Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // particle_hp -- source file 26 // particle_hp -- source file 27 // J.P. Wellisch, Nov-1996 27 // J.P. Wellisch, Nov-1996 28 // A prototype of the low energy neutron trans 28 // A prototype of the low energy neutron transport model. 29 // 29 // 30 // 070523 bug fix for G4FPE_DEBUG on by A. How 30 // 070523 bug fix for G4FPE_DEBUG on by A. Howard ( and T. Koi) 31 // 070606 bug fix and migrate to enable to Par << 31 // 070606 bug fix and migrate to enable to Partial cases by T. Koi 32 // 080603 bug fix for Hadron Hyper News #932 b << 32 // 080603 bug fix for Hadron Hyper News #932 by T. Koi 33 // 080612 bug fix contribution from Benoit Pir 33 // 080612 bug fix contribution from Benoit Pirard and Laurent Desorgher (Univ. Bern) #4,6 34 // 080717 bug fix of calculation of residual m 34 // 080717 bug fix of calculation of residual momentum by T. Koi 35 // 080801 protect negative available energy by 35 // 080801 protect negative available energy by T. Koi 36 // introduce theNDLDataA,Z which has A 36 // introduce theNDLDataA,Z which has A and Z of NDL data by T. Koi 37 // 081024 G4NucleiPropertiesTable:: to G4Nucle 37 // 081024 G4NucleiPropertiesTable:: to G4NucleiProperties:: 38 // 090514 Fix bug in IC electron emission case << 38 // 090514 Fix bug in IC electron emission case 39 // Contribution from Chao Zhang (Chao.Z 39 // Contribution from Chao Zhang (Chao.Zhang@usd.edu) and Dongming Mei(Dongming.Mei@usd.edu) 40 // 100406 "nothingWasKnownOnHadron=1" then sam << 40 // 100406 "nothingWasKnownOnHadron=1" then sample mu isotropic in CM 41 // add two_body_reaction 41 // add two_body_reaction 42 // 100909 add safty << 42 // 100909 add safty 43 // 101111 add safty for _nat_ data case in Bin << 43 // 101111 add safty for _nat_ data case in Binary reaction, but break conservation 44 // 110430 add Reaction Q value and break up fl 44 // 110430 add Reaction Q value and break up flag (MF3::QI and LR) 45 // 45 // 46 // P. Arce, June-2014 Conversion neutron_hp to 46 // P. Arce, June-2014 Conversion neutron_hp to particle_hp 47 // June-2019 - E. Mendoza - re-build "two_body << 48 // (now isotropic emission in the CMS). Also r << 49 // developments). Add photon emission when no << 50 // 47 // 51 // nresp71_m03.hh and nresp71_m02.hh are alike << 52 // is in the total carbon cross section that i << 53 // These data are not used in nresp71_m0*.hh. << 54 // << 55 << 56 #include "G4ParticleHPInelasticCompFS.hh" 48 #include "G4ParticleHPInelasticCompFS.hh" 57 << 49 #include "G4ParticleHPManager.hh" >> 50 #include "G4Nucleus.hh" >> 51 #include "G4NucleiProperties.hh" >> 52 #include "G4He3.hh" 58 #include "G4Alpha.hh" 53 #include "G4Alpha.hh" 59 #include "G4Electron.hh" 54 #include "G4Electron.hh" 60 #include "G4He3.hh" << 61 #include "G4IonTable.hh" << 62 #include "G4NRESP71M03.hh" << 63 #include "G4NucleiProperties.hh" << 64 #include "G4Nucleus.hh" << 65 #include "G4ParticleHPDataUsed.hh" 55 #include "G4ParticleHPDataUsed.hh" 66 #include "G4ParticleHPManager.hh" << 56 #include "G4IonTable.hh" 67 #include "G4RandomDirection.hh" << 57 #include "G4Pow.hh" 68 #include "G4SystemOfUnits.hh" 58 #include "G4SystemOfUnits.hh" 69 59 70 #include <fstream> << 60 #include "G4NRESP71M03.hh" // nresp71_m03.hh and nresp71_m02.hh are alike. The only difference between m02 and m03 is in the total carbon cross section that is properly included in the latter. These data are not used in nresp71_m0*.hh. 71 << 72 G4ParticleHPInelasticCompFS::G4ParticleHPInela << 73 : G4ParticleHPFinalState() << 74 { << 75 QI.resize(51); << 76 LR.resize(51); << 77 for (G4int i = 0; i < 51; ++i) { << 78 hasXsec = true; << 79 theXsection[i] = nullptr; << 80 theEnergyDistribution[i] = nullptr; << 81 theAngularDistribution[i] = nullptr; << 82 theEnergyAngData[i] = nullptr; << 83 theFinalStatePhotons[i] = nullptr; << 84 QI[i] = 0.0; << 85 LR[i] = 0; << 86 } << 87 } << 88 << 89 G4ParticleHPInelasticCompFS::~G4ParticleHPInel << 90 { << 91 for (G4int i = 0; i < 51; ++i) { << 92 if (theXsection[i] != nullptr) delete theX << 93 if (theEnergyDistribution[i] != nullptr) d << 94 if (theAngularDistribution[i] != nullptr) << 95 if (theEnergyAngData[i] != nullptr) delete << 96 if (theFinalStatePhotons[i] != nullptr) de << 97 } << 98 } << 99 << 100 void G4ParticleHPInelasticCompFS::InitDistribu << 101 G4ReactionPr << 102 { << 103 if (theAngularDistribution[it] != nullptr) { << 104 theAngularDistribution[it]->SetTarget(aTar << 105 theAngularDistribution[it]->SetProjectileR << 106 } << 107 61 108 if (theEnergyAngData[it] != nullptr) { << 62 // June-2019 - E. Mendoza - re-build "two_body_reaction", to be used by incident charged particles (now isotropic emission in the CMS). Also restrict nresp use below 20 MeV (for future developments). Add photon emission when no data available. 109 theEnergyAngData[it]->SetTarget(aTarget); << 110 theEnergyAngData[it]->SetProjectileRP(inPa << 111 } << 112 } << 113 63 114 void G4ParticleHPInelasticCompFS::InitGammas(G 64 void G4ParticleHPInelasticCompFS::InitGammas(G4double AR, G4double ZR) 115 { 65 { 116 G4int Z = G4lrint(ZR); << 66 // char the[100] = {""}; 117 G4int A = G4lrint(AR); << 67 // std::ostrstream ost(the, 100, std::ios::out); 118 std::ostringstream ost; << 68 // ost <<gammaPath<<"z"<<ZR<<".a"<<AR; 119 ost << gammaPath << "z" << Z << ".a" << A; << 69 // G4String * aName = new G4String(the); 120 G4String aName = ost.str(); << 70 // std::ifstream from(*aName, std::ios::in); 121 std::ifstream from(aName, std::ios::in); << 71 122 << 72 std::ostringstream ost; 123 if (!from) return; // no data found for thi << 73 ost <<gammaPath<<"z"<<ZR<<".a"<<AR; 124 std::ifstream theGammaData(aName, std::ios:: << 74 G4String aName = ost.str(); >> 75 std::ifstream from(aName, std::ios::in); >> 76 >> 77 if(!from) return; // no data found for this isotope >> 78 // std::ifstream theGammaData(*aName, std::ios::in); >> 79 std::ifstream theGammaData(aName, std::ios::in); >> 80 >> 81 theGammas.Init(theGammaData); >> 82 // delete aName; 125 83 126 theGammas.Init(theGammaData); << 127 } 84 } 128 85 129 void G4ParticleHPInelasticCompFS::Init(G4doubl << 86 void G4ParticleHPInelasticCompFS::Init (G4double A, G4double Z, G4int M, G4String & dirName, G4String & aFSType, G4ParticleDefinition*) 130 const G << 131 { 87 { 132 gammaPath = fManager->GetNeutronHPPath() + " << 88 gammaPath = "/Inelastic/Gammas/"; //only in neutron data base 133 const G4String& tString = dirName; << 89 if(!std::getenv("G4NEUTRONHPDATA")) 134 SetA_Z(A, Z, M); << 90 throw G4HadronicException(__FILE__, __LINE__, "Please setenv G4NEUTRONHPDATA to point to the neutron cross-section files where Inelastic/Gammas data is found."); >> 91 G4String tBase = std::getenv("G4NEUTRONHPDATA"); >> 92 gammaPath = tBase+gammaPath; >> 93 G4String tString = dirName; 135 G4bool dbool; 94 G4bool dbool; 136 const G4ParticleHPDataUsed& aFile = << 95 G4ParticleHPDataUsed aFile = theNames.GetName(static_cast<G4int>(A), static_cast<G4int>(Z), M, tString, aFSType, dbool); 137 theNames.GetName(theBaseA, theBaseZ, M, tS << 96 G4String filename = aFile.GetName(); 138 SetAZMs(aFile); << 97 #ifdef G4PHPDEBUG 139 const G4String& filename = aFile.GetName(); << 98 if( std::getenv("G4ParticleHPDebug") ) G4cout << " G4ParticleHPInelasticCompFS::Init FILE " << filename << G4endl; 140 #ifdef G4VERBOSE << 141 if (fManager->GetDEBUG()) << 142 G4cout << " G4ParticleHPInelasticCompFS::I << 143 #endif 99 #endif 144 100 145 SetAZMs(A, Z, M, aFile); << 101 SetAZMs( A, Z, M, aFile ); 146 << 102 //theBaseA = aFile.GetA(); 147 if (!dbool || (theBaseZ <= 2 && (theNDLDataZ << 103 //theBaseZ = aFile.GetZ(); >> 104 //theNDLDataA = (int)aFile.GetA(); >> 105 //theNDLDataZ = aFile.GetZ(); >> 106 //if(!dbool || ( Z<2.5 && ( std::abs(theBaseZ - Z)>0.0001 || std::abs(theBaseA - A)>0.0001))) >> 107 if ( !dbool || ( Z<2.5 && ( std::abs(theNDLDataZ - Z)>0.0001 || std::abs(theNDLDataA - A)>0.0001)) ) 148 { 108 { 149 #ifdef G4VERBOSE << 109 #ifdef G4PHPDEBUG 150 if (fManager->GetDEBUG()) << 110 if(std::getenv("G4ParticleHPDebug_NamesLogging")) G4cout << "Skipped = "<< filename <<" "<<A<<" "<<Z<<G4endl; 151 G4cout << "Skipped = " << filename << " << 152 #endif 111 #endif 153 hasAnyData = false; 112 hasAnyData = false; 154 hasFSData = false; << 113 hasFSData = false; 155 hasXsec = false; 114 hasXsec = false; 156 return; 115 return; 157 } 116 } 158 std::istringstream theData(std::ios::in); << 117 // theBaseA = A; 159 fManager->GetDataStream(filename, theData); << 118 // theBaseZ = G4int(Z+.5); 160 if (!theData) //"!" is a operator of ios << 119 //std::ifstream theData(filename, std::ios::in); >> 120 std::istringstream theData(std::ios::in); >> 121 G4ParticleHPManager::GetInstance()->GetDataStream(filename,theData); >> 122 if(!theData) //"!" is a operator of ios 161 { 123 { 162 hasAnyData = false; 124 hasAnyData = false; 163 hasFSData = false; << 125 hasFSData = false; 164 hasXsec = false; 126 hasXsec = false; >> 127 // theData.close(); 165 return; 128 return; 166 } 129 } 167 // here we go 130 // here we go 168 G4int infoType, dataType, dummy; 131 G4int infoType, dataType, dummy; 169 G4int sfType, it; 132 G4int sfType, it; 170 hasFSData = false; << 133 hasFSData = false; 171 while (theData >> infoType) // Loop checkin << 134 while (theData >> infoType) // Loop checking, 11.05.2015, T. Koi 172 { 135 { 173 hasFSData = true; << 136 hasFSData = true; 174 theData >> dataType; 137 theData >> dataType; 175 theData >> sfType >> dummy; 138 theData >> sfType >> dummy; 176 it = 50; 139 it = 50; 177 if (sfType >= 600 || (sfType < 100 && sfTy << 140 if(sfType>=600||(sfType<100&&sfType>=50)) it = sfType%50; 178 it = sfType % 50; << 141 if(dataType==3) 179 if (dataType == 3) << 180 { 142 { >> 143 //theData >> dummy >> dummy; >> 144 //TK110430 >> 145 // QI and LR introudced since G4NDL3.15 181 G4double dqi; 146 G4double dqi; 182 G4int ilr; 147 G4int ilr; 183 theData >> dqi >> ilr; 148 theData >> dqi >> ilr; 184 149 185 QI[it] = dqi * CLHEP::eV; << 150 QI[ it ] = dqi*CLHEP::eV; 186 LR[it] = ilr; << 151 LR[ it ] = ilr; 187 theXsection[it] = new G4ParticleHPVector 152 theXsection[it] = new G4ParticleHPVector; 188 G4int total; 153 G4int total; 189 theData >> total; 154 theData >> total; 190 theXsection[it]->Init(theData, total, CL 155 theXsection[it]->Init(theData, total, CLHEP::eV); >> 156 //std::cout << theXsection[it]->GetXsec(1*MeV) << std::endl; 191 } 157 } 192 else if (dataType == 4) { << 158 else if(dataType==4) >> 159 { 193 theAngularDistribution[it] = new G4Parti 160 theAngularDistribution[it] = new G4ParticleHPAngular; 194 theAngularDistribution[it]->Init(theData 161 theAngularDistribution[it]->Init(theData); 195 } 162 } 196 else if (dataType == 5) { << 163 else if(dataType==5) >> 164 { 197 theEnergyDistribution[it] = new G4Partic 165 theEnergyDistribution[it] = new G4ParticleHPEnergyDistribution; 198 theEnergyDistribution[it]->Init(theData) << 166 theEnergyDistribution[it]->Init(theData); 199 } 167 } 200 else if (dataType == 6) { << 168 else if(dataType==6) >> 169 { 201 theEnergyAngData[it] = new G4ParticleHPE 170 theEnergyAngData[it] = new G4ParticleHPEnAngCorrelation(theProjectile); 202 // G4cout << this << " CompFS theEn << 171 // G4cout << this << " CompFS theEnergyAngData " << it << theEnergyAngData[it] << G4endl; //GDEB 203 theEnergyAngData[it]->Init(theData); 172 theEnergyAngData[it]->Init(theData); 204 } 173 } 205 else if (dataType == 12) { << 174 else if(dataType==12) >> 175 { 206 theFinalStatePhotons[it] = new G4Particl 176 theFinalStatePhotons[it] = new G4ParticleHPPhotonDist; 207 theFinalStatePhotons[it]->InitMean(theDa 177 theFinalStatePhotons[it]->InitMean(theData); 208 } 178 } 209 else if (dataType == 13) { << 179 else if(dataType==13) >> 180 { 210 theFinalStatePhotons[it] = new G4Particl 181 theFinalStatePhotons[it] = new G4ParticleHPPhotonDist; 211 theFinalStatePhotons[it]->InitPartials(t 182 theFinalStatePhotons[it]->InitPartials(theData, theXsection[50]); 212 } 183 } 213 else if (dataType == 14) { << 184 else if(dataType==14) >> 185 { 214 theFinalStatePhotons[it]->InitAngular(th 186 theFinalStatePhotons[it]->InitAngular(theData); 215 } 187 } 216 else if (dataType == 15) { << 188 else if(dataType==15) >> 189 { 217 theFinalStatePhotons[it]->InitEnergies(t 190 theFinalStatePhotons[it]->InitEnergies(theData); 218 } 191 } 219 else { << 192 else 220 G4ExceptionDescription ed; << 193 { 221 ed << "Z=" << theBaseZ << " A=" << theBa << 194 throw G4HadronicException(__FILE__, __LINE__, "Data-type unknown to G4ParticleHPInelasticCompFS"); 222 << " projectile: " << theProjectile->GetPar << 223 G4Exception("G4ParticleHPInelasticCompFS << 224 ed, "Data-type unknown"); << 225 } 195 } 226 } 196 } >> 197 // theData.close(); 227 } 198 } 228 199 229 G4int G4ParticleHPInelasticCompFS::SelectExitC 200 G4int G4ParticleHPInelasticCompFS::SelectExitChannel(G4double eKinetic) 230 { 201 { >> 202 >> 203 // it = 0 has without Photon 231 G4double running[50]; 204 G4double running[50]; 232 running[0] = 0; 205 running[0] = 0; 233 G4int i; << 206 unsigned int i; 234 for (i = 0; i < 50; ++i) { << 207 for(i=0; i<50; i++) 235 if (i != 0) running[i] = running[i - 1]; << 208 { 236 if (theXsection[i] != nullptr) { << 209 if(i!=0) running[i]=running[i-1]; >> 210 if(theXsection[i] != 0) >> 211 { 237 running[i] += std::max(0., theXsection[i 212 running[i] += std::max(0., theXsection[i]->GetXsec(eKinetic)); 238 } 213 } 239 } 214 } 240 G4double random = G4UniformRand(); 215 G4double random = G4UniformRand(); 241 G4double sum = running[49]; 216 G4double sum = running[49]; 242 G4int it = 50; 217 G4int it = 50; 243 if (0 != sum) { << 218 if(0!=sum) >> 219 { 244 G4int i0; 220 G4int i0; 245 for (i0 = 0; i0 < 50; ++i0) { << 221 for(i0=0; i0<50; i0++) >> 222 { 246 it = i0; 223 it = i0; 247 if (random < running[i0] / sum) break; << 224 // G4cout << " SelectExitChannel " << it << " " << random << " " << running[i0]/sum << " " << running[i0] << G4endl; //GDEB >> 225 if(random < running[i0]/sum) break; 248 } 226 } 249 } 227 } >> 228 //debug: it = 1; >> 229 // G4cout << " SelectExitChannel " << it << " " << sum << G4endl; //GDEB 250 return it; 230 return it; 251 } 231 } 252 232 >> 233 253 // n,p,d,t,he3,a 234 // n,p,d,t,he3,a 254 void G4ParticleHPInelasticCompFS::CompositeApp 235 void G4ParticleHPInelasticCompFS::CompositeApply(const G4HadProjectile& theTrack, 255 236 G4ParticleDefinition* aDefinition) 256 { 237 { 257 // prepare neutron << 258 if (theResult.Get() == nullptr) theResult.Pu << 259 theResult.Get()->Clear(); << 260 G4double eKinetic = theTrack.GetKineticEnerg << 261 const G4HadProjectile* hadProjectile = &theT << 262 G4ReactionProduct incidReactionProduct(hadPr << 263 incidReactionProduct.SetMomentum(hadProjecti << 264 incidReactionProduct.SetKineticEnergy(eKinet << 265 << 266 // prepare target << 267 for (G4int i = 0; i < 50; ++i) { << 268 if (theXsection[i] != nullptr) { << 269 break; << 270 } << 271 } << 272 238 273 G4double targetMass = G4NucleiProperties::Ge << 239 // prepare neutron 274 #ifdef G4VERBOSE << 240 if ( theResult.Get() == NULL ) theResult.Put( new G4HadFinalState ); 275 if (fManager->GetDEBUG()) << 241 theResult.Get()->Clear(); 276 G4cout << "G4ParticleHPInelasticCompFS::Co << 242 G4double eKinetic = theTrack.GetKineticEnergy(); 277 << theBaseZ << " incident " << hadProject << 243 const G4HadProjectile *hadProjectile = &theTrack; 278 << G4endl; << 244 G4ReactionProduct incidReactionProduct( const_cast<G4ParticleDefinition *>(hadProjectile->GetDefinition()) ); // incidReactionProduct >> 245 incidReactionProduct.SetMomentum( hadProjectile->Get4Momentum().vect() ); >> 246 incidReactionProduct.SetKineticEnergy( eKinetic ); >> 247 >> 248 // prepare target >> 249 G4int i; >> 250 for(i=0; i<50; i++) >> 251 { if(theXsection[i] != 0) { break; } } >> 252 >> 253 G4double targetMass=0; >> 254 G4double eps = 0.0001; >> 255 targetMass = G4NucleiProperties::GetNuclearMass(static_cast<G4int>(theBaseA+eps), static_cast<G4int>(theBaseZ+eps)); >> 256 #ifdef G4PHPDEBUG >> 257 if( std::getenv("G4ParticleHPDebug")) G4cout <<this <<" G4ParticleHPInelasticCompFS::CompositeApply A " <<theBaseA <<" Z " <<theBaseZ <<" incident " <<hadProjectile->GetDefinition()->GetParticleName() <<G4endl; 279 #endif 258 #endif 280 G4ReactionProduct theTarget; << 259 // if(theEnergyAngData[i]!