Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 ////////////////////////////////////////////// 26 //////////////////////////////////////////////////////////////////////////////// 27 // 27 // // 28 // File: G4ECDecay.cc 28 // File: G4ECDecay.cc // 29 // Author: D.H. Wright (SLAC) 29 // Author: D.H. Wright (SLAC) // 30 // Date: 25 November 2014 30 // Date: 25 November 2014 // 31 // 31 // // 32 ////////////////////////////////////////////// 32 //////////////////////////////////////////////////////////////////////////////// 33 33 34 #include "G4ECDecay.hh" 34 #include "G4ECDecay.hh" 35 #include "G4IonTable.hh" 35 #include "G4IonTable.hh" 36 #include "Randomize.hh" 36 #include "Randomize.hh" 37 #include "G4ThreeVector.hh" 37 #include "G4ThreeVector.hh" 38 #include "G4DynamicParticle.hh" 38 #include "G4DynamicParticle.hh" 39 #include "G4DecayProducts.hh" 39 #include "G4DecayProducts.hh" 40 #include "G4VAtomDeexcitation.hh" 40 #include "G4VAtomDeexcitation.hh" 41 #include "G4AtomicShells.hh" 41 #include "G4AtomicShells.hh" 42 #include "G4Electron.hh" 42 #include "G4Electron.hh" 43 #include "G4LossTableManager.hh" 43 #include "G4LossTableManager.hh" 44 #include "G4PhysicalConstants.hh" 44 #include "G4PhysicalConstants.hh" 45 #include "G4SystemOfUnits.hh" 45 #include "G4SystemOfUnits.hh" 46 46 47 G4ECDecay::G4ECDecay(const G4ParticleDefinitio 47 G4ECDecay::G4ECDecay(const G4ParticleDefinition* theParentNucleus, 48 const G4double& branch, c 48 const G4double& branch, const G4double& Qvalue, 49 const G4double& excitatio 49 const G4double& excitationE, 50 const G4Ions::G4FloatLeve << 51 const G4RadioactiveDecayM 50 const G4RadioactiveDecayMode& mode) 52 : G4NuclearDecay("electron capture", mode, ex << 51 : G4NuclearDecay("electron capture", mode, excitationE), transitionQ(Qvalue), 53 applyARM(true) 52 applyARM(true) 54 { 53 { 55 SetParent(theParentNucleus); // Store name 54 SetParent(theParentNucleus); // Store name of parent nucleus, delete G4MT_parent 56 SetBR(branch); 55 SetBR(branch); 57 56 58 SetNumberOfDaughters(2); 57 SetNumberOfDaughters(2); 59 G4IonTable* theIonTable = 58 G4IonTable* theIonTable = 60 (G4IonTable*)(G4ParticleTable::GetParticle 59 (G4IonTable*)(G4ParticleTable::GetParticleTable()->GetIonTable()); 61 G4int daughterZ = theParentNucleus->GetAtomi 60 G4int daughterZ = theParentNucleus->GetAtomicNumber() - 1; 62 G4int daughterA = theParentNucleus->GetAtomi 61 G4int daughterA = theParentNucleus->GetAtomicMass(); 63 SetDaughter(0, theIonTable->GetIon(daughterZ << 62 SetDaughter(0, theIonTable->GetIon(daughterZ, daughterA, excitationE) ); 64 SetDaughter(1, "nu_e"); 63 SetDaughter(1, "nu_e"); 65 DefineSubshellProbabilities(daughterZ, daugh << 66 } 64 } 67 65 68 66 69 G4ECDecay::~G4ECDecay() 67 G4ECDecay::~G4ECDecay() 70 {} 68 {} 71 69 72 70 73 G4DecayProducts* G4ECDecay::DecayIt(G4double) 71 G4DecayProducts* G4ECDecay::DecayIt(G4double) 74 { 72 { 75 // Fill G4MT_parent with theParentNucleus (s 73 // Fill G4MT_parent with theParentNucleus (stored by SetParent in ctor) 76 CheckAndFillParent(); 74 CheckAndFillParent(); 77 75 78 // Fill G4MT_daughters with alpha and residu 76 // Fill G4MT_daughters with alpha and residual nucleus (stored by SetDaughter) 79 CheckAndFillDaughters(); 