Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/radioactive_decay/src/G4ECDecay.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/hadronic/models/radioactive_decay/src/G4ECDecay.cc (Version 11.3.0) and /processes/hadronic/models/radioactive_decay/src/G4ECDecay.cc (Version 10.3.p3)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 //////////////////////////////////////////////     26 ////////////////////////////////////////////////////////////////////////////////
 27 //                                                 27 //                                                                            //
 28 //  File:   G4ECDecay.cc                           28 //  File:   G4ECDecay.cc                                                      //
 29 //  Author: D.H. Wright (SLAC)                     29 //  Author: D.H. Wright (SLAC)                                                //
 30 //  Date:   25 November 2014                       30 //  Date:   25 November 2014                                                  //
 31 //                                                 31 //                                                                            //
 32 //////////////////////////////////////////////     32 ////////////////////////////////////////////////////////////////////////////////
 33                                                    33 
 34 #include "G4ECDecay.hh"                            34 #include "G4ECDecay.hh"
 35 #include "G4IonTable.hh"                           35 #include "G4IonTable.hh"
 36 #include "Randomize.hh"                            36 #include "Randomize.hh"
 37 #include "G4ThreeVector.hh"                        37 #include "G4ThreeVector.hh"
 38 #include "G4DynamicParticle.hh"                    38 #include "G4DynamicParticle.hh"
 39 #include "G4DecayProducts.hh"                      39 #include "G4DecayProducts.hh"
 40 #include "G4VAtomDeexcitation.hh"                  40 #include "G4VAtomDeexcitation.hh"
 41 #include "G4AtomicShells.hh"                       41 #include "G4AtomicShells.hh"
 42 #include "G4Electron.hh"                           42 #include "G4Electron.hh"
 43 #include "G4LossTableManager.hh"                   43 #include "G4LossTableManager.hh"
 44 #include "G4PhysicalConstants.hh"                  44 #include "G4PhysicalConstants.hh"
 45 #include "G4SystemOfUnits.hh"                      45 #include "G4SystemOfUnits.hh"
 46                                                    46 
 47 G4ECDecay::G4ECDecay(const G4ParticleDefinitio     47 G4ECDecay::G4ECDecay(const G4ParticleDefinition* theParentNucleus,
 48                      const G4double& branch, c     48                      const G4double& branch, const G4double& Qvalue,
 49                      const G4double& excitatio     49                      const G4double& excitationE,
 50                      const G4Ions::G4FloatLeve     50                      const G4Ions::G4FloatLevelBase& flb,
 51                      const G4RadioactiveDecayM     51                      const G4RadioactiveDecayMode& mode)
 52  : G4NuclearDecay("electron capture", mode, ex     52  : G4NuclearDecay("electron capture", mode, excitationE, flb), transitionQ(Qvalue),
 53    applyARM(true)                                  53    applyARM(true)
 54 {                                                  54 {
 55   SetParent(theParentNucleus);  // Store name      55   SetParent(theParentNucleus);  // Store name of parent nucleus, delete G4MT_parent 
 56   SetBR(branch);                                   56   SetBR(branch);
 57                                                    57 
 58   SetNumberOfDaughters(2);                         58   SetNumberOfDaughters(2);
 59   G4IonTable* theIonTable =                        59   G4IonTable* theIonTable =
 60     (G4IonTable*)(G4ParticleTable::GetParticle     60     (G4IonTable*)(G4ParticleTable::GetParticleTable()->GetIonTable());
