Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // 27 // 27 // 28 // << 28 // 29 ////////////////////////////////////////////// 29 //////////////////////////////////////////////////////////////////////// 30 // Optical Photon Boundary Process Class Defin 30 // Optical Photon Boundary Process Class Definition 31 ////////////////////////////////////////////// 31 //////////////////////////////////////////////////////////////////////// 32 // 32 // 33 // File: G4OpBoundaryProcess.hh 33 // File: G4OpBoundaryProcess.hh 34 // Description: Discrete Process -- reflection 34 // Description: Discrete Process -- reflection/refraction at 35 // optical in 35 // optical interfaces 36 // Version: 1.1 36 // Version: 1.1 37 // Created: 1997-06-18 37 // Created: 1997-06-18 38 // Modified: 2005-07-28 add G4ProcessType t 38 // Modified: 2005-07-28 add G4ProcessType to constructor 39 // 1999-10-29 add method and clas 39 // 1999-10-29 add method and class descriptors 40 // 1999-10-10 - Fill NewMomentum/ << 40 // 1999-10-10 - Fill NewMomentum/NewPolarization in 41 // DoAbsorption. The 41 // DoAbsorption. These members need to be 42 // filled since DoIt << 42 // filled since DoIt calls 43 // aParticleChange.S 43 // aParticleChange.SetMomentumChange etc. 44 // upon return (than 44 // upon return (thanks to: Clark McGrew) 45 // 2006-11-04 - add capability of 45 // 2006-11-04 - add capability of calculating the reflectivity 46 // off a metal surfa 46 // off a metal surface by way of a complex index 47 // of refraction - T 47 // of refraction - Thanks to Sehwook Lee and John 48 // Hauptman (Dept. o 48 // Hauptman (Dept. of Physics - Iowa State Univ.) 49 // 2009-11-10 - add capability of 49 // 2009-11-10 - add capability of simulating surface reflections 50 // with Look-Up-Tabl 50 // with Look-Up-Tables (LUT) containing measured 51 // optical reflectan 51 // optical reflectance for a variety of surface 52 // treatments - Than 52 // treatments - Thanks to Martin Janecek and 53 // William Moses (La 53 // William Moses (Lawrence Berkeley National Lab.) 54 // 2013-06-01 - add the capabilit 54 // 2013-06-01 - add the capability of simulating the transmission 55 // of a dichronic fi 55 // of a dichronic filter 56 // 2017-02-24 - add capability of 56 // 2017-02-24 - add capability of simulating surface reflections 57 // with Look-Up-Tabl 57 // with Look-Up-Tables (LUT) developed in DAVIS 58 // 58 // 59 // Author: Peter Gumplinger 59 // Author: Peter Gumplinger 60 // adopted from work by Werner Ke 60 // adopted from work by Werner Keil - April 2/96 >> 61 // mail: gum@triumf.ca 61 // 62 // 62 ////////////////////////////////////////////// 63 //////////////////////////////////////////////////////////////////////// 63 64 64 #ifndef G4OpBoundaryProcess_h 65 #ifndef G4OpBoundaryProcess_h 65 #define G4OpBoundaryProcess_h 1 66 #define G4OpBoundaryProcess_h 1 66 67 67 #include "G4OpticalPhoton.hh" << 68 #include "globals.hh" 68 #include "G4OpticalSurface.hh" << 69 #include "templates.hh" >> 70 #include "geomdefs.hh" >> 71 #include "Randomize.hh" >> 72 69 #include "G4RandomTools.hh" 73 #include "G4RandomTools.hh" >> 74 #include "G4RandomDirection.hh" >> 75 >> 76 #include "G4Step.hh" 70 #include "G4VDiscreteProcess.hh" 77 #include "G4VDiscreteProcess.hh" >> 78 #include "G4DynamicParticle.hh" >> 79 #include "G4Material.hh" >> 80 #include "G4LogicalBorderSurface.hh" >> 81 #include "G4LogicalSkinSurface.hh" >> 82 #include "G4OpticalSurface.hh" >> 83 #include "G4OpticalPhoton.hh" >> 84 #include "G4TransportationManager.hh" 71 85 72 enum G4OpBoundaryProcessStatus << 86 // Class Description: 73 { << 87 // Discrete Process -- reflection/refraction at optical interfaces. 