77 CheckAndFillDaughters(); 80 78 81 // Get shell number of captured electron 79 // Get shell number of captured electron 82 G4int shellIndex = -1; 80 G4int shellIndex = -1; 83 G4double ran; << 84 switch (theMode) 81 switch (theMode) 85 { 82 { 86 case KshellEC: 83 case KshellEC: 87 shellIndex = 0; 84 shellIndex = 0; 88 break; 85 break; 89 case LshellEC: // PL1+PL2+PL3=1 << 86 case LshellEC: 90 ran=G4UniformRand(); << 87 shellIndex = G4int(G4UniformRand()*3) + 1; 91 if (ran <= PL1) shellIndex =1; << 92 else if (ran<= (PL1+PL2)) shellIndex =2; << 93 else shellIndex =3; << 94 break; 88 break; 95 case MshellEC: // PM1+PM2+PM3=1 << 89 case MshellEC: 96 ran=G4UniformRand(); << 90 shellIndex = G4int(G4UniformRand()*3) + 4; 97 if (ran < PM1) shellIndex =4; << 98 else if (ran< (PM1+PM2)) shellIndex =5; << 99 else shellIndex = 6; << 100 break; << 101 case NshellEC: // PN1+PN2+PN3=1 << 102 ran=G4UniformRand(); << 103 if (ran < PN1) shellIndex = 9; << 104 else if (ran<= (PN1+PN2)) shellIndex =2; << 105 else shellIndex =10; << 106 break; 91 break; 107 default: 92 default: 108 G4Exception("G4ECDecay::DecayIt()", "HAD 93 G4Exception("G4ECDecay::DecayIt()", "HAD_RDM_009", 109 FatalException, "Invalid ele 94 FatalException, "Invalid electron shell selected"); 110 } 95 } 111 96 112 // Initialize decay products with parent nuc 97 // Initialize decay products with parent nucleus at rest 113 G4DynamicParticle parentParticle(G4MT_parent 98 G4DynamicParticle parentParticle(G4MT_parent, G4ThreeVector(0,0,0), 0.0); 114 G4DecayProducts* products = new G4DecayProdu 99 G4DecayProducts* products = new G4DecayProducts(parentParticle); 115 G4double eBind = 0.0; 100 G4double eBind = 0.0; 116 101 117 // G4LossTableManager must already be initia 102 // G4LossTableManager must already be initialized with G4UAtomicDeexcitation 118 // This is currently done in G4RadioactiveDe 103 // This is currently done in G4RadioactiveDecay::BuildPhysicsTable 119 G4VAtomDeexcitation* atomDeex = 104 G4VAtomDeexcitation* atomDeex = 120 G4LossTableManager::Instance()->Atom 105 G4LossTableManager::Instance()->AtomDeexcitation(); 121 std::vector<G4DynamicParticle*> armProducts; 106 std::vector<G4DynamicParticle*> armProducts; 122 107 123 if (applyARM) { 108 if (applyARM) { 124 if (nullptr != atomDeex) { << 109 if (atomDeex) { 125 G4int aZ = G4MT_daughters[0]->GetAtomicN 110 G4int aZ = G4MT_daughters[0]->GetAtomicNumber(); 126 G4int nShells = G4AtomicShells::GetNumbe 111 G4int nShells = G4AtomicShells::GetNumberOfShells(aZ); 127 if (shellIndex >= nShells) shellIndex = 112 if (shellIndex >= nShells) shellIndex = nShells; 128 G4AtomicShellEnumerator as = G4AtomicShe 113 G4AtomicShellEnumerator as = G4AtomicShellEnumerator(shellIndex); 129 const G4AtomicShell* shell = atomDeex->G 114 const G4AtomicShell* shell = atomDeex->GetAtomicShell(aZ, as); 130 eBind = shell->BindingEnergy(); 115 eBind = shell->BindingEnergy(); 131 if (atomDeex->IsFluoActive() && aZ > 5 & << 116 if (atomDeex->IsFluoActive() && aZ > 5 && aZ < 100) { 132 // Do atomic relaxation 117 // Do atomic relaxation 133 // VI, SI << 118 // VI, SI 134 // Allows fixing of Bugzilla 1727 << 119 // Allows fixing of Bugzilla 1727 135 //const G4double deexLimit = 0.1*keV; << 120 //const G4double