Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/particle_hp/src/G4ParticleHPFSFissionFS.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/hadronic/models/particle_hp/src/G4ParticleHPFSFissionFS.cc (Version 11.3.0) and /processes/hadronic/models/particle_hp/src/G4ParticleHPFSFissionFS.cc (Version 11.0.p2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 // neutron_hp -- source file                       26 // neutron_hp -- source file
 27 // J.P. Wellisch, Nov-1996                         27 // J.P. Wellisch, Nov-1996
 28 // A prototype of the low energy neutron trans     28 // A prototype of the low energy neutron transport model.
 29 //                                                 29 //
 30 // P. Arce, June-2014 Conversion neutron_hp to     30 // P. Arce, June-2014 Conversion neutron_hp to particle_hp
 31 //                                                 31 //
 32 #include "G4ParticleHPFSFissionFS.hh"              32 #include "G4ParticleHPFSFissionFS.hh"
 33                                                << 
 34 #include "G4Alpha.hh"                          << 
 35 #include "G4Deuteron.hh"                       << 
 36 #include "G4LorentzVector.hh"                  << 
 37 #include "G4Nucleus.hh"                        << 
 38 #include "G4ParticleHPDataUsed.hh"             << 
 39 #include "G4ParticleHPManager.hh"                  33 #include "G4ParticleHPManager.hh"
 40 #include "G4Poisson.hh"                        << 
 41 #include "G4Proton.hh"                         << 
 42 #include "G4ReactionProduct.hh"                    34 #include "G4ReactionProduct.hh"
 43 #include "G4ThreeVector.hh"                    <<  35 #include "G4Nucleus.hh"
                                                   >>  36 #include "G4Proton.hh"
                                                   >>  37 #include "G4Deuteron.hh"
 44 #include "G4Triton.hh"                             38 #include "G4Triton.hh"
                                                   >>  39 #include "G4Alpha.hh"
                                                   >>  40 #include "G4ThreeVector.hh"
                                                   >>  41 #include "G4Poisson.hh"
                                                   >>  42 #include "G4LorentzVector.hh"
                                                   >>  43 #include "G4ParticleHPDataUsed.hh"
 45                                                    44 
 46 void G4ParticleHPFSFissionFS::Init(G4double A, <<  45   void G4ParticleHPFSFissionFS::Init (G4double A, G4double Z, G4int M, G4String & dirName, G4String &, G4ParticleDefinition*  )
 47                                    const G4Str << 
 48 {                                              << 
 49   G4String tString = "/FS/";                   << 
 50   G4bool dbool;                                << 
 51   const G4ParticleHPDataUsed& aFile =          << 
 52     theNames.GetName(static_cast<G4int>(A), st << 
 53   const G4String& filename = aFile.GetName();  << 
 54   SetAZMs(A, Z, M, aFile);                     << 
 55   if (!dbool) {                                << 
 56     hasAnyData = false;                        << 
 57     hasFSData = false;                         << 
 58     hasXsec = false;                           << 
 59     return;                                    << 
 60   }                                            << 
 61                                                << 
 62   std::istringstream theData(std::ios::in);    << 
 63   G4ParticleHPManager::GetInstance()->GetDataS << 
 64                                                << 
 65   G4int infoType, dataType;                    << 
 66   hasFSData = false;                           << 
 67   while (theData >> infoType)  // Loop checkin << 
 68   {                                                46   {
 69     hasFSData = true;                          <<  47     G4String tString = "/FS/";
 70     theData >> dataType;                       <<  48     G4bool dbool;
 71     switch (infoType) {                        <<  49     G4ParticleHPDataUsed aFile = theNames.GetName(static_cast<G4int>(A), static_cast<G4int>(Z), M, dirName, tString, dbool);
 72       case 1:                                  <<  50     G4String filename = aFile.GetName();
 73         if (dataType == 4) theNeutronAngularDi <<  51     SetAZMs( A, Z, M, aFile ); 
 74         if (dataType == 5) thePromptNeutronEnD <<  52     if(!dbool)
 75         if (dataType == 12) theFinalStatePhoto <<  53     {
 76         if (dataType == 14) theFinalStatePhoto <<  54       hasAnyData = false;
 77         if (dataType == 15) theFinalStatePhoto <<  55       hasFSData = false; 
 78         break;                                 <<  56       hasXsec = false;
 79       case 2:                                  <<  57       return;
 80         if (dataType == 1) theFinalStateNeutro << 
 81         break;                                 << 
 82       case 3:                                  << 
 83         if (dataType == 1) theFinalStateNeutro << 
 84         if (dataType == 5) theDelayedNeutronEn << 
 85         break;                                 << 
 86       case 4:                                  << 
 87         if (dataType == 1) theFinalStateNeutro << 
 88         break;                                 << 
 89       case 5:                                  << 
 90         if (dataType == 1) theEnergyRelease.In << 
 91         break;                                 << 
 92       default:                                 << 
 93         G4cout << "G4ParticleHPFSFissionFS::In << 
 94         throw G4HadronicException(__FILE__, __ << 
 95                                   "G4ParticleH << 
 96         break;                                 << 
 97     }                                              58     }