 61   G4int daughterZ = theParentNucleus->GetAtomi     61   G4int daughterZ = theParentNucleus->GetAtomicNumber() - 1;
 62   G4int daughterA = theParentNucleus->GetAtomi     62   G4int daughterA = theParentNucleus->GetAtomicMass(); 
 63   SetDaughter(0, theIonTable->GetIon(daughterZ     63   SetDaughter(0, theIonTable->GetIon(daughterZ, daughterA, excitationE, flb) );
 64   SetDaughter(1, "nu_e");                          64   SetDaughter(1, "nu_e");
 65   DefineSubshellProbabilities(daughterZ, daugh << 
 66 }                                                  65 }
 67                                                    66 
 68                                                    67 
 69 G4ECDecay::~G4ECDecay()                            68 G4ECDecay::~G4ECDecay()
 70 {}                                                 69 {}
 71                                                    70 
 72                                                    71 
 73 G4DecayProducts* G4ECDecay::DecayIt(G4double)      72 G4DecayProducts* G4ECDecay::DecayIt(G4double)
 74 {                                                  73 {
 75   // Fill G4MT_parent with theParentNucleus (s     74   // Fill G4MT_parent with theParentNucleus (stored by SetParent in ctor)  
 76   CheckAndFillParent();                            75   CheckAndFillParent();
 77                                                    76 
 78   // Fill G4MT_daughters with alpha and residu     77   // Fill G4MT_daughters with alpha and residual nucleus (stored by SetDaughter)  
 79   CheckAndFillDaughters();                         78   CheckAndFillDaughters();
 80                                                    79 
 81   // Get shell number of captured electron         80   // Get shell number of captured electron
 82   G4int shellIndex = -1;                           81   G4int shellIndex = -1;
 83   G4double ran;                                << 
 84   switch (theMode)                                 82   switch (theMode)
 85     {                                              83     {
 86     case KshellEC:                                 84     case KshellEC:
 87       shellIndex = 0;                              85       shellIndex = 0;
 88       break;                                       86       break;
 89     case LshellEC: // PL1+PL2+PL3=1            <<  87     case LshellEC:
 90       ran=G4UniformRand();                     <<  88       shellIndex = G4int(G4UniformRand()*3) + 1;
 91       if (ran <= PL1) shellIndex =1;           << 
 92       else if (ran<= (PL1+PL2)) shellIndex =2; << 
 93       else shellIndex =3;                      << 
 94       break;                                       89       break;
 95     case MshellEC:  // PM1+PM2+PM3=1           <<  90     case MshellEC:
 96       ran=G4UniformRand();                     <<  91       shellIndex = G4int(G4UniformRand()*3) + 4;
 97       if (ran < PM1) shellIndex =4;            << 
 98       else if (ran< (PM1+PM2)) shellIndex =5;  << 
 99       else shellIndex = 6;                     << 
100       break;                                   << 
101     case NshellEC: // PN1+PN2+PN3=1            << 
102       ran=G4UniformRand();                     << 
103       if (ran < PN1) shellIndex = 9;           << 
104       else if (ran<= (PN1+PN2)) shellIndex =2; << 
105       else shellIndex =10;                     << 
106       break;                                       92       break;
107     default:                                       93     default:
108       G4Exception("G4ECDecay::DecayIt()", "HAD     94       G4Exception("G4ECDecay::DecayIt()", "HAD_RDM_009",
109                   FatalException, "Invalid ele     95                   FatalException, "Invalid electron shell selected");
110     }                                              96     }
111                                                    97 