=0) 281 G4Nucleus aNucleus; << 260 // targetMass = theEnergyAngData[i]->GetTargetMass(); 282 // G4ThreeVector neuVelo = << 261 // else if(theAngularDistribution[i]!=0) 283 // (1./hadProjectile->GetDefinition()->GetPD << 262 // targetMass = theAngularDistribution[i]->GetTargetMass(); 284 // = aNucleus.GetBiasedThermalNucleus( targe << 263 // else if(theFinalStatePhotons[50]!=0) 285 // neuVelo, theTrack.GetMaterial()->GetTempe << 264 // targetMass = theFinalStatePhotons[50]->GetTargetMass(); 286 // normalization of mass and velocity in neu << 265 G4ReactionProduct theTarget; 287 G4ThreeVector neuVelo = incidReactionProduct << 266 G4Nucleus aNucleus; 288 theTarget = aNucleus.GetBiasedThermalNucleus << 267 //G4ThreeVector neuVelo = (1./hadProjectile->GetDefinition()->GetPDGMass())*incidReactionProduct.GetMomentum(); 289 << 268 //theTarget = aNucleus.GetBiasedThermalNucleus( targetMass/hadProjectile->GetDefinition()->GetPDGMass() , neuVelo, theTrack.GetMaterial()->GetTemperature()); 290 << 269 //G4Nucleus::GetBiasedThermalNucleus requests normalization of mass and velocity in neutron mass 291 theTarget.SetDefinition(G4IonTable::GetIonTa << 270 G4ThreeVector neuVelo = ( 1./G4Neutron::Neutron()->GetPDGMass() )*incidReactionProduct.GetMomentum(); 292 << 271 theTarget = aNucleus.GetBiasedThermalNucleus( targetMass/G4Neutron::Neutron()->GetPDGMass() 293 // prepare the residual mass << 272 , neuVelo, theTrack.GetMaterial()->GetTemperature() ); 294 G4double residualMass = 0; << 273 295 G4int residualZ = theBaseZ + << 274 theTarget.SetDefinition( G4IonTable::GetIonTable()->GetIon( G4int(theBaseZ), G4int(theBaseA) , 0.0 ) ); //XX 296 G4lrint((theProjectile->GetPDGCharge() - a << 275 297 G4int residualA = theBaseA + theProjectile-> << 276 // prepare the residual mass 298 residualMass = G4NucleiProperties::GetNuclea << 277 G4double residualMass=0; 299 << 278 G4double residualZ = theBaseZ + theProjectile->GetPDGCharge() - aDefinition->GetPDGCharge(); 300 // prepare energy in target rest frame << 279 G4double residualA = theBaseA + theProjectile->GetBaryonNumber() - aDefinition->GetBaryonNumber(); 301 G4ReactionProduct boosted; << 280 residualMass = G4NucleiProperties::GetNuclearMass(static_cast<G4int>(residualA+eps), static_cast<G4int>(residualZ+eps)); 302 boosted.Lorentz(incidReactionProduct, theTar << 281 303 eKinetic = boosted.GetKineticEnergy(); << 282 // prepare energy in target rest frame 304 << 283 G4ReactionProduct boosted; 305 // select exit channel for composite FS clas << 284 boosted.Lorentz(incidReactionProduct, theTarget); 306 G4int it = SelectExitChannel(eKinetic); << 285 eKinetic = boosted.GetKineticEnergy(); 307 << 286 // G4double momentumInCMS = boosted.GetTotalMomentum(); 308 // E. Mendoza (2018) -- to use JENDL/AN-2005 << 287 309 if (theEnergyDistribution[it] == nullptr && << 288 // select exit channel for composite FS class. 310 && theEnergyAngData[it] == nullptr) << 289 G4int it = SelectExitChannel( eKinetic ); 311 { << 290 312 if (theEnergyDistribution[50] != nullptr | << 291 //E. Mendoza (2018) -- to use JENDL/AN-2005 313 || theEnergyAngData[50] != nullptr) << 292 if(theEnergyDistribution[it]==0 && theAngularDistribution[it]==0 && theEnergyAngData[it]==0){ >> 293 if(theEnergyDistribution[50]!=0 || theAngularDistribution[50]!=0 || theEnergyAngData[50]!=0){ >> 294 it=50; >> 295 } >> 296 } >> 297 >> 298 // set target and neutron in the relevant exit channel >> 299 InitDistributionInitialState(incidReactionProduct, theTarget, it); >> 300 >> 301 //---------------------------------------------------------------------// >> 302 //Hook for NRESP71MODEL >> 303 if ( G4ParticleHPManager::GetInstance()->GetUseNRESP71Model() && eKinetic<20*MeV) { >> 304 if ( (G4int)(theBaseZ+0.1) == 6 ) // If the reaction is with Carbon... >> 305 { >> 306 if ( theProjectile == G4Neutron::Definition() ) { >> 307 if ( use_nresp71_model( aDefinition , it , theTarget , boosted ) ) return; >> 308 } >> 309 } >> 310 } >> 311 //---------------------------------------------------------------------// >> 312 >> 313 G4ReactionProductVector * thePhotons = 0; >> 314 G4ReactionProductVector * theParticles = 0; >> 315 G4ReactionProduct aHadron; >> 316 aHadron.SetDefinition(aDefinition); // what if only cross-sections exist ==> Na 23 11 @@@@ >> 317 G4double availableEnergy = incidReactionProduct.GetKineticEnergy() + incidReactionProduct.GetMass() - aHadron.GetMass() + >> 318 (targetMass - residualMass); >> 319 //080730c >> 320 if ( availableEnergy < 0 ) 314 { 321 { 315 it = 50; << 322 //G4cout << "080730c Adjust availavleEnergy " << G4endl; >> 323 availableEnergy = 0; 316 } 324 } 317 } << 325 G4int nothingWasKnownOnHadron = 0; >> 326 G4int dummy; >> 327 G4double eGamm = 0; >> 328 G4int iLevel=it-1; >> 329 >> 330 // TK without photon has it = 0 >> 331 if( 50 == it ) >> 332 { >> 333 >> 334 // TK Excitation level is not determined >> 335 iLevel=-1; >> 336 aHadron.SetKineticEnergy(availableEnergy*residualMass/ >> 337 (aHadron.GetMass()+residualMass)); 318 338 319 // set target and neutron in the relevant ex << 339 //aHadron.SetMomentum(incidReactionProduct.GetMomentum()*(1./incidReactionProduct.GetTotalMomentum())* 320 InitDistributionInitialState(incidReactionPr << 340 // std::sqrt(aHadron.GetTotalEnergy()*aHadron.GetTotalEnergy()- >> 341 // aHadron.GetMass()*aHadron.GetMass())); 321 342 322 //------------------------------------------ << 343 //TK add safty 100909 323 // Hook for NRESP71MODEL << 344 G4double p2 = ( aHadron.GetTotalEnergy()*aHadron.GetTotalEnergy() - aHadron.GetMass()*aHadron.GetMass() ); 324 if (fManager->GetUseNRESP71Model() && eKinet << 345 G4double p = 0.0; 325 if (theBaseZ == 6) // If the reaction is << 346 if ( p2 > 0.0 ) p = std::sqrt( p ); >> 347 >> 348 aHadron.SetMomentum(incidReactionProduct.GetMomentum()*(1./incidReactionProduct.GetTotalMomentum())*p ); >> 349 >> 350 } >> 351 else 326 { 352 { 327 if (theProjectile == G4Neutron::Definiti << 353 while ( iLevel!=-1 && theGammas.GetLevel(iLevel) == 0 ) { iLevel--; } // Loop checking, 11.05.2015, T. Koi 328 if (use_nresp71_model(aDefinition, it, << 329 } << 330 } 354 } 331 } << 332 //------------------------------------------ << 333 355 334 G4ReactionProductVector* thePhotons = nullpt << 335 G4ReactionProductVector* theParticles = null << 336 G4ReactionProduct aHadron; << 337 aHadron.SetDefinition(aDefinition); // what << 338 G4double availableEnergy = incidReactionProd << 339 + incidReactionPr << 340 + (targetMass - r << 341 356 342 if (availableEnergy < 0) { << 357 if ( theAngularDistribution[it] != 0 ) // MF4 343 availableEnergy = 0; << 344 } << 345 G4int nothingWasKnownOnHadron = 0; << 346 G4double eGamm = 0; << 347 G4int iLevel = -1; << 348 // max gamma energy and index << 349 G4int imaxEx = theGammas.GetNumberOfLevels() << 350 << 351 // without photon has it = 0 << 352 if (50 == it) { << 353 // Excitation level is not determined << 354 aHadron.SetKineticEnergy(availableEnergy * << 355 << 356 // TK add safty 100909 << 357 G4double p2 = << 358 (aHadron.GetTotalEnergy() * aHadron.GetT << 359 G4double p = (p2 > 0.0) ? std::sqrt(p2) : << 360 aHadron.SetMomentum(p * incidReactionProdu << 361 incidReactionProduct.GetTotalMomentum()) << 362 } << 363 else { << 364 iLevel = imaxEx; << 365 } << 366 << 367 if (theAngularDistribution[it] != nullptr) << 368 { << 369 if (theEnergyDistribution[it] != nullptr) << 370 { 358 { 371 //************************************** << 359 if(theEnergyDistribution[it]!=0) // MF5 372 /* << 360 { 373 aHadron.SetKineticEnergy(theEnergy << 361 //************************************************************ 374 G4double eSecN = aHadron.GetKineti << 362 /* 375 */ << 363 aHadron.SetKineticEnergy(theEnergyDistribution[it]->Sample(eKinetic, dummy)); 376 //************************************** << 364 G4double eSecN = aHadron.GetKineticEnergy(); 377 // EMendoza --> maximum allowable energy << 365 */ 378 G4double dqi = 0.0; << 366 //************************************************************ 379 if (QI[it] < 0 || 849 < QI[it]) << 367 //EMendoza --> maximum allowable energy should be taken into account. 