deexLimit = 0.1*keV; 136 G4double deexLimit = 0.1*keV; << 121 G4double deexLimit = 0.1*keV; 137 if (G4EmParameters::Instance()->Deexcitation << 122 if (G4EmParameters::Instance()->DeexcitationIgnoreCut()) deexLimit =0.; 138 << 123 // 139 atomDeex->GenerateParticles(&armProduc 124 atomDeex->GenerateParticles(&armProducts, shell, aZ, deexLimit, deexLimit); 140 } 125 } 141 126 142 G4double productEnergy = 0.; 127 G4double productEnergy = 0.; 143 for (std::size_t i = 0; i < armProducts. << 128 for (G4int i = 0; i < G4int(armProducts.size()); i++) 144 productEnergy += armProducts[i]->GetKi 129 productEnergy += armProducts[i]->GetKineticEnergy(); 145 } << 130 146 G4double deficit = shell->BindingEnergy( 131 G4double deficit = shell->BindingEnergy() - productEnergy; 147 if (deficit > 0.0) { 132 if (deficit > 0.0) { 148 // Add a dummy electron to make up ext 133 // Add a dummy electron to make up extra energy 149 G4double cosTh = 1.-2.*G4UniformRand() 134 G4double cosTh = 1.-2.*G4UniformRand(); 150 G4double sinTh = std::sqrt(1.- cosTh*c 135 G4double sinTh = std::sqrt(1.- cosTh*cosTh); 151 G4double phi = twopi*G4UniformRand(); 136 G4double phi = twopi*G4UniformRand(); 152 137 153 G4ThreeVector electronDirection(sinTh* 138 G4ThreeVector electronDirection(sinTh*std::sin(phi), 154 sinTh* 139 sinTh*std::cos(phi), cosTh); 155 G4DynamicParticle* extra = 140 G4DynamicParticle* extra = 156 new G4DynamicParticle(G4Electron::El 141 new G4DynamicParticle(G4Electron::Electron(), electronDirection, 157 deficit); 142 deficit); 158 armProducts.push_back(extra); 143 armProducts.push_back(extra); 159 } 144 } 160 } // atomDeex 145 } // atomDeex 161 } // applyARM 146 } // applyARM 162 147 163 G4double daughterMass = G4MT_daughters[0]->G 148 G4double daughterMass = G4MT_daughters[0]->GetPDGMass(); 164 149 165 // CM momentum using Q value corrected for b 150 // CM momentum using Q value corrected for binding energy of captured electron 166 G4double Q = transitionQ - eBind; << 151 G4double Q = transitionQ - eBind; 167 << 168 // Negative transitionQ values for some rare << 169 // Absolute values in these cases are small << 170 if (Q < 0.0) Q = 0.0; << 171 << 172 G4double cmMomentum = Q*(Q + 2.*daughterMass 152 G4double cmMomentum = Q*(Q + 2.*daughterMass)/(Q + daughterMass)/2.; 173 153 174 G4double costheta = 2.*G4UniformRand() - 1.0 154 G4double costheta = 2.*G4UniformRand() - 1.0; 175 G4double sintheta = std::sqrt(1.0 - costheta 155 G4double sintheta = std::sqrt(1.0 - costheta*costheta); 176 G4double phi = twopi*G4UniformRand()*rad; 156 G4double phi = twopi*G4UniformRand()*rad; 177 G4ThreeVector direction(sintheta*std::cos(ph 157 G4ThreeVector direction(sintheta*std::cos(phi),sintheta*std::sin(phi), 178 costheta); 158 costheta); 179 G4double KE = cmMomentum; 159 G4double KE = cmMomentum; 180 G4DynamicParticle* daughterParticle = 160 G4DynamicParticle* daughterParticle = 181 new G4DynamicParticle(G4MT_daughters[1], d 161 new G4DynamicParticle(G4MT_daughters[1], direction, KE, 0.0); 182 products->PushProducts(daughterParticle); 162 products->PushProducts(daughterParticle); 183 163 184 KE = std::sqrt(cmMomentum*cmMomentum + daugh 164 KE = std::sqrt(cmMomentum*cmMomentum + daughterMass*daughterMass) - daughterMass; 