112   // Initialize decay products with parent nuc     98   // Initialize decay products with parent nucleus at rest
113   G4DynamicParticle parentParticle(G4MT_parent     99   G4DynamicParticle parentParticle(G4MT_parent, G4ThreeVector(0,0,0), 0.0);
114   G4DecayProducts* products = new G4DecayProdu    100   G4DecayProducts* products = new G4DecayProducts(parentParticle);
115   G4double eBind = 0.0;                           101   G4double eBind = 0.0;
116                                                   102 
117   // G4LossTableManager must already be initia    103   // G4LossTableManager must already be initialized with G4UAtomicDeexcitation
118   // This is currently done in G4RadioactiveDe    104   // This is currently done in G4RadioactiveDecay::BuildPhysicsTable
119   G4VAtomDeexcitation* atomDeex =                 105   G4VAtomDeexcitation* atomDeex = 
120           G4LossTableManager::Instance()->Atom    106           G4LossTableManager::Instance()->AtomDeexcitation();
121   std::vector<G4DynamicParticle*> armProducts;    107   std::vector<G4DynamicParticle*> armProducts;
122                                                   108 
123   if (applyARM) {                                 109   if (applyARM) {
124     if (nullptr != atomDeex) {                 << 110     if (atomDeex) {
125       G4int aZ = G4MT_daughters[0]->GetAtomicN    111       G4int aZ = G4MT_daughters[0]->GetAtomicNumber();
126       G4int nShells = G4AtomicShells::GetNumbe    112       G4int nShells = G4AtomicShells::GetNumberOfShells(aZ);
127       if (shellIndex >= nShells) shellIndex =     113       if (shellIndex >= nShells) shellIndex = nShells;
128       G4AtomicShellEnumerator as = G4AtomicShe    114       G4AtomicShellEnumerator as = G4AtomicShellEnumerator(shellIndex);
129       const G4AtomicShell* shell = atomDeex->G    115       const G4AtomicShell* shell = atomDeex->GetAtomicShell(aZ, as);
130       eBind = shell->BindingEnergy();             116       eBind = shell->BindingEnergy(); 
131       if (atomDeex->IsFluoActive() && aZ > 5 & << 117       if (atomDeex->IsFluoActive() && aZ > 5 && aZ < 100) {
132         // Do atomic relaxation                   118         // Do atomic relaxation
133   // VI, SI                                    << 119           // VI, SI
134   // Allows fixing of Bugzilla 1727            << 120           // Allows fixing of Bugzilla 1727
135   //const G4double deexLimit = 0.1*keV;        << 121           //const G4double deexLimit = 0.1*keV;
136   G4double deexLimit = 0.1*keV;                << 122           G4double deexLimit = 0.1*keV;
137   if (G4EmParameters::Instance()->Deexcitation << 123           if (G4EmParameters::Instance()->DeexcitationIgnoreCut())  deexLimit =0.;
138                                                << 124           //
139         atomDeex->GenerateParticles(&armProduc    125         atomDeex->GenerateParticles(&armProducts, shell, aZ, deexLimit, deexLimit);
140       }                                           126       }
141                                                   127 
142       G4double productEnergy = 0.;                128       G4double productEnergy = 0.;
143       for (std::size_t i = 0; i < armProducts. << 129       for (G4int i = 0; i < G4int(armProducts.size()); i++)
144         productEnergy += armProducts[i]->GetKi    130         productEnergy += armProducts[i]->GetKineticEnergy();
145       }                                        << 131 
146       G4double deficit = shell->BindingEnergy(    132       G4double deficit = shell->BindingEnergy() - productEnergy;
147       if (deficit > 0.0) {                        133       if (deficit > 0.0) {
148         // Add a dummy electron to make up ext    134         // Add a dummy electron to make up extra energy
149         G4double cosTh = 1.-2.*G4UniformRand()    135         G4double cosTh = 1.-2.*G4UniformRand();
150         G4double sinTh = std::sqrt(1.- cosTh*c    136         G4double sinTh = std::sqrt(1.- cosTh*cosTh);