380 dqi = QI[it]; // For backword compati << 368 G4double dqi = 0.0; 381 G4double MaxEne = eKinetic + dqi; << 369 if ( QI[it] < 0 || 849 < QI[it] ) dqi = QI[it]; //For backword compatibility QI introduced since G4NDL3.15 382 G4double eSecN = 0.; << 370 G4double MaxEne=eKinetic+dqi; 383 << 371 G4double eSecN; 384 G4int icounter = 0; << 372 385 G4int icounter_max = 1024; << 373 G4int icounter=0; 386 G4int dummy = 0; << 374 G4int icounter_max=1024; 387 do { << 375 do { 388 ++icounter; << 376 icounter++; 389 if (icounter > icounter_max) { << 377 if ( icounter > icounter_max ) { 390 G4cout << "Loop-counter exceeded the << 378 G4cout << "Loop-counter exceeded the threshold value at " << __LINE__ << "th line of " << __FILE__ << "." << G4endl; 391 << __FILE__ << "." << G4endl; << 379 break; 392 break; << 380 } 393 } << 381 eSecN=theEnergyDistribution[it]->Sample(eKinetic, dummy); 394 eSecN = theEnergyDistribution[it]->Sam << 382 }while(eSecN>MaxEne); // Loop checking, 11.05.2015, T. Koi 395 } while (eSecN > MaxEne); // Loop check << 383 aHadron.SetKineticEnergy(eSecN); 396 aHadron.SetKineticEnergy(eSecN); << 384 //************************************************************ 397 //************************************** << 385 eGamm = eKinetic-eSecN; 398 eGamm = eKinetic - eSecN; << 386 for(iLevel=theGammas.GetNumberOfLevels()-1; iLevel>=0; iLevel--) 399 for (iLevel = imaxEx; iLevel >= 0; --iLe << 387 { 400 if (theGammas.GetLevelEnergy(iLevel) < << 388 if(theGammas.GetLevelEnergy(iLevel)<eGamm) break; 401 } << 402 if (iLevel < imaxEx && iLevel >= 0) { << 403 if (G4UniformRand() > 0.5) { << 404 ++iLevel; << 405 } 389 } >> 390 G4double random = 2*G4UniformRand(); >> 391 iLevel+=G4int(random); >> 392 if(iLevel>theGammas.GetNumberOfLevels()-1)iLevel = theGammas.GetNumberOfLevels()-1; 406 } 393 } 407 } << 394 else 408 else { << 395 { 409 G4double eExcitation = 0; << 396 G4double eExcitation = 0; 410 for (iLevel = imaxEx; iLevel >= 0; --iLe << 397 if(iLevel>=0) eExcitation = theGammas.GetLevel(iLevel)->GetLevelEnergy(); 411 if (theGammas.GetLevelEnergy(iLevel) < << 398 while (eKinetic-eExcitation < 0 && iLevel>0) // Loop checking, 11.05.2015, T. Koi 412 } << 399 { 413 << 400 iLevel--; 414 // Use QI value for calculating excitati << 401 eExcitation = theGammas.GetLevel(iLevel)->GetLevelEnergy(); 415 G4bool useQI = false; << 402 } 416 G4double dqi = QI[it]; << 403 //110610TK BEGIN 417 if (dqi < 0 || 849 < dqi) useQI = true; << 404 //Use QI value for calculating excitation energy of residual. 418 << 405 G4bool useQI=false; 419 if (useQI) { << 406 G4double dqi = QI[it]; 420 eExcitation = std::max(0., QI[0] - QI[ << 407 if ( dqi < 0 || 849 < dqi ) useQI = true; //Former libraies does not have values of this range 421 << 408 422 // Re-evaluate iLevel based on this eE << 409 if (useQI) { 423 iLevel = 0; << 410 // QI introudced since G4NDL3.15 424 G4bool find = false; << 411 // G4double QM=(incidReactionProduct.GetMass()+targetMass)-(aHadron.GetMass()+residualMass); 425 const G4double level_tolerance = 1.0 * << 412 // eExcitation = QM-QI[it]; 426 << 413 eExcitation = QI[0] - QI[it]; // Bug fix #1838 427 // VI: the first level is ground << 414 if(eExcitation < 20*CLHEP::keV) eExcitation = 0; 428 if (0 < imaxEx) { << 415 429 for (iLevel = 1; iLevel <= imaxEx; + << 416 // Re-evluate iLevel based on this eExcitation 430 G4double elevel = theGammas.GetLev << 417 iLevel = 0; 431 if (std::abs(eExcitation - elevel) << 418 G4bool find = false; >> 419 G4int imaxEx = 0; >> 420 G4double level_tolerance = 1.0*CLHEP::keV; >> 421 >> 422 while( theGammas.GetLevel(iLevel+1) != 0 ) { // Loop checking, 11.05.2015, T. Koi >> 423 G4double maxEx = 0.0; >> 424 if (maxEx < theGammas.GetLevel(iLevel)->GetLevelEnergy() ) { >> 425 maxEx = theGammas.GetLevel(iLevel)->GetLevelEnergy(); >> 426 imaxEx = iLevel; >> 427 } >> 428 >> 429 // Fix bug 1789 DHW - first if-branch added because gamma data come from ENSDF >> 430 // and do not necessarily match the excitations used in ENDF-B.VII >> 431 // Compromise solution: use 1 keV tolerance suggested by T. Koi >> 432 if (std::abs(eExcitation - theGammas.GetLevel(iLevel)->GetLevelEnergy() ) < level_tolerance) { 432 find = true; 433 find = true; 433 break; 434 break; 434 } << 435 435 if (eExcitation < elevel) { << 436 } else if (eExcitation < theGammas.GetLevel(iLevel)->GetLevelEnergy() ) { 436 find = true; 437 find = true; 437 iLevel = std::max(iLevel - 1, 0) << 438 iLevel--; >> 439 // very small eExcitation, iLevel becomes -1, this is protected below >> 440 if (theTrack.GetDefinition() == aDefinition) { // this line added as part of fix #1838 >> 441 if (iLevel == -1) iLevel = 0; >> 442 } 438 break; 443 break; 439 } 444 } >> 445 iLevel++; 440 } 446 } 441 447 442 // If proper level cannot be found, 448 // If proper level cannot be found, use the maximum level 443 if (!find) iLevel = imaxEx; 449 if (!find) iLevel = imaxEx; 444 } 450 } >> 451 >> 452 if(std::getenv("G4ParticleHPDebug") && eKinetic-eExcitation < 0) >> 453 { >> 454 throw G4HadronicException(__FILE__, __LINE__, "SEVERE: InelasticCompFS: Consistency of data not good enough, please file report"); >> 455 } >> 456 if(eKinetic-eExcitation < 0) eExcitation = 0; >> 457 if(iLevel!= -1) aHadron.SetKineticEnergy(eKinetic - eExcitation); >> 458 445 } 459 } >> 460 theAngularDistribution[it]->SampleAndUpdate(aHadron); 446 461 447 if (fManager->GetDEBUG() && eKinetic - e << 462 if( theFinalStatePhotons[it] == 0 ) 448 throw G4HadronicException( << 463 { 449 __FILE__, __LINE__, << 464 //G4cout << "110610 USE Gamma Level" << G4endl; 450 "SEVERE: InelasticCompFS: Consistenc << 465 // TK comment Most n,n* eneter to this 451 } << 466 thePhotons = theGammas.GetDecayGammas(iLevel); 452 if (eKinetic - eExcitation < 0) eExcitat << 467 eGamm -= theGammas.GetLevelEnergy(iLevel); 453 if (iLevel != -1) aHadron.SetKineticEner << 468 if(eGamm>0) // @ ok for now, but really needs an efficient way of correllated sampling @ 454 } << 469 { 455 theAngularDistribution[it]->SampleAndUpdat << 470 G4ReactionProduct * theRestEnergy = new G4ReactionProduct; 456 << 471 theRestEnergy->SetDefinition(G4Gamma::Gamma()); 457 if (theFinalStatePhotons[it] == nullptr) { << 472 theRestEnergy->SetKineticEnergy(eGamm); 458 thePhotons = theGammas.GetDecayGammas(iL << 473 G4double costh = 2.*G4UniformRand()-1.; 459 eGamm -= theGammas.GetLevelEnergy(iLevel << 474 G4double phi = CLHEP::twopi*G4UniformRand(); >> 475 theRestEnergy->SetMomentum(eGamm*std::sin(std::acos(costh))*std::cos(phi), >> 476 eGamm*std::sin(std::acos(costh))*std::sin(phi), >> 477 eGamm*costh); >> 478 if(thePhotons == 0) { thePhotons = new G4ReactionProductVector; } >> 479 thePhotons->push_back(theRestEnergy); >> 480 } >> 481 } 460 } 482 } 461 } << 483 else if(theEnergyAngData[it] != 0) // MF6 462 else if (theEnergyAngData[it] != nullptr) / << 484 { 463 { << 464 theParticles = theEnergyAngData[it]->Sampl << 465 485 466 // Adjust A and Z in the case of miss much << 486 theParticles = theEnergyAngData[it]->Sample(eKinetic); 467 if (theParticles != nullptr) { << 487 468 G4int sumA = 0; << 488 //141017 Fix BEGIN 469 G4int sumZ = 0; << 489 //Adjust A and Z in the case of miss much between selected data and target nucleus 470 G4int maxA = 0; << 490 if ( theParticles != NULL ) { 471 G4int jAtMaxA = 0; << 491 G4int sumA = 0; 472 for (G4int j = 0; j != (G4int)theParticl << 492 G4int sumZ = 0; 473 auto ptr = theParticles->at(j); << 493 G4int maxA = 0; 474 G4int barnum = ptr->GetDefinition()->GetBary << 494 G4int jAtMaxA = 0; 475 if (barnum > maxA) { << 495 for ( G4int j = 0 ; j != (G4int)theParticles->size() ; j++ ) { 476 maxA = barnum; << 496 if ( theParticles->at(j)->GetDefinition()->GetBaryonNumber() > maxA ) { 477 jAtMaxA = j; << 497 maxA = theParticles->at(j)->GetDefinition()->GetBaryonNumber(); 478 } << 498 jAtMaxA = j; 479 sumA += barnum; << 499 } 480 sumZ += G4lrint(ptr->GetDefinition()-> << 500 sumA += theParticles->at(j)->GetDefinition()->GetBaryonNumber(); 481 } << 501 sumZ += G4int( theParticles->at(j)->GetDefinition()->GetPDGCharge() + eps ); 482 G4int dA = theBaseA + hadProjectile->Get << 502 } 483 G4int dZ = theBaseZ + << 503 G4int dA = (G4int)theBaseA + hadProjectile->GetDefinition()->GetBaryonNumber() - sumA; 484 G4lrint(hadProjectile->GetDefinition()->GetP << 504 G4int dZ = (G4int)theBaseZ + G4int( hadProjectile->GetDefinition()->GetPDGCharge() + eps ) - sumZ; 485 if (dA < 0 || dZ < 0) { << 505 if ( dA < 0 || dZ < 0 ) { 486 G4int newA = theParticles->at(jAtMaxA) << 506 G4int newA = theParticles->at(jAtMaxA)->GetDefinition()->GetBaryonNumber() + dA ; 487 G4int newZ = << 507 G4int newZ = G4int( theParticles->at(jAtMaxA)->GetDefinition()->GetPDGCharge() + eps ) + dZ; 488 G4lrint(theParticles->at(jAtMaxA)->GetDefi << 508 G4ParticleDefinition* pd = G4IonTable::GetIonTable()->GetIon ( newZ , newA ); 489 G4ParticleDefinition* pd = ionTable->G << 509 theParticles->at( jAtMaxA )->SetDefinition( pd ); 490 theParticles->at(jAtMaxA)->SetDefiniti << 510 } 491 } 511 } >> 512 //141017 Fix END >> 513 >> 514 } >> 515 else >> 516 { >> 517 // @@@ what to do, if we have photon data, but no info on the hadron itself >> 518 nothingWasKnownOnHadron = 1; 492 } 519 } 493 } << 494 else { << 495 // @@@ what to do, if we have photon data, << 496 nothingWasKnownOnHadron = 1; << 497 } << 498 520 499 if (theFinalStatePhotons[it] != nullptr) { << 521 //G4cout << "theFinalStatePhotons it " << it << G4endl; 500 // the photon distributions are in the Nuc << 522 //G4cout << "theFinalStatePhotons[it] " << theFinalStatePhotons[it] << G4endl; 501 // TK residual rest frame << 523 //G4cout << "theFinalStatePhotons it " << it << G4endl; 502 G4ReactionProduct boosted_tmp; << 524 //G4cout << "theFinalStatePhotons[it] " << theFinalStatePhotons[it] << G4endl; 503 boosted_tmp.Lorentz(incidReactionProduct, << 525 //G4cout << "thePhotons " << thePhotons << G4endl; 504 G4double anEnergy = boosted_tmp.GetKinetic << 526 505 thePhotons = theFinalStatePhotons[it]->Get << 527 if ( theFinalStatePhotons[it] != 0 ) 506 G4double aBaseEnergy = theFinalStatePhoton << 528 { 507 G4double testEnergy = 0; << 529 // the photon distributions are in the Nucleus rest frame. 508 if (thePhotons != nullptr && !thePhotons-> << 530 // TK residual rest frame 509 aBaseEnergy -= (*thePhotons)[0]->GetTota << 531 G4ReactionProduct boosted_tmp; 510 } << 532 boosted_tmp.Lorentz(incidReactionProduct, theTarget); 511 if (theFinalStatePhotons[it]->NeedsCascade << 533 G4double anEnergy = boosted_tmp.GetKineticEnergy(); 512 while (aBaseEnergy > 0.01 * CLHEP::keV) << 534 thePhotons = theFinalStatePhotons[it]->GetPhotons(anEnergy); 513 { << 535 G4double aBaseEnergy = theFinalStatePhotons[it]->GetLevelEnergy(); 514 // cascade down the levels << 536 G4double testEnergy = 0; 515 G4bool foundMatchingLevel = false; << 537 if(thePhotons!=0 && thePhotons->size()!=0) 516 G4int closest = 2; << 538 { aBaseEnergy-=thePhotons->operator[](0)->GetTotalEnergy(); } 517 G4double deltaEold = -1; << 539 if(theFinalStatePhotons[it]->NeedsCascade()) 518 for (G4int j = 1; j < it; ++j) { << 540 { 519 if (theFinalStatePhotons[j] != nullp << 541 while(aBaseEnergy>0.01*CLHEP::keV) // Loop checking, 11.05.2015, T. Koi 520 testEnergy = theFinalStatePhotons[ << 542 { 521 } << 543 // cascade down the levels 522 else { << 544 G4bool foundMatchingLevel = false; 523 testEnergy = 0; << 545 G4int closest = 2; 524 } << 546 G4double deltaEold = -1; 525 G4double deltaE = std::abs(testEnerg << 547 for(G4int j=1; j<it; j++) 526 if (deltaE < 0.1 * CLHEP::keV) { << 548 { 527 G4ReactionProductVector* theNext = << 549 if(theFinalStatePhotons[j]!=0) 528 if (thePhotons != nullptr) thePhot << 550 { 529 aBaseEnergy = testEnergy - theNext << 551 testEnergy = theFinalStatePhotons[j]->GetLevelEnergy(); >> 552 } >> 553 else >> 554 { >> 555 testEnergy = 0; >> 556 } >> 557 G4double deltaE = std::abs(testEnergy-aBaseEnergy); >> 558 if(deltaE<0.1*CLHEP::keV) >> 559 { >> 560 G4ReactionProductVector * theNext = >> 561 theFinalStatePhotons[j]->GetPhotons(anEnergy); >> 562 if ( thePhotons != NULL ) thePhotons->push_back(theNext->operator[](0)); >> 563 aBaseEnergy = testEnergy-theNext->operator[](0)->GetTotalEnergy(); >> 564 delete theNext; >> 565 foundMatchingLevel = true; >> 566 break; // ===> >> 567 } >> 568 if(theFinalStatePhotons[j]!=0 && ( deltaE<deltaEold||deltaEold<0.) ) >> 569 { >> 570 closest = j; >> 571 deltaEold = deltaE; >> 572 } >> 573 } // <=== the break goes here. >> 574 if(!foundMatchingLevel) >> 575 { >> 576 G4ReactionProductVector * theNext = >> 577 theFinalStatePhotons[closest]->GetPhotons(anEnergy); >> 578 if ( thePhotons != NULL ) thePhotons->push_back(theNext->operator[](0)); >> 579 aBaseEnergy = aBaseEnergy-theNext->operator[](0)->GetTotalEnergy(); 530 delete theNext; 580 delete theNext; 531 foundMatchingLevel = true; << 581 } 532 break; // ===> << 582 } 533 } << 534 if (theFinalStatePhotons[j] != nullp << 535 closest = j; << 536 deltaEold = deltaE; << 537 } << 538 } // <=== the break goes here. << 539 if (!foundMatchingLevel) { << 540 G4ReactionProductVector* theNext = t << 541 if (thePhotons != nullptr) thePhoton << 542 aBaseEnergy = aBaseEnergy - theNext- << 543 delete theNext; << 544 } << 545 } 583 } 546 } 584 } 547 } << 585 unsigned int i0; 548 << 586 if(thePhotons!=0) 549 if (thePhotons != nullptr) { << 587 { 550 for (auto const & p : *thePhotons) { << 588 for(i0=0; i0<thePhotons->size(); i0++) 551 // back to lab << 589 { 552 p->Lorentz(*p, -1. * theTarget); << 590 // back to lab 553 } << 591 thePhotons->operator[](i0)->Lorentz(*(thePhotons->operator[](i0)), -1.*theTarget); 554 } << 555 if (nothingWasKnownOnHadron != 0) { << 556 // In this case, hadron should be isotropi << 557 // Next 12 lines are Emilio's replacement << 558 // G4double QM=(incidReactionProduct.GetMa << 559 // G4double eExcitation = QM-QI[it]; << 560 // G4double eExcitation = QI[0] - QI[it]; << 561 // if(eExcitation<20*CLHEP::keV){eExcitati << 562 << 563 G4double eExcitation = std::max(0., QI[0] << 564 << 565 two_body_reaction(&incidReactionProduct, & << 566 if (thePhotons == nullptr && eExcitation > << 567 for (iLevel = imaxEx; iLevel >= 0; --iLe << 568 if (theGammas.GetLevelEnergy(iLevel) < << 569 } 592 } 570 thePhotons = theGammas.GetDecayGammas(iL << 571 } 593 } 572 } << 594 //G4cout << "nothingWasKnownOnHadron " << nothingWasKnownOnHadron << G4endl; 573 << 595 if(nothingWasKnownOnHadron) 574 // fill the result << 596 { 575 // Beware - the recoil is not necessarily in << 597 // In this case, hadron should be isotropic in CM 576 // Can be calculated from momentum conservat << 598 // Next 12 lines are Emilio's replacement 577 // The idea is that the particles ar emitted << 599 // G4double QM=(incidReactionProduct.GetMass()+targetMass)-(aHadron.GetMass()+residualMass); 578 // recoil is on the residual; assumption is << 600 // G4double eExcitation = QM-QI[it]; 579 // the recoil. << 601 G4double eExcitation = QI[0] - QI[it]; // Fix of bug #1838 580 // This needs more design @@@ << 602 if(eExcitation<20*CLHEP::keV){eExcitation=0;} 581 << 603 two_body_reaction(&incidReactionProduct,&theTarget,&aHadron,eExcitation); 582 G4bool needsSeparateRecoil = false; << 604 if(thePhotons==0 && eExcitation>0){ 583 G4int totalBaryonNumber = 0; << 605 for(iLevel=theGammas.GetNumberOfLevels()-1; iLevel>=0; iLevel--) 584 G4int totalCharge = 0; << 606 { 585 G4ThreeVector totalMomentum(0); << 607 if(theGammas.GetLevelEnergy(iLevel)<eExcitation+5*keV) break; // 5 keV tolerance 586 if (theParticles != nullptr) { << 608 } 587 const G4ParticleDefinition* aDef; << 609 thePhotons = theGammas.GetDecayGammas(iLevel); 588 for (std::size_t ii0 = 0; ii0 < theParticl << 610 } 589 aDef = (*theParticles)[ii0]->GetDefiniti << 590 totalBaryonNumber += aDef->GetBaryonNumb << 591 totalCharge += G4lrint(aDef->GetPDGCharg << 592 totalMomentum += (*theParticles)[ii0]->G << 593 } << 594 if (totalBaryonNumber << 595 != theBaseA + hadProjectile->GetDefin << 596 { << 597 needsSeparateRecoil = true; << 598 residualA = theBaseA + hadProjectile->Ge << 599 - totalBaryonNumber; << 600 residualZ = theBaseZ + << 601 G4lrint((hadProjectile->GetDefinition()->Get << 602 } 611 } 603 } << 612 // Emilio's replacement done 604 << 613 /* 605 std::size_t nPhotons = 0; << 614 // This code replaced by Emilio (previous 12 lines) 606 if (thePhotons != nullptr) { << 615 // mu and p should be correlated 607 nPhotons = thePhotons->size(); << 616 // 608 } << 617 //isotropic distribution in CM 609 << 618 G4double mu = 1.0 - 2.