74 Undefined, << 88 // Class inherits publicly from G4VDiscreteProcess. 75 Transmission, << 89 // Class Description - End: 76 FresnelRefraction, << 90 77 FresnelReflection, << 91 enum G4OpBoundaryProcessStatus { Undefined, 78 TotalInternalReflection, << 92 Transmission, FresnelRefraction, 79 LambertianReflection, << 93 FresnelReflection, TotalInternalReflection, 80 LobeReflection, << 94 LambertianReflection, LobeReflection, 81 SpikeReflection, << 95 SpikeReflection, BackScattering, 82 BackScattering, << 96 Absorption, Detection, NotAtBoundary, 83 Absorption, << 97 SameMaterial, StepTooSmall, NoRINDEX, 84 Detection, << 98 PolishedLumirrorAirReflection, 85 NotAtBoundary, << 99 PolishedLumirrorGlueReflection, 86 SameMaterial, << 100 PolishedAirReflection, 87 StepTooSmall, << 101 PolishedTeflonAirReflection, 88 NoRINDEX, << 102 PolishedTiOAirReflection, 89 PolishedLumirrorAirReflection, << 103 PolishedTyvekAirReflection, 90 PolishedLumirrorGlueReflection, << 104 PolishedVM2000AirReflection, 91 PolishedAirReflection, << 105 PolishedVM2000GlueReflection, 92 PolishedTeflonAirReflection, << 106 EtchedLumirrorAirReflection, 93 PolishedTiOAirReflection, << 107 EtchedLumirrorGlueReflection, 94 PolishedTyvekAirReflection, << 108 EtchedAirReflection, 95 PolishedVM2000AirReflection, << 109 EtchedTeflonAirReflection, 96 PolishedVM2000GlueReflection, << 110 EtchedTiOAirReflection, 97 EtchedLumirrorAirReflection, << 111 EtchedTyvekAirReflection, 98 EtchedLumirrorGlueReflection, << 112 EtchedVM2000AirReflection, 99 EtchedAirReflection, << 113 EtchedVM2000GlueReflection, 100 EtchedTeflonAirReflection, << 114 GroundLumirrorAirReflection, 101 EtchedTiOAirReflection, << 115 GroundLumirrorGlueReflection, 102 EtchedTyvekAirReflection, << 116 GroundAirReflection, 103 EtchedVM2000AirReflection, << 117 GroundTeflonAirReflection, 104 EtchedVM2000GlueReflection, << 118 GroundTiOAirReflection, 105 GroundLumirrorAirReflection, << 119 GroundTyvekAirReflection, 106 GroundLumirrorGlueReflection, << 120 GroundVM2000AirReflection, 107 GroundAirReflection, << 121 GroundVM2000GlueReflection, 108 GroundTeflonAirReflection, << 122 Dichroic }; 109 GroundTiOAirReflection, << 110 GroundTyvekAirReflection, << 111 GroundVM2000AirReflection, << 112 GroundVM2000GlueReflection, << 113 Dichroic, << 114 CoatedDielectricReflection, << 115 CoatedDielectricRefraction, << 116 CoatedDielectricFrustratedTransmission << 117 }; << 118 123 119 class G4OpBoundaryProcess : public G4VDiscrete 124 class G4OpBoundaryProcess : public G4VDiscreteProcess 120 { 125 { 121 public: << 126 >> 127 public: >> 128 122 explicit G4OpBoundaryProcess(const G4String& 129 explicit G4OpBoundaryProcess(const G4String& processName = "OpBoundary", 123 G4ProcessType t << 130 G4ProcessType type = fOptical); 124 virtual ~G4OpBoundaryProcess(); 131 virtual ~G4OpBoundaryProcess(); 125 132 126 virtual G4bool IsApplicable( << 133 virtual G4bool IsApplicable(const G4ParticleDefinition& aParticleType) override; 127 const G4ParticleDefinition& aParticleType) << 128 // Returns true -> 'is applicable' only for 134 // Returns true -> 'is applicable' only for an optical photon. 129 135 130 virtual G4double GetMeanFreePath(const G4Tra << 136 virtual G4double GetMeanFreePath(const G4Track&, G4double, G4ForceCondition* condition) override; 131 G4ForceCond << 137 // Returns infinity; i. e. the process does not limit the step, 132 // Returns infinity; i. e. the process does << 138 // but sets the 'Forced' condition for the DoIt to be invoked at 133 // 'Forced' condition for the DoIt to be inv << 139 // every step. However, only at a boundary will any action be 134 // at a boundary will any action be taken. << 140 // taken. 