151         G4double phi = twopi*G4UniformRand();     137         G4double phi = twopi*G4UniformRand();
152                                                   138 
153         G4ThreeVector electronDirection(sinTh*    139         G4ThreeVector electronDirection(sinTh*std::sin(phi),
154                                         sinTh*    140                                         sinTh*std::cos(phi), cosTh);
155         G4DynamicParticle* extra =                141         G4DynamicParticle* extra =
156           new G4DynamicParticle(G4Electron::El    142           new G4DynamicParticle(G4Electron::Electron(), electronDirection,
157                                 deficit);         143                                 deficit);
158         armProducts.push_back(extra);             144         armProducts.push_back(extra);
159       }                                           145       }
160     } // atomDeex                                 146     } // atomDeex
161   }  // applyARM                                  147   }  // applyARM
162                                                   148 
163   G4double daughterMass = G4MT_daughters[0]->G    149   G4double daughterMass = G4MT_daughters[0]->GetPDGMass();
164                                                   150 
165   // CM momentum using Q value corrected for b    151   // CM momentum using Q value corrected for binding energy of captured electron
166   G4double Q = transitionQ - eBind;            << 152   G4double Q = transitionQ - eBind; 
167                                                << 
168   // Negative transitionQ values for some rare << 
169   // Absolute values in these cases are small  << 
170   if (Q < 0.0) Q = 0.0;                        << 
171                                                << 
172   G4double cmMomentum = Q*(Q + 2.*daughterMass    153   G4double cmMomentum = Q*(Q + 2.*daughterMass)/(Q + daughterMass)/2.;
173                                                   154 
174   G4double costheta = 2.*G4UniformRand() - 1.0    155   G4double costheta = 2.*G4UniformRand() - 1.0;
175   G4double sintheta = std::sqrt(1.0 - costheta    156   G4double sintheta = std::sqrt(1.0 - costheta*costheta);
176   G4double phi  = twopi*G4UniformRand()*rad;      157   G4double phi  = twopi*G4UniformRand()*rad;
177   G4ThreeVector direction(sintheta*std::cos(ph    158   G4ThreeVector direction(sintheta*std::cos(phi),sintheta*std::sin(phi),
178                           costheta);              159                           costheta);
179   G4double KE = cmMomentum;                       160   G4double KE = cmMomentum;
180   G4DynamicParticle* daughterParticle =           161   G4DynamicParticle* daughterParticle =
181     new G4DynamicParticle(G4MT_daughters[1], d    162     new G4DynamicParticle(G4MT_daughters[1], direction, KE, 0.0);
182   products->PushProducts(daughterParticle);       163   products->PushProducts(daughterParticle);
183                                                   164 
184   KE = std::sqrt(cmMomentum*cmMomentum + daugh    165   KE = std::sqrt(cmMomentum*cmMomentum + daughterMass*daughterMass) - daughterMass;
185   daughterParticle =                              166   daughterParticle =
186     new G4DynamicParticle(G4MT_daughters[0], -    167     new G4DynamicParticle(G4MT_daughters[0], -1.0*direction, KE, daughterMass);
187   products->PushProducts(daughterParticle);       168   products->PushProducts(daughterParticle);
188                                                   169 
189   std::size_t nArm = armProducts.size();       << 170   G4int nArm = armProducts.size();
190   if (nArm > 0) {                                 171   if (nArm > 0) {
191     G4ThreeVector bst = daughterParticle->Get4    172     G4ThreeVector bst = daughterParticle->Get4Momentum().boostVector();
192     for (std::size_t i = 0; i < nArm; ++i) {   << 173     for (G4int i = 0; i < nArm; ++i) {