*G4UniformRand(); 610 G4DynamicParticle* theSec; << 611 << 612 if (theParticles == nullptr) { << 613 theSec = new G4DynamicParticle; << 614 theSec->SetDefinition(aHadron.GetDefinitio << 615 theSec->SetMomentum(aHadron.GetMomentum()) << 616 theResult.Get()->AddSecondary(theSec, secI << 617 #ifdef G4VERBOSE << 618 if (fManager->GetDEBUG()) << 619 G4cout << " G4ParticleHPInelasticCompFS: << 620 << theSec->GetParticleDefinition( << 621 << " E= " << theSec->GetKineticEn << 622 << theResult.Get()->GetNumberOfSe << 623 #endif << 624 619 625 aHadron.Lorentz(aHadron, theTarget); << 620 // Need momenta in target rest frame 626 G4ReactionProduct theResidual; << 621 G4LorentzVector target_in_LAB ( theTarget.GetMomentum() , theTarget.GetTotalEnergy() ); 627 theResidual.SetDefinition(ionTable->GetIon << 622 G4ThreeVector boostToTargetRest = -target_in_LAB.boostVector(); 628 theResidual.SetKineticEnergy(aHadron.GetKi << 623 G4LorentzVector proj_in_LAB = hadProjectile->Get4Momentum(); 629 / theResidual << 624 630 << 625 G4DynamicParticle* proj = new G4DynamicParticle(theProjectile, proj_in_LAB.boost(boostToTargetRest) ); 631 // 080612TK contribution from Benoit Pirar << 626 // G4DynamicParticle* targ = 632 // theResidual.SetMomentum(-1.*aHadron.Get << 627 // new G4DynamicParticle(G4IonTable::GetIonTable()->GetIon((G4int)theBaseZ, (G4int)theBaseA, totalPhotonEnergy), G4ThreeVector(0) ); 633 G4ThreeVector incidentNeutronMomentum = in << 628 // Fix bug 2166 (A. Zontikov): replace above two lines with next three lines 634 theResidual.SetMomentum(incidentNeutronMom << 629 G4double excitationEnergy = theFinalStatePhotons[it] ? theFinalStatePhotons[it]->GetLevelEnergy() : 0.0; 635 << 630 G4DynamicParticle* targ = 636 theResidual.Lorentz(theResidual, -1. * the << 631 new G4DynamicParticle(G4IonTable::GetIonTable()->GetIon((G4int)theBaseZ, (G4int)theBaseA, excitationEnergy), G4ThreeVector(0) ); 637 G4ThreeVector totalPhotonMomentum(0, 0, 0) << 632 G4DynamicParticle* hadron = 638 if (thePhotons != nullptr) { << 633 new G4DynamicParticle(aHadron.GetDefinition(), G4ThreeVector(0) ); // Will fill in the momentum 639 for (std::size_t i = 0; i < nPhotons; ++ << 634 640 totalPhotonMomentum += (*thePhotons)[i << 635 two_body_reaction ( proj , targ , hadron , mu ); 641 } << 636 642 } << 637 G4LorentzVector hadron_in_trag_rest = hadron->Get4Momentum(); 643 theSec = new G4DynamicParticle; << 638 G4LorentzVector hadron_in_LAB = hadron_in_trag_rest.boost ( -boostToTargetRest ); 644 theSec->SetDefinition(theResidual.GetDefin << 639 aHadron.SetMomentum( hadron_in_LAB.v() ); 645 theSec->SetMomentum(theResidual.GetMomentu << 640 aHadron.SetKineticEnergy ( hadron_in_LAB.e() - hadron_in_LAB.m() ); 646 theResult.Get()->AddSecondary(theSec, secI << 641 647 #ifdef G4VERBOSE << 642 delete proj; 648 if (fManager->GetDEBUG()) << 643 delete targ; 649 G4cout << this << " G4ParticleHPInelasti << 644 delete hadron; 650 << theSec->GetParticleDefinition( << 645 651 << " E= " << theSec->GetKineticEn << 646 } 652 << theResult.Get()->GetNumberOfSe << 647 */ >> 648 >> 649 // fill the result >> 650 // Beware - the recoil is not necessarily in the particles... >> 651 // Can be calculated from momentum conservation? >> 652 // The idea is that the particles ar emitted forst, and the gammas only once the >> 653 // recoil is on the residual; assumption is that gammas do not contribute to >> 654 // the recoil. >> 655 // This needs more design @@@ >> 656 >> 657 G4int nSecondaries = 2; // the hadron and the recoil >> 658 G4bool needsSeparateRecoil = false; >> 659 G4int totalBaryonNumber = 0; >> 660 G4int totalCharge = 0; >> 661 G4ThreeVector totalMomentum(0); >> 662 if(theParticles != 0) >> 663 { >> 664 nSecondaries = theParticles->size(); >> 665 const G4ParticleDefinition * aDef; >> 666 unsigned int ii0; >> 667 for(ii0=0; ii0<theParticles->size(); ii0++) >> 668 { >> 669 aDef = theParticles->operator[](ii0)->GetDefinition(); >> 670 totalBaryonNumber+=aDef->GetBaryonNumber(); >> 671 totalCharge+=G4int(aDef->GetPDGCharge()+eps); >> 672 totalMomentum += theParticles->operator[](ii0)->GetMomentum(); >> 673 } >> 674 if(totalBaryonNumber!=G4int(theBaseA+eps+hadProjectile->GetDefinition()->GetBaryonNumber())) >> 675 { >> 676 needsSeparateRecoil = true; >> 677 nSecondaries++; >> 678 residualA = G4int(theBaseA+eps+hadProjectile->GetDefinition()->GetBaryonNumber() >> 679 -totalBaryonNumber); >> 680 residualZ = G4int(theBaseZ+eps+hadProjectile->GetDefinition()->GetPDGCharge() >> 681 -totalCharge); >> 682 } >> 683 } >> 684 >> 685 G4int nPhotons = 0; >> 686 if(thePhotons!=0) { nPhotons = thePhotons->size(); } >> 687 nSecondaries += nPhotons; >> 688 >> 689 G4DynamicParticle * theSec; >> 690 >> 691 if( theParticles==0 ) >> 692 { >> 693 theSec = new G4DynamicParticle; >> 694 theSec->SetDefinition(aHadron.GetDefinition()); >> 695 theSec->SetMomentum(aHadron.GetMomentum()); >> 696 theResult.Get()->AddSecondary(theSec); >> 697 #ifdef G4PHPDEBUG >> 698 if( std::getenv("G4ParticleHPDebug")) G4cout << this << " G4ParticleHPInelasticCompFS::BaseApply add secondary1 " << theSec->GetParticleDefinition()->GetParticleName() << " E= " << theSec->GetKineticEnergy() << " NSECO " << theResult.Get()->GetNumberOfSecondaries() << G4endl; 653 #endif 699 #endif 654 } << 700 655 else { << 701 aHadron.Lorentz(aHadron, theTarget); 656 for (std::size_t i0 = 0; i0 < theParticles << 702 G4ReactionProduct theResidual; 657 theSec = new G4DynamicParticle; << 703 theResidual.SetDefinition(G4IonTable::GetIonTable() 658 theSec->SetDefinition((*theParticles)[i0 << 704 ->GetIon(static_cast<G4int>(residualZ), static_cast<G4int>(residualA), 0)); 659 theSec->SetMomentum((*theParticles)[i0]- << 705 theResidual.SetKineticEnergy(aHadron.GetKineticEnergy()*aHadron.GetMass()/theResidual.GetMass()); 660 theResult.Get()->AddSecondary(theSec, se << 706 661 #ifdef G4VERBOSE << 707 //080612TK contribution from Benoit Pirard and Laurent Desorgher (Univ. Bern) #6 662 if (fManager->GetDEBUG()) << 708 //theResidual.SetMomentum(-1.*aHadron.GetMomentum()); 663 G4cout << " G4ParticleHPInelasticCompF << 709 G4ThreeVector incidentNeutronMomentum = incidReactionProduct.GetMomentum(); 664 << theSec->GetParticleDefinitio << 710 theResidual.SetMomentum(incidentNeutronMomentum - aHadron.GetMomentum()); 665 << " E= " << theSec->GetKinetic << 711 666 << theResult.Get()->GetNumberOf << 712 theResidual.Lorentz(theResidual, -1.*theTarget); >> 713 G4ThreeVector totalPhotonMomentum(0,0,0); >> 714 if(thePhotons!=0) >> 715 { >> 716 for(i=0; i<nPhotons; i++) >> 717 { >> 718 totalPhotonMomentum += thePhotons->operator[](i)->GetMomentum(); >> 719 } >> 720 } >> 721 theSec = new G4DynamicParticle; >> 722 theSec->SetDefinition(theResidual.GetDefinition()); >> 723 theSec->SetMomentum(theResidual.GetMomentum()-totalPhotonMomentum); >> 724 theResult.Get()->AddSecondary(theSec); >> 725 #ifdef G4PHPDEBUG >> 726 if( std::getenv("G4ParticleHPDebug")) G4cout << this << " G4ParticleHPInelasticCompFS::BaseApply add secondary2 " << theSec->GetParticleDefinition()->GetParticleName() << " E= " << theSec->GetKineticEnergy() << " NSECO " << theResult.Get()->GetNumberOfSecondaries() << G4endl; 667 #endif 727 #endif 668 delete (*theParticles)[i0]; << 669 } 728 } 670 delete theParticles; << 729 else 671 if (needsSeparateRecoil && residualZ != 0) << 730 { 672 G4ReactionProduct theResidual; << 731 for(i0=0; i0<theParticles->size(); i0++) 673 theResidual.SetDefinition(ionTable->GetI << 732 { 674 G4double resiualKineticEnergy = theResid << 733 theSec = new G4DynamicParticle; 675 resiualKineticEnergy += totalMomentum * << 734 theSec->SetDefinition(theParticles->operator[](i0)->GetDefinition()); 676 resiualKineticEnergy = std::sqrt(resiual << 735 theSec->SetMomentum(theParticles->operator[](i0)->GetMomentum()); 677 theResidual.SetKineticEnergy(resiualKine << 736 theResult.Get()->AddSecondary(theSec); 678 << 737 #ifdef G4PHPDEBUG 679 // 080612TK contribution from Benoit Pir << 738 if( std::getenv("G4ParticleHPDebug")) G4cout << this << " G4ParticleHPInelasticCompFS::BaseApply add secondary3 " << theSec->GetParticleDefinition()->GetParticleName() << " E= " << theSec->GetKineticEnergy() << " NSECO " << theResult.Get()->GetNumberOfSecondaries() << G4endl; 680 // theResidual.SetMomentum(-1.