135 141 136 G4VParticleChange* PostStepDoIt(const G4Trac 142 G4VParticleChange* PostStepDoIt(const G4Track& aTrack, 137 const G4Step << 143 const G4Step& aStep) override; 138 // This is the method implementing boundary 144 // This is the method implementing boundary processes. 139 145 140 virtual G4OpBoundaryProcessStatus GetStatus( 146 virtual G4OpBoundaryProcessStatus GetStatus() const; 141 // Returns the current status. 147 // Returns the current status. 142 148 143 virtual void SetInvokeSD(G4bool); 149 virtual void SetInvokeSD(G4bool); 144 // Set flag for call to InvokeSD method. 150 // Set flag for call to InvokeSD method. 145 151 146 virtual void PreparePhysicsTable(const G4Par << 152 private: 147 153 148 virtual void Initialise(); << 154 G4OpBoundaryProcess(const G4OpBoundaryProcess &right) = delete; 149 << 155 G4OpBoundaryProcess& operator=(const G4OpBoundaryProcess &right) = delete; 150 void SetVerboseLevel(G4int); << 151 << 152 private: << 153 G4OpBoundaryProcess(const G4OpBoundaryProces << 154 G4OpBoundaryProcess& operator=(const G4OpBou << 155 156 156 G4bool G4BooleanRand(const G4double prob) co 157 G4bool G4BooleanRand(const G4double prob) const; 157 158 158 G4ThreeVector GetFacetNormal(const G4ThreeVe 159 G4ThreeVector GetFacetNormal(const G4ThreeVector& Momentum, 159 const G4ThreeVe << 160 const G4ThreeVector& Normal) const; 160 161 161 void DielectricMetal(); 162 void DielectricMetal(); 162 void DielectricDielectric(); 163 void DielectricDielectric(); 163 164 164 void DielectricLUT(); 165 void DielectricLUT(); 165 void DielectricLUTDAVIS(); 166 void DielectricLUTDAVIS(); 166 167 167 void DielectricDichroic(); 168 void DielectricDichroic(); 168 void CoatedDielectricDielectric(); << 169 169 170 void ChooseReflection(); 170 void ChooseReflection(); 171 void DoAbsorption(); 171 void DoAbsorption(); 172 void DoReflection(); 172 void DoReflection(); 173 173 174 G4double GetIncidentAngle(); 174 G4double GetIncidentAngle(); 175 // Returns the incident angle of optical pho 175 // Returns the incident angle of optical photon 176 176 177 G4double GetReflectivity(G4double E1_perp, G << 177 G4double GetReflectivity(G4double E1_perp, 178 G4double incidentan << 178 G4double E1_parl, >> 179 G4double incidentangle, >> 180 G4double RealRindex, 179 G4double ImaginaryR 181 G4double ImaginaryRindex); 180 // Returns the Reflectivity on a metallic su << 182 // Returns the Reflectivity on a metalic surface 181 << 182 G4double GetReflectivityThroughThinLayer(G4d << 183 G4d << 184 G4d << 185 // Returns the Reflectivity on a coated surf << 186 183 187 void CalculateReflectivity(); << 184 void CalculateReflectivity(void); 188 185 189 void BoundaryProcessVerbose() const; << 186 void BoundaryProcessVerbose(void) const; 190 187 191 // Invoke SD for post step point if the phot 188 // Invoke SD for post step point if the photon is 'detected' 192 G4bool InvokeSD(const G4Step* step); 189 G4bool InvokeSD(const G4Step* step); 193 190 194 G4ThreeVector fOldMomentum; << 191 G4double thePhotonMomentum; 195 G4ThreeVector fOldPolarization; << 196 192 197 G4ThreeVector fNewMomentum; << 193 G4ThreeVector OldMomentum; 198 G4ThreeVector fNewPolarization; << 194 G4ThreeVector OldPolarization; 199 195 200 G4ThreeVector fGlobalNormal; << 196 G4ThreeVector NewMomentum; 201 G4ThreeVector fFacetNormal; << 197 G4ThreeVector NewPolarization; 202 198 203 const G4Material* fMaterial1; << 199 G4ThreeVector theGlobalNormal; 204 const G4Material* fMaterial2; << 200 G4ThreeVector