.0 && rand < prob_ss ) { >> 347 theStatus = SpikeReflection; >> 348 theFacetNormal = theGlobalNormal; >> 349 } >> 350 else if ( rand >= prob_ss && >> 351 rand <= prob_ss+prob_sl) { >> 352 theStatus = LobeReflection; >> 353 } >> 354 else if ( rand > prob_ss+prob_sl && >> 355 rand < prob_ss+prob_sl+prob_bs ) { >> 356 theStatus = BackScattering; >> 357 } >> 358 else { >> 359 theStatus = LambertianReflection; >> 360 } >> 361 } >> 362 >> 363 inline >> 364 void G4OpBoundaryProcess::DoAbsorption() >> 365 { >> 366 theStatus = Absorption; >> 367 >> 368 if ( G4BooleanRand(theEfficiency) ) { >> 369 >> 370 // EnergyDeposited =/= 0 means: photon has been detected >> 371 theStatus = Detection; >> 372 aParticleChange.SetLocalEnergyDeposit(thePhotonMomentum); >> 373 } >> 374 else { >> 375 aParticleChange.SetLocalEnergyDeposit(0.0); >> 376 } >> 377 >> 378 NewMomentum = OldMomentum; >> 379 NewPolarization = OldPolarization; >> 380 >> 381 // aParticleChange.SetEnergyChange(0.0); >> 382 aParticleChange.SetStatusChange(fStopAndKill); >> 383 } >> 384 >> 385 inline >> 386 void G4OpBoundaryProcess::DoReflection() >> 387 { >> 388 if ( theStatus == LambertianReflection ) { >> 389 >> 390 NewMomentum = G4LambertianRand(theGlobalNormal); >> 391 theFacetNormal = (NewMomentum - OldMomentum).unit(); >> 392 >> 393 } >> 394 else if ( theFinish == ground ) { >> 395 >> 396 theStatus = LobeReflection; >> 397 theFacetNormal = GetFacetNormal(OldMomentum,theGlobalNormal); >> 398 G4double PdotN = OldMomentum * theFacetNormal; >> 399 NewMomentum = OldMomentum - (2.*PdotN)*theFacetNormal; >> 400 >> 401 } >> 402 else { >> 403 >> 404 theStatus = SpikeReflection; >> 405 theFacetNormal = theGlobalNormal; >> 406 G4double PdotN = OldMomentum * theFacetNormal; >> 407 NewMomentum = OldMomentum - (2.*PdotN)*theFacetNormal; >> 408 >> 409 } >> 410 G4double EdotN = OldPolarization * theFacetNormal; >> 411 NewPolarization = -OldPolarization + (2.*EdotN)*theFacetNormal; 352 } 412 } 353 413 354 #endif /* G4OpBoundaryProcess_h */ 414 #endif /* G4OpBoundaryProcess_h */ 355 415