185 daughterParticle = 165 daughterParticle = 186 new G4DynamicParticle(G4MT_daughters[0], - 166 new G4DynamicParticle(G4MT_daughters[0], -1.0*direction, KE, daughterMass); 187 products->PushProducts(daughterParticle); 167 products->PushProducts(daughterParticle); 188 168 189 std::size_t nArm = armProducts.size(); << 169 G4int nArm = armProducts.size(); 190 if (nArm > 0) { 170 if (nArm > 0) { 191 G4ThreeVector bst = daughterParticle->Get4 171 G4ThreeVector bst = daughterParticle->Get4Momentum().boostVector(); 192 for (std::size_t i = 0; i < nArm; ++i) { << 172 for (G4int i = 0; i < nArm; ++i) { 193 G4DynamicParticle* dp = armProducts[i]; 173 G4DynamicParticle* dp = armProducts[i]; 194 G4LorentzVector lv = dp->Get4Momentum(). 174 G4LorentzVector lv = dp->Get4Momentum().boost(bst); 195 dp->Set4Momentum(lv); 175 dp->Set4Momentum(lv); 196 products->PushProducts(dp); 176 products->PushProducts(dp); 197 } 177 } 198 } 178 } 199 179 200 // Energy conservation check 180 // Energy conservation check 201 /* 181 /* 202 G4int newSize = products->entries(); 182 G4int newSize = products->entries(); 203 G4DynamicParticle* temp = 0; 183 G4DynamicParticle* temp = 0; 204 G4double KEsum = 0.0; 184 G4double KEsum = 0.0; 205 for (G4int i = 0; i < newSize; i++) { 185 for (G4int i = 0; i < newSize; i++) { 206 temp = products->operator[](i); 186 temp = products->operator[](i); 207 KEsum += temp->GetKineticEnergy(); 187 KEsum += temp->GetKineticEnergy(); 208 } 188 } 209 189 210 G4double eCons = (transitionQ - KEsum)/keV; 190 G4double eCons = (transitionQ - KEsum)/keV; 211 G4cout << " EC check: Ediff (keV) = " << eCo 191 G4cout << " EC check: Ediff (keV) = " << eCons << G4endl; 212 */ 192 */ 213 return products; 193 return products; 214 } 194 } 215 195 216 196 217 void G4ECDecay::DumpNuclearInfo() 197 void G4ECDecay::DumpNuclearInfo() 218 { 198 { 219 G4cout << " G4ECDecay of parent nucleus " << 199 G4cout << " G4ECDecay of parent nucleus " << GetParentName() << " from "; 220 if (theMode == 3) { 200 if (theMode == 3) { 221 G4cout << "K shell"; 201 G4cout << "K shell"; 222 } else if (theMode == 4) { 202 } else if (theMode == 4) { 223 G4cout << "L shell"; 203 G4cout << "L shell"; 224 } else if (theMode == 5) { 204 } else if (theMode == 5) { 225 G4cout << "M shell"; 205 G4cout << "M shell"; 226 } 206 } 227 else if (theMode == 6) { << 228 G4cout << "N shell"; << 229 } << 230 G4cout << G4endl; 207 G4cout << G4endl; 231 G4cout << " to " << GetDaughterName(0) << " 208 G4cout << " to " << GetDaughterName(0) << " + " << GetDaughterName(1) 232 << " with branching ratio " << GetBR( 209 << " with branching ratio " << GetBR() << "% and Q value " 233 << transitionQ << G4endl; 210 << transitionQ << G4endl; 234 } 211 } 235 void G4ECDecay::DefineSubshellProbabilities(G4 << 236 { //Implementation for the case of allowed tra << 237 //PL1+PL2=1. , PM1+PM2=1., PN1+PN2=1. << 238 PL1 = 1./(1+PL2overPL1[Z-1]); << 239 PL2 = PL1*PL2overPL1[Z-1]; << 240 PM1 = 1./(1+PM2overPM1[Z-1]); << 241 PM2 = PM1*PM2overPM1[Z-1]; << 242 PN1 = 1./(1+PN2overPN1[Z-1]); << 243 PN2 = PN1*PN2overPN1[Z-1]; << 244 } << 245 ////////////////////////////////////////////// << 246 // Table of subshell ratio probability PL2/PL1 << 247 // PL2/PL1 = (fL2/gL1)^2 << 248 // with gL1 and fL2 the bound electron radial << 249 // Bambynek et al., Rev. Modern Phy << 250 // For Z=18 interpolation between Z=17 and Z= << 251 ////////////////////////////////////////////// << 252 const G4double G4ECDecay::PL2overPL1[100] = { << 253 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.00 << 254 2.6438e-04, 3.5456e-04, 4.5790e-04, 6.15 << 255 1.4361e-03, 1.6886e-03, 1.9609e-03, 2.26 << 256 3.6338e-03, 4.0310e-03, 4.4541e-03, 4.89 << 257 6.9061e-03, 7.4607e-03, 8.0398e-03, 8.64 << 258 1.1284e-02, 1.2004e-02, 1.2744e-02, 1.35 << 259 1.6857e-02, 1.7764e-02, 1.8696e-02, 1.96 << 260 2.3788e-02, 2.4896e-02, 2.6036e-02, 2.72 << 261 3.2220e-02, 3.3561e-02, 3.4937e-02, 3.63 << 262 4.2399e-02, 4.4010e-02, 4.5668e-02, 4.73 << 263 5.4625e-02, 5.6565e-02, 5.8547e-02, 6.05 << 264 6.9336e-02, 7.1667e-02, 7.4075e-02, 7.65 << 265 8.7135e-02, 8.9995e-02, 9.2919e-02, 9.59 << 266 1.0899e-01, 1.1249e-01, 1.1613e-01, 1.19 << 267 1.3627e-01, 1.4071e-01}; << 268 ////////////////////////////////////////////// << 269 // Table of subshell ratio probability PM2/PM1 << 270 // PM2/PM1 = (fM2/gM1)^2 << 271 // with gM1 and fM2 the bound electron radial << 272 // Bambynek et al., Rev. Modern Phy << 273 ////////////////////////////////////////////// << 274 const G4double G4ECDecay::PM2overPM1[100] = { << 275 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.00 << 276 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.00 << 277 1.0210e-03, 1.2641e-03, 1.5231e-03, 1.79 << 278 3.3637e-03, 3.7909e-03, 4.2049e-03, 4.70 << 279 6.7045e-03, 7.2997e-03, 7.9438e-03, 8.62 << 280 1.1594e-02, 1.2408e-02, 1.3244e-02, 1.41 << 281 1.7910e-02, 1.8934e-02, 1.9986e-02, 2.10 << 282 2.5750e-02, 2.7006e-02, 2.8302e-02, 2.96 << 283 3.5328e-02, 3.6852e-02, 3.8414e-02, 4.00 << 284 4.6909e-02, 4.8767e-02, 5.0662e-02, 5.26 << 285 6.0930e-02, 6.3141e-02, 6.5413e-02, 6.77 << 286 7.7721e-02, 8.0408e-02, 8.3128e-02, 8.59 << 287 9.8025e-02, 1.0130e-01, 1.0463e-01, 1.08 << 288 1.2290e-01, 1.2688e-01, 1.3101e-01, 1.35 << 289 1.5384e-01, 1.5887e-01}; << 290 ////////////////////////////////////////////// << 291 // Table of subshell ratio probability PN2/PN1 << 292 // PN2/PN1 = (fN2/gN1)^2 << 293 // with gN1 and fN2 are the bound electron rad << 294 // Bambynek et al., Rev. Modern Phy << 295 // For Z=44 interpolation between Z=43 and Z= << 296 ////////////////////////////////////////////// << 297 const G4double G4ECDecay::PN2overPN1[100] = { << 298 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.00 << 299 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.00 << 300 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.00 << 301 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.00 << 302 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.00 << 303 0.0000e+00, 9.6988e-03, 1.0797e-02, 1.17 << 304 1.5511e-02, 1.6579e-02, 1.7646e-02, 1.87 << 305 2.3710e-02, 2.5058e-02, 2.6438e-02, 2.78 << 306 3.3843e-02, 3.5377e-02, 3.6886e-02, 3.85 << 307 4.5470e-02, 4.7247e-02, 4.9138e-02, 5.10 << 308 5.9366e-02, 6.1800e-02, 6.3945e-02, 6.63 << 309 7.6538e-02, 7.9276e-02, 8.2070e-02, 8.49 << 310 9.7337e-02, 1.0069e-01, 1.0410e-01, 1.07 << 311 1.2282e-01, 1.2709e-01, 1.3114e-01, 1.35 << 312 1.5443e-01, 1.5954e-01}; << 313 212 314 213