*totalMome << 681 // G4ThreeVector incidentNeutronMomentum << 682 // theResidual.SetMomentum(incidentNeutr << 683 // 080717 TK Comment still do NOT includ << 684 theResidual.SetMomentum(incidReactionPro << 685 - totalMomentum) << 686 << 687 theSec = new G4DynamicParticle; << 688 theSec->SetDefinition(theResidual.GetDef << 689 theSec->SetMomentum(theResidual.GetMomen << 690 theResult.Get()->AddSecondary(theSec, se << 691 #ifdef G4VERBOSE << 692 if (fManager->GetDEBUG()) << 693 G4cout << " G4ParticleHPInelasticCompF << 694 << theSec->GetParticleDefinitio << 695 << " E= " << theSec->GetKinetic << 696 << theResult.Get()->GetNumberOf << 697 #endif 739 #endif >> 740 delete theParticles->operator[](i0); >> 741 } >> 742 delete theParticles; >> 743 if(needsSeparateRecoil && residualZ!=0) >> 744 { >> 745 G4ReactionProduct theResidual; >> 746 theResidual.SetDefinition(G4IonTable::GetIonTable() >> 747 ->GetIon(static_cast<G4int>(residualZ), static_cast<G4int>(residualA), 0)); >> 748 G4double resiualKineticEnergy = theResidual.GetMass()*theResidual.GetMass(); >> 749 resiualKineticEnergy += totalMomentum*totalMomentum; >> 750 resiualKineticEnergy = std::sqrt(resiualKineticEnergy) - theResidual.GetMass(); >> 751 // cout << "Kinetic energy of the residual = "<<resiualKineticEnergy<<endl; >> 752 theResidual.SetKineticEnergy(resiualKineticEnergy); >> 753 >> 754 //080612TK contribution from Benoit Pirard and Laurent Desorgher (Univ. Bern) #4 >> 755 //theResidual.SetMomentum(-1.*totalMomentum); >> 756 //G4ThreeVector incidentNeutronMomentum = incidReactionProduct.GetMomentum(); >> 757 //theResidual.SetMomentum(incidentNeutronMomentum - aHadron.GetMomentum()); >> 758 //080717 TK Comment still do NOT include photon's mometum which produce by thePhotons >> 759 theResidual.SetMomentum( incidReactionProduct.GetMomentum() + theTarget.GetMomentum() - totalMomentum ); >> 760 >> 761 theSec = new G4DynamicParticle; >> 762 theSec->SetDefinition(theResidual.GetDefinition()); >> 763 theSec->SetMomentum(theResidual.GetMomentum()); >> 764 theResult.Get()->AddSecondary(theSec); >> 765 #ifdef G4PHPDEBUG >> 766 if( std::getenv("G4ParticleHPDebug")) G4cout << this << " G4ParticleHPInelasticCompFS::BaseApply add secondary4 " << theSec->GetParticleDefinition()->GetParticleName() << " E= " << theSec->GetKineticEnergy() << " NSECO " << theResult.Get()->GetNumberOfSecondaries() << G4endl; >> 767 #endif >> 768 >> 769 } 698 } 770 } 699 } << 771 if(thePhotons!=0) 700 if (thePhotons != nullptr) { << 772 { 701 for (std::size_t i = 0; i < nPhotons; ++i) << 773 for(i=0; i<nPhotons; i++) 702 theSec = new G4DynamicParticle; << 774 { 703 // Bug reported Chao Zhang (Chao.Zhang@u << 775 theSec = new G4DynamicParticle; 704 // 2009 theSec->SetDefinition(G4Gamma::G << 776 //Bug reported Chao Zhang (Chao.Zhang@usd.edu), Dongming Mei(Dongming.Mei@usd.edu) Feb. 25, 2009 705 theSec->SetDefinition((*thePhotons)[i]-> << 777 //theSec->SetDefinition(G4Gamma::Gamma()); 706 // But never cause real effect at least << 778 theSec->SetDefinition( thePhotons->operator[](i)->GetDefinition() ); 707 theSec->SetMomentum((*thePhotons)[i]->Ge << 779 //But never cause real effect at least with G4NDL3.13 TK 708 theResult.Get()->AddSecondary(theSec, se << 780 theSec->SetMomentum(thePhotons->operator[](i)->GetMomentum()); 709 #ifdef G4VERBOSE << 781 theResult.Get()->AddSecondary(theSec); 710 if (fManager->GetDEBUG()) << 782 #ifdef G4PHPDEBUG 711 G4cout << " G4ParticleHPInelasticCompF << 783 if( std::getenv("G4ParticleHPDebug")) G4cout << this << " G4ParticleHPInelasticCompFS::BaseApply add secondary5 " << theSec->GetParticleDefinition()->GetParticleName() << " E= " << theSec->GetKineticEnergy() << " NSECO " << theResult.Get()->GetNumberOfSecondaries() << G4endl; 712 << theSec->GetParticleDefinitio << 713 << " E= " << theSec->GetKinetic << 714 << theResult.Get()->GetNumberOf << 715 #endif 784 #endif 716 785 717 delete thePhotons->operator[](i); << 786 delete thePhotons->operator[](i); >> 787 } >> 788 // some garbage collection >> 789 delete thePhotons; 718 } 790 } 719 // some garbage collection << 720 delete thePhotons; << 721 } << 722 791 723 G4ParticleDefinition* targ_pd = ionTable->Ge << 792 //080721 724 G4LorentzVector targ_4p_lab( << 793 G4ParticleDefinition* targ_pd = G4IonTable::GetIonTable()->GetIon ( (G4int)theBaseZ , (G4int)theBaseA , 0.0 ); 725 theTarget.GetMomentum(), << 794 G4LorentzVector targ_4p_lab ( theTarget.GetMomentum() , std::sqrt( targ_pd->GetPDGMass()*targ_pd->GetPDGMass() + theTarget.GetMomentum().mag2() ) ); 726 std::sqrt(targ_pd->GetPDGMass() * targ_pd- << 795 G4LorentzVector proj_4p_lab = theTrack.Get4Momentum(); 727 G4LorentzVector proj_4p_lab = theTrack.Get4M << 796 G4LorentzVector init_4p_lab = proj_4p_lab + targ_4p_lab; 728 G4LorentzVector init_4p_lab = proj_4p_lab + << 797 adjust_final_state ( init_4p_lab ); 729 adjust_final_state(init_4p_lab); << 730 798 731 // clean up the primary neutron << 799 // clean up the primary neutron 732 theResult.Get()->SetStatusChange(stopAndKill << 800 theResult.Get()->SetStatusChange( stopAndKill ); 733 } 801 } 734 802 735 // Re-implemented by E. Mendoza (2019). Isotro << 803 736 // proj: projectile in target-rest-frame (inp << 804 737 // targ: target in target-rest-frame (input) << 805 //Re-implemented by E. Mendoza (2019). Isotropic emission in the CMS: 738 // product: secondary particle in target-rest << 806 // proj: projectile in target-rest-frame (input) 739 // resExcitationEnergy: excitation energy of << 807 // targ: target in target-rest-frame (input) 740 // << 808 // product: secondary particle in target-rest-frame (output) >> 809 // resExcitationEnergy: excitation energy of the residual nucleus >> 810 741 void G4ParticleHPInelasticCompFS::two_body_rea 811 void G4ParticleHPInelasticCompFS::two_body_reaction(G4ReactionProduct* proj, 742 812 G4ReactionProduct* targ, 743 << 813 G4ReactionProduct* product, 744 814 G4double resExcitationEnergy) 745 { 815 { 746 // CMS system: << 816 //CMS system: 747 G4ReactionProduct theCMS = *proj + *targ; << 817 G4ReactionProduct theCMS= *proj+ *targ; 748 818 749 // Residual definition: << 819 //Residual definition: 750 G4int resZ = G4lrint((proj->GetDefinition()- << 820 G4int resZ=(G4int)(proj->GetDefinition()->GetPDGCharge()+targ->GetDefinition()->GetPDGCharge()-product->GetDefinition()->GetPDGCharge()+0.1); 751 - product->GetDefinition()->GetPDGCharge << 821 G4int resA=proj->GetDefinition()->GetBaryonNumber()+targ->GetDefinition()->GetBaryonNumber()-product->GetDefinition()->GetBaryonNumber(); 752 G4int resA = proj->GetDefinition()->GetBaryo << 753 - product->GetDefinition()->Get << 754 G4ReactionProduct theResidual; 822 G4ReactionProduct theResidual; 755 theResidual.SetDefinition(ionTable->GetIon(r << 823 theResidual.SetDefinition(G4IonTable::GetIonTable()->GetIon(resZ,resA,0.0)); 756 824 757 // CMS system: << 825 //CMS system: 758 G4ReactionProduct theCMSproj; 826 G4ReactionProduct theCMSproj; 759 G4ReactionProduct theCMStarg; 827 G4ReactionProduct theCMStarg; 760 theCMSproj.Lorentz(*proj, theCMS); << 828 theCMSproj.Lorentz(*proj,theCMS); 761 theCMStarg.Lorentz(*targ, theCMS); << 829 theCMStarg.Lorentz(*targ,theCMS); 762 // final Momentum in the CMS: << 830 //final Momentum in the CMS: 763 G4double totE = std::sqrt(theCMSproj.GetMass << 831 G4double totE=std::sqrt(theCMSproj.GetMass()*theCMSproj.GetMass()+theCMSproj.GetTotalMomentum()*theCMSproj.GetTotalMomentum())+std::sqrt(theCMStarg.GetMass()*theCMStarg.GetMass()+theCMStarg.GetTotalMomentum()*theCMStarg.GetTotalMomentum()); 764 + theCMSproj.GetTo << 832 G4double prodmass=product->GetMass(); 765 + std::sqrt(theCMStarg.GetMa << 833 G4double resmass=theResidual.GetMass()+resExcitationEnergy; 766 + theCMStarg.Get << 834 G4double fmomsquared=1./4./totE/totE*(totE*totE-(prodmass-resmass)*(prodmass-resmass))*(totE*totE-(prodmass+resmass)*(prodmass+resmass)); 767 G4double prodmass = product->GetMass(); << 835 G4double fmom=0; 768 G4double resmass = theResidual.GetMass() + r << 836 if(fmomsquared>0){ 769 G4double fmomsquared = (totE * totE - (prodm << 837 fmom=std::sqrt(fmomsquared); 770 (totE * totE - (prodmass + resmass) * (pro << 838 } 771 G4double fmom = (fmomsquared > 0) ? std::sqr << 839 772 << 840 //random (isotropic direction): 773 // random (isotropic direction): << 841 G4double cosTh = 2.