theFacetNormal; 205 201 206 G4OpticalSurface* fOpticalSurface; << 202 G4Material* Material1; >> 203 G4Material* Material2; >> 204 >> 205 G4OpticalSurface* OpticalSurface; 207 206 208 G4MaterialPropertyVector* fRealRIndexMPV; 207 G4MaterialPropertyVector* fRealRIndexMPV; 209 G4MaterialPropertyVector* fImagRIndexMPV; 208 G4MaterialPropertyVector* fImagRIndexMPV; 210 G4Physics2DVector* fDichroicVector; << 211 209 212 G4double fPhotonMomentum; << 210 G4double Rindex1; 213 G4double fRindex1; << 211 G4double Rindex2; 214 G4double fRindex2; << 212 215 << 213 G4double cost1, cost2, sint1, sint2; 216 G4double fSint1; << 214 217 << 215 G4OpBoundaryProcessStatus theStatus; 218 G4double fReflectivity; << 216 219 G4double fEfficiency; << 217 G4OpticalSurfaceModel theModel; 220 G4double fTransmittance; << 218 221 G4double fSurfaceRoughness; << 219 G4OpticalSurfaceFinish theFinish; 222 << 220 223 G4double fProb_sl, fProb_ss, fProb_bs; << 221 G4double theReflectivity; 224 G4double fCarTolerance; << 222 G4double theEfficiency; 225 << 223 G4double theTransmittance; 226 // Used by CoatedDielectricDielectric() << 224 227 G4double fCoatedRindex, fCoatedThickness; << 225 G4double theSurfaceRoughness; 228 << 229 G4OpBoundaryProcessStatus fStatus; << 230 G4OpticalSurfaceModel fModel; << 231 G4OpticalSurfaceFinish fFinish; << 232 << 233 G4int f_iTE, f_iTM; << 234 << 235 G4int fNumSmallStepWarnings = 0; // number o << 236 G4int fNumBdryTypeWarnings = 0; // number o << 237 << 238 size_t idx_dichroicX = 0; << 239 size_t idx_dichroicY = 0; << 240 size_t idx_rindex1 = 0; << 241 size_t idx_rindex_surface = 0; << 242 size_t idx_reflect = 0; << 243 size_t idx_eff = 0; << 244 size_t idx_trans = 0; << 245 size_t idx_lobe = 0; << 246 size_t idx_spike = 0; << 247 size_t idx_back = 0; << 248 size_t idx_rindex2 = 0; << 249 size_t idx_groupvel = 0; << 250 size_t idx_rrindex = 0; << 251 size_t idx_irindex = 0; << 252 size_t idx_coatedrindex = 0; << 253 226 254 // Used by CoatedDielectricDielectric() << 227 G4double prob_sl, prob_ss, prob_bs; 255 G4bool fCoatedFrustratedTransmission = true; << 228 >> 229 G4int iTE, iTM; >> 230 >> 231 G4double kCarTolerance; >> 232 >> 233 size_t idx, idy; >> 234 G4Physics2DVector* DichroicVector; 256 235 257 G4bool fInvokeSD; 236 G4bool fInvokeSD; 258 }; 237 }; 259 238 260 //////////////////// 239 //////////////////// 261 // Inline methods 240 // Inline methods 262 //////////////////// 241 //////////////////// 263 242 264 inline G4bool G4OpBoundaryProcess::G4BooleanRa << 243 inline >> 244 G4bool G4OpBoundaryProcess::G4BooleanRand(const G4double prob) const 265 { 245 { 266 // Returns a random boolean variable with th << 246 /* Returns a random boolean variable with the specified probability */ 267 return (G4UniformRand() < prob); 247 return (G4UniformRand() < prob); 268 } 248 } 269 249 270 inline G4bool G4OpBoundaryProcess::IsApplicabl << 250 inline 271 const G4ParticleDefinition& aParticleType) << 251 G4bool G4OpBoundaryProcess::IsApplicable(const G4ParticleDefinition& >> 252 aParticleType) 272 { 253 { 273 return (&aParticleType == G4OpticalPhoton::O 254 return (&aParticleType == G4OpticalPhoton::OpticalPhoton()); 274 } 255 } 275 256 276 inline G4OpBoundaryProcessStatus G4OpBoundaryP << 257 inline >> 258 G4OpBoundaryProcessStatus G4OpBoundaryProcess::GetStatus() const >> 259 { >> 260 return theStatus; >> 261 } >> 262 >> 263 inline >> 264 void G4OpBoundaryProcess::SetInvokeSD(G4bool flag) 277 { 265 { 278 return fStatus; << 266 fInvokeSD = flag; 279 } 267 } 280 268 281 inline void G4OpBoundaryProcess::ChooseReflect << 269 inline >> 270 void G4OpBoundaryProcess::ChooseReflection() 