193       G4DynamicParticle* dp = armProducts[i];     174       G4DynamicParticle* dp = armProducts[i];
194       G4LorentzVector lv = dp->Get4Momentum().    175       G4LorentzVector lv = dp->Get4Momentum().boost(bst);
195       dp->Set4Momentum(lv);                       176       dp->Set4Momentum(lv);
196       products->PushProducts(dp);                 177       products->PushProducts(dp);
197     }                                             178     }
198   }                                               179   }
199                                                   180 
200   // Energy conservation check                    181   // Energy conservation check
201   /*                                              182   /*
202   G4int newSize = products->entries();            183   G4int newSize = products->entries();
203   G4DynamicParticle* temp = 0;                    184   G4DynamicParticle* temp = 0;
204   G4double KEsum = 0.0;                           185   G4double KEsum = 0.0;
205   for (G4int i = 0; i < newSize; i++) {           186   for (G4int i = 0; i < newSize; i++) {
206     temp = products->operator[](i);               187     temp = products->operator[](i);
207     KEsum += temp->GetKineticEnergy();            188     KEsum += temp->GetKineticEnergy();
208   }                                               189   }
209                                                   190 
210   G4double eCons = (transitionQ - KEsum)/keV;     191   G4double eCons = (transitionQ - KEsum)/keV; 
211   G4cout << " EC check: Ediff (keV) = " << eCo    192   G4cout << " EC check: Ediff (keV) = " << eCons << G4endl; 
212   */                                              193   */
213   return products;                                194   return products;
214 }                                                 195 }
215                                                   196 
216                                                   197 
217 void G4ECDecay::DumpNuclearInfo()                 198 void G4ECDecay::DumpNuclearInfo()
218 {                                                 199 {
219   G4cout << " G4ECDecay of parent nucleus " <<    200   G4cout << " G4ECDecay of parent nucleus " << GetParentName() << " from ";
220   if (theMode == 3) {                             201   if (theMode == 3) {
221     G4cout << "K shell";                          202     G4cout << "K shell";
222   } else if (theMode == 4) {                      203   } else if (theMode == 4) {
223     G4cout << "L shell";                          204     G4cout << "L shell";
224   } else if (theMode == 5) {                      205   } else if (theMode == 5) {
225     G4cout << "M shell";                          206     G4cout << "M shell";
226   }                                               207   }
227   else if (theMode == 6) {                     << 
228     G4cout << "N shell";                       << 
229   }                                            << 
230   G4cout << G4endl;                               208   G4cout << G4endl;
231   G4cout << " to " << GetDaughterName(0) << "     209   G4cout << " to " << GetDaughterName(0) << " + " << GetDaughterName(1)
232          << " with branching ratio " << GetBR(    210          << " with branching ratio " << GetBR() << "% and Q value "
233          << transitionQ << G4endl;                211          << transitionQ << G4endl;
234 }                                                 212 }
235 void G4ECDecay::DefineSubshellProbabilities(G4 << 
236 { //Implementation for the case of allowed tra << 
237   //PL1+PL2=1. , PM1+PM2=1., PN1+PN2=1.        << 
238   PL1 = 1./(1+PL2overPL1[Z-1]);                << 
239   PL2 = PL1*PL2overPL1[Z-1];                   << 
240   PM1 = 1./(1+PM2overPM1[Z-1]);                << 
241   PM2 = PM1*PM2overPM1[Z-1];                   << 
242   PN1 = 1./(1+PN2overPN1[Z-1]);                << 
243   PN2 = PN1*PN2overPN1[Z-1];                   << 