*G4UniformRand()-1.; 774 product->SetMomentum(fmom * G4RandomDirectio << 842 G4double phi = CLHEP::twopi*G4UniformRand(); 775 product->SetTotalEnergy(std::sqrt(prodmass * << 843 G4double theta = std::acos(cosTh); 776 // Back to the LAB system: << 844 G4double sinth = std::sin(theta); 777 product->Lorentz(*product, -1. * theCMS); << 845 product->SetMomentum(fmom*sinth*std::cos(phi),fmom*sinth*std::sin(phi),fmom*cosTh); //CMS 778 } << 846 product->SetTotalEnergy(std::sqrt(prodmass*prodmass+fmom*fmom)); //CMS 779 << 847 //Back to the LAB system: 780 G4bool G4ParticleHPInelasticCompFS::use_nresp7 << 848 product->Lorentz(*product,-1.*theCMS); 781 << 782 << 783 << 784 { << 785 if (aDefinition == G4Neutron::Definition()) << 786 { << 787 // LR: flag LR in ENDF. It indicates wheth << 788 // it: exit channel (index of the carbon e << 789 << 790 // Added by A. R. Garcia (CIEMAT) to inclu << 791 << 792 if (LR[itt] > 0) // If there is breakup of << 793 // MT=52-91 (it=MT-50)). << 794 { << 795 // Defining carbon as the target in the << 796 G4ReactionProduct theCarbon(theTarget); << 797 849 798 theCarbon.SetMomentum(G4ThreeVector()); << 850 } 799 theCarbon.SetKineticEnergy(0.); << 800 << 801 // Creating four reaction products. << 802 G4ReactionProduct theProds[4]; << 803 << 804 // Applying C(N,N'3A) reaction mechanism << 805 if (itt == 41) { << 806 // QI=QM=-7.275 MeV for C-0(N,N')C-C(3 << 807 // This is not the value of the QI of << 808 // to the model. So we don't take it. << 809 // we have calculated: QI=(mn+m12C)-(m << 810 nresp71_model.ApplyMechanismI_NBeA2A(b << 811 // N+C --> A[0]+9BE* | 9BE* --> N[1]+8 << 812 } << 813 else { << 814 nresp71_model.ApplyMechanismII_ACN2A(b << 815 // N+C --> N'[0]+C* | C* --> A[1]+8BE << 816 } << 817 << 818 // Returning to the reference frame wher << 819 for (auto& theProd : theProds) { << 820 theProd.Lorentz(theProd, -1. * theTarg << 821 theResult.Get()->AddSecondary( << 822 new G4DynamicParticle(theProd.GetDef << 823 } << 824 << 825 // Killing the primary neutron. << 826 theResult.Get()->SetStatusChange(stopAnd << 827 << 828 return true; << 829 } << 830 } << 831 else if (aDefinition == G4Alpha::Definition( << 832 { << 833 // Added by A. R. Garcia (CIEMAT) to inclu << 834 << 835 if (LR[itt] == 0) // If Z=6, an alpha part << 836 // residual nucleus LR(f << 837 { << 838 // Defining carbon as the target in the << 839 G4ReactionProduct theCarbon(theTarget); << 840 theCarbon.SetMomentum(G4ThreeVector()); << 841 theCarbon.SetKineticEnergy(0.); << 842 << 843 // Creating four reaction products. << 844 G4ReactionProduct theProds[2]; << 845 851 846 // Applying C(N,A)9BE reaction mechanism << 847 nresp71_model.ApplyMechanismABE(boosted, << 848 // N+C --> A[0]+9BE[1]. << 849 852 850 for (auto& theProd : theProds) { << 853 G4bool G4ParticleHPInelasticCompFS::use_nresp71_model( const G4ParticleDefinition* aDefinition , const G4int it , const G4ReactionProduct& theTarget , G4ReactionProduct& boosted ) 851 // Returning to the system of referenc << 854 { 852 theProd.Lorentz(theProd, -1. * theTarg << 855 if ( aDefinition == G4Neutron::Definition() ) // If the outgoing particle is a neutron... 853 theResult.Get()->AddSecondary( << 856 { 854 new G4DynamicParticle(theProd.GetDef << 857 // LR: flag LR in ENDF. It indicates whether there is breakup of the residual nucleus or not. 855 } << 858 // it: exit channel (index of the carbon excited state) >> 859 >> 860 //if ( (G4int)(theBaseZ+0.1) == 6 ) G4cout << "LR[" << it << "] = " << LR[it] << G4endl; >> 861 >> 862 // Added by A. R. García (CIEMAT) to include the physics of C(N,N'3A) reactions from NRESP71. >> 863 >> 864 if ( LR[it] > 0 ) // If there is breakup of the residual nucleus LR(flag LR in ENDF)>0 (i.e. Z=6 MT=52-91 (it=MT-50)). >> 865 { >> 866 // Defining carbon as the target in the reference frame at rest. >> 867 G4ReactionProduct theCarbon(theTarget); >> 868 >> 869 theCarbon.SetMomentum(G4ThreeVector()); >> 870 theCarbon.SetKineticEnergy(0.); >> 871 >> 872 // Creating four reaction products. >> 873 G4ReactionProduct theProds[4]; >> 874 >> 875 // Applying C(N,N'3A) reaction mechanisms in the target rest frame. >> 876 if ( it == 41 ) >> 877 { >> 878 // QI=QM=-7.275 MeV for C-0(N,N')C-C(3A) in ENDF/B-VII.1. This is not the value of the QI of the first step according to the model. So we don't take it. Instead, we set the one we have calculated: QI=(mn+m12C)-(ma+m9Be+Ex9Be)=-8.130 MeV. >> 879 nresp71_model.ApplyMechanismI_NBeA2A(boosted, theCarbon, theProds, -8.130/*QI[it]*/); // N+C --> A[0]+9BE* | 9BE* --> N[1]+8BE | 8BE --> 2*A[2,3]. >> 880 //printf("- QI=%f\n", QI[it]); >> 881 } >> 882 else >> 883 { >> 884 nresp71_model.ApplyMechanismII_ACN2A(boosted, theCarbon, theProds, QI[it]); // N+C --> N'[0]+C* | C* --> A[1]+8BE | 8BE --> 2*A[2,3]. >> 885 } >> 886 >> 887 //printf("it=%d qi=%f \n", it, QI[it]); >> 888 >> 889 // Returning to the reference frame where the target was in motion. >> 890 for ( G4int j=0; j<4; j++ ) >> 891 { >> 892 theProds[j].Lorentz(theProds[j], -1.*theTarget); >> 893 theResult.Get()->AddSecondary(new G4DynamicParticle(theProds[j].GetDefinition(), theProds[j].GetMomentum())); >> 894 } >> 895 >> 896 /*G4double EN0 = theNeutron.GetKineticEnergy(); >> 897 G4double EN1 = theProds[0].GetKineticEnergy(); >> 898 >> 899 G4double EA1 = theProds[1].GetKineticEnergy(); >> 900 G4double EA2 = theProds[2].GetKineticEnergy(); >> 901 G4double EA3 = theProds[3].GetKineticEnergy(); >> 902 >> 903 printf("Q=%f\n", EN1+EA1+EA2+EA3-EN0);*/ >> 904 >> 905 // Killing the primary neutron. >> 906 theResult.Get()->SetStatusChange(stopAndKill); >> 907 >> 908 return true; >> 909 } >> 910 } >> 911 else if ( aDefinition == G4Alpha::Definition() ) // If the outgoing particle is an alpha, ... >> 912 { >> 913 // Added by A. R. García (CIEMAT) to include the physics of C(N,A)9BE reactions from NRESP71. >> 914 >> 915 if ( LR[it] == 0 ) // If Z=6, an alpha particle is emitted and there is no breakup of the residual nucleus LR(flag LR in ENDF)==0. >> 916 { >> 917 // Defining carbon as the target in the reference frame at rest. >> 918 G4ReactionProduct theCarbon(theTarget); >> 919 >> 920 theCarbon.SetMomentum(G4ThreeVector()); >> 921 theCarbon.SetKineticEnergy(0.); >> 922 >> 923 // Creating four reaction products. >> 924 G4ReactionProduct theProds[2]; >> 925 >> 926 // Applying C(N,A)9BE reaction mechanism. >> 927 nresp71_model.ApplyMechanismABE(boosted, theCarbon, theProds); // N+C --> A[0]+9BE[1]. >> 928 >> 929 //G4DynamicParticle *theSec; >> 930 for ( G4int j=0; j<2; j++ ) >> 931 { >> 932 // Returning to the system of reference where the target was in motion. >> 933 theProds[j].Lorentz(theProds[j], -1.*theTarget); >> 934 theResult.Get()->AddSecondary(new G4DynamicParticle(theProds[j].GetDefinition(), theProds[j].GetMomentum())); >> 935 } >> 936 >> 937 // Killing the primary neutron. >> 938 theResult.Get()->SetStatusChange(stopAndKill);; >> 939 >> 940 return true; >> 941 } >> 942 else >> 943 { >> 944 G4Exception("G4ParticleHPInelasticCompFS::CompositeApply()", "G4ParticleInelasticCompFS.cc", FatalException, "Alpha production with LR!=0."); >> 945 } >> 946 } 856 947 857 // Killing the primary neutron. << 948 return false; 858 theResult.Get()->SetStatusChange(stopAnd << 859 return true; << 860 } << 861 G4Exception("G4ParticleHPInelasticCompFS:: << 862 FatalException, "Alpha product << 863 } << 864 return false; << 865 } 949 } 866 950