282 { 271 { 283 G4double rand = G4UniformRand(); 272 G4double rand = G4UniformRand(); 284 if(rand < fProb_ss) << 273 if (rand >= 0.0 && rand < prob_ss) { 285 { << 274 theStatus = SpikeReflection; 286 fStatus = SpikeReflection; << 275 theFacetNormal = theGlobalNormal; 287 fFacetNormal = fGlobalNormal; << 288 } 276 } 289 else if(rand < fProb_ss + fProb_sl) << 277 else if ( rand >= prob_ss && rand <= prob_ss+prob_sl) { 290 { << 278 theStatus = LobeReflection; 291 fStatus = LobeReflection; << 292 } 279 } 293 else if(rand < fProb_ss + fProb_sl + fProb_b << 280 else if ( rand > prob_ss+prob_sl && rand < prob_ss+prob_sl+prob_bs ) { 294 { << 281 theStatus = BackScattering; 295 fStatus = BackScattering; << 296 } 282 } 297 else << 283 else { 298 { << 284 theStatus = LambertianReflection; 299 fStatus = LambertianReflection; << 300 } 285 } 301 } 286 } 302 287 303 inline void G4OpBoundaryProcess::DoAbsorption( << 288 inline >> 289 void G4OpBoundaryProcess::DoAbsorption() 304 { 290 { 305 fStatus = Absorption; << 291 theStatus = Absorption; 306 292 307 if(G4BooleanRand(fEfficiency)) << 293 if (G4BooleanRand(theEfficiency)) { 308 { << 309 // EnergyDeposited =/= 0 means: photon has 294 // EnergyDeposited =/= 0 means: photon has been detected 310 fStatus = Detection; << 295 theStatus = Detection; 311 aParticleChange.ProposeLocalEnergyDeposit( << 296 aParticleChange.ProposeLocalEnergyDeposit(thePhotonMomentum); 312 } 297 } 313 else << 298 else { 314 { << 315 aParticleChange.ProposeLocalEnergyDeposit( 299 aParticleChange.ProposeLocalEnergyDeposit(0.0); 316 } 300 } 317 301 318 fNewMomentum = fOldMomentum; << 302 NewMomentum = OldMomentum; 319 fNewPolarization = fOldPolarization; << 303 NewPolarization = OldPolarization; 320 304 321 aParticleChange.ProposeTrackStatus(fStopAndK 305 aParticleChange.ProposeTrackStatus(fStopAndKill); 322 } 306 } 323 307 324 inline void G4OpBoundaryProcess::DoReflection( << 308 inline >> 309 void G4OpBoundaryProcess::DoReflection() 325 { 310 { 326 if(fStatus == LambertianReflection) << 311 if (theStatus == LambertianReflection) { 327 { << 312 NewMomentum = G4LambertianRand(theGlobalNormal); 328 fNewMomentum = G4LambertianRand(fGlobalNor << 313 theFacetNormal = (NewMomentum - OldMomentum).unit(); 329 fFacetNormal = (fNewMomentum - fOldMomentu << 330 } 314 } 331 else if(fFinish == ground) << 315 else if (theFinish == ground) { 332 { << 316 theStatus = LobeReflection; 333 fStatus = LobeReflection; << 317 if (fRealRIndexMPV && fImagRIndexMPV) { 334 if(!fRealRIndexMPV || !fImagRIndexMPV) << 318 // 335 { << 319 } else { 336 fFacetNormal = GetFacetNormal(fOldMoment << 320 theFacetNormal = GetFacetNormal(OldMomentum,theGlobalNormal); 337 } 321 } 338 // else << 322 G4double PdotN = OldMomentum * theFacetNormal; 339 // complex ref. index to be implemented << 323 NewMomentum = OldMomentum - (2.*PdotN)*theFacetNormal; 340 fNewMomentum = << 341 fOldMomentum - (2. * fOldMomentum * fFac << 342 } 324 } 343 else << 325 else { 344 { << 326 theStatus = SpikeReflection; 345 fStatus = SpikeReflection; << 327 theFacetNormal = theGlobalNormal; 346 fFacetNormal = fGlobalNormal; << 328 G4double PdotN = OldMomentum * theFacetNormal; 347 fNewMomentum = << 329 NewMomentum = OldMomentum - (2.*PdotN)*theFacetNormal; 348 fOldMomentum - (2. * fOldMomentum * fFac << 349 } 330 } 350 fNewPolarization = << 331 G4double EdotN = OldPolarization * theFacetNormal; 351 -fOldPolarization + (2. * fOldPolarization << 332 NewPolarization = -OldPolarization + (2.*EdotN)*theFacetNormal; 352 } 333 } 353 334 354 #endif /* G4OpBoundaryProcess_h */ 335 #endif /* G4OpBoundaryProcess_h */ 355 336