244 }                                              << 
245 ////////////////////////////////////////////// << 
246 // Table of subshell ratio probability PL2/PL1 << 
247 // PL2/PL1 = (fL2/gL1)^2                       << 
248 // with gL1 and fL2 the bound electron radial  << 
249 //            Bambynek et al., Rev. Modern Phy << 
250 // For Z=18 interpolation  between Z=17 and Z= << 
251 ////////////////////////////////////////////// << 
252 const G4double G4ECDecay::PL2overPL1[100] = {  << 
253 0.0000e+00,   0.0000e+00,   0.0000e+00,   0.00 << 
254 2.6438e-04,   3.5456e-04,   4.5790e-04,   6.15 << 
255 1.4361e-03,   1.6886e-03,   1.9609e-03,   2.26 << 
256 3.6338e-03,   4.0310e-03,   4.4541e-03,   4.89 << 
257 6.9061e-03,   7.4607e-03,   8.0398e-03,   8.64 << 
258 1.1284e-02,   1.2004e-02,   1.2744e-02,   1.35 << 
259 1.6857e-02,   1.7764e-02,   1.8696e-02,   1.96 << 
260 2.3788e-02,   2.4896e-02,   2.6036e-02,   2.72 << 
261 3.2220e-02,   3.3561e-02,   3.4937e-02,   3.63 << 
262 4.2399e-02,   4.4010e-02,   4.5668e-02,   4.73 << 
263 5.4625e-02,   5.6565e-02,   5.8547e-02,   6.05 << 
264 6.9336e-02,   7.1667e-02,   7.4075e-02,   7.65 << 
265 8.7135e-02,   8.9995e-02,   9.2919e-02,   9.59 << 
266 1.0899e-01,   1.1249e-01,   1.1613e-01,   1.19 << 
267 1.3627e-01,   1.4071e-01};                     << 
268 ////////////////////////////////////////////// << 
269 // Table of subshell ratio probability PM2/PM1 << 
270 // PM2/PM1 = (fM2/gM1)^2                       << 
271 // with gM1 and fM2 the bound electron radial  << 
272 //            Bambynek et al., Rev. Modern Phy << 
273 ////////////////////////////////////////////// << 
274 const G4double G4ECDecay::PM2overPM1[100] = {  << 
275 0.0000e+00,   0.0000e+00,   0.0000e+00,   0.00 << 
276 0.0000e+00,   0.0000e+00,   0.0000e+00,   0.00 << 
277 1.0210e-03,   1.2641e-03,   1.5231e-03,   1.79 << 
278 3.3637e-03,   3.7909e-03,   4.2049e-03,   4.70 << 
279 6.7045e-03,   7.2997e-03,   7.9438e-03,   8.62 << 
280 1.1594e-02,   1.2408e-02,   1.3244e-02,   1.41 << 
281 1.7910e-02,   1.8934e-02,   1.9986e-02,   2.10 << 
282 2.5750e-02,   2.7006e-02,   2.8302e-02,   2.96 << 
283 3.5328e-02,   3.6852e-02,   3.8414e-02,   4.00 << 
284 4.6909e-02,   4.8767e-02,   5.0662e-02,   5.26 << 
285 6.0930e-02,   6.3141e-02,   6.5413e-02,   6.77 << 
286 7.7721e-02,   8.0408e-02,   8.3128e-02,   8.59 << 
287 9.8025e-02,   1.0130e-01,   1.0463e-01,   1.08 << 
288 1.2290e-01,   1.2688e-01,   1.3101e-01,   1.35 << 
289 1.5384e-01,   1.5887e-01};                     << 
290 ////////////////////////////////////////////// << 
291 // Table of subshell ratio probability PN2/PN1 << 
292 // PN2/PN1 = (fN2/gN1)^2                       << 
293 // with gN1 and fN2 are the bound electron rad << 
294 //            Bambynek et al., Rev. Modern Phy << 
295 // For Z=44 interpolation  between Z=43 and Z= << 
296 ////////////////////////////////////////////// << 
297 const G4double G4ECDecay::PN2overPN1[100] = {  << 
298 0.0000e+00,   0.0000e+00,   0.0000e+00,   0.00 << 
299 0.0000e+00,   0.0000e+00,   0.0000e+00,   0.00 << 
300 0.0000e+00,   0.0000e+00,   0.0000e+00,   0.00 << 
301 0.0000e+00,   0.0000e+00,   0.0000e+00,   0.00 << 
302 0.0000e+00,   0.0000e+00,   0.0000e+00,   0.00 << 
303 0.0000e+00,   9.6988e-03,   1.0797e-02,   1.17 << 
304 1.5511e-02,   1.6579e-02,   1.7646e-02,   1.87 << 
305 2.3710e-02,   2.5058e-02,   2.6438e-02,   2.78 << 
306 3.3843e-02,   3.5377e-02,   3.6886e-02,   3.85 << 
307 4.5470e-02,   4.7247e-02,   4.9138e-02,   5.10 << 
308 5.9366e-02,   6.1800e-02,   6.3945e-02,   6.63 << 
309 7.6538e-02,   7.9276e-02,   8.2070e-02,   8.49 << 
310 9.7337e-02,   1.0069e-01,   1.0410e-01,   1.07 << 
311 1.2282e-01,   1.2709e-01,   1.3114e-01,   1.35 << 
312 1.5443e-01,   1.5954e-01};                     << 
313                                                   213 
314                                                   214