                                                   >>  59    //std::ifstream theData(filename, std::ios::in);
                                                   >>  60    std::istringstream theData(std::ios::in);
                                                   >>  61    G4ParticleHPManager::GetInstance()->GetDataStream(filename,theData);
                                                   >>  62 
                                                   >>  63     // here it comes
                                                   >>  64     G4int infoType, dataType;
                                                   >>  65     hasFSData = false; 
                                                   >>  66     while (theData >> infoType) // Loop checking, 11.05.2015, T. Koi
                                                   >>  67     {
                                                   >>  68       hasFSData = true; 
                                                   >>  69       theData >> dataType;
                                                   >>  70       switch(infoType)
                                                   >>  71       {
                                                   >>  72         case 1: 
                                                   >>  73           if(dataType==4) theNeutronAngularDis.Init(theData); 
                                                   >>  74           if(dataType==5) thePromptNeutronEnDis.Init(theData); 
                                                   >>  75           if(dataType==12) theFinalStatePhotons.InitMean(theData); 
                                                   >>  76           if(dataType==14) theFinalStatePhotons.InitAngular(theData); 
                                                   >>  77           if(dataType==15) theFinalStatePhotons.InitEnergies(theData); 
                                                   >>  78           break;
                                                   >>  79         case 2:
                                                   >>  80           if(dataType==1) theFinalStateNeutrons.InitMean(theData); 
                                                   >>  81           break;
                                                   >>  82         case 3:
                                                   >>  83           if(dataType==1) theFinalStateNeutrons.InitDelayed(theData); 
                                                   >>  84           if(dataType==5) theDelayedNeutronEnDis.Init(theData);
                                                   >>  85           break;
                                                   >>  86         case 4:
                                                   >>  87           if(dataType==1) theFinalStateNeutrons.InitPrompt(theData); 
                                                   >>  88           break;
                                                   >>  89         case 5:
                                                   >>  90           if(dataType==1) theEnergyRelease.Init(theData); 
                                                   >>  91           break;
                                                   >>  92         default:
                                                   >>  93           G4cout << "G4ParticleHPFSFissionFS::Init: unknown data type"<<dataType<<G4endl;
                                                   >>  94           throw G4HadronicException(__FILE__, __LINE__, "G4ParticleHPFSFissionFS::Init: unknown data type");
                                                   >>  95           break;
                                                   >>  96       }
                                                   >>  97     }
                                                   >>  98     //targetMass = theFinalStateNeutrons.GetTargetMass();
                                                   >>  99     //theData.close();
 98   }                                               100   }
 99 }                                              << 101   
100                                                << 102   
101 G4DynamicParticleVector* G4ParticleHPFSFission << 103   G4DynamicParticleVector * G4ParticleHPFSFissionFS::ApplyYourself(G4int nPrompt, 
102                                                << 104                                                  G4int nDelayed, G4double * theDecayConst)
103 {                                              << 105   {  
104   G4int i;                                     << 106     G4int i;
105   auto aResult = new G4DynamicParticleVector;  << 107     G4DynamicParticleVector * aResult = new G4DynamicParticleVector;
106   G4ReactionProduct boosted;                   << 108     G4ReactionProduct boosted;
107   boosted.Lorentz(*(fCache.Get().theNeutronRP) << 109     boosted.Lorentz( *(fCache.Get().theNeutronRP) , *(fCache.Get().theTarget) );
108   G4double eKinetic = boosted.GetKineticEnergy << 110     G4double eKinetic = boosted.GetKineticEnergy();
109                                                << 111     
110   // Build neutrons                            << 112 // Build neutrons
111   std::vector<G4ReactionProduct> theNeutrons;  << 113     G4ReactionProduct * theNeutrons = new G4ReactionProduct[nPrompt+nDelayed];
112   for (i = 0; i < nPrompt + nDelayed; ++i) {   << 114     for(i=0; i<nPrompt+nDelayed; i++)
113     theNeutrons.emplace_back();                << 115     {
114     theNeutrons[i].SetDefinition(G4Neutron::Ne << 116       theNeutrons[i].SetDefinition(G4Neutron::Neutron());
115   }                                            << 117     }
116                                                << 118     
117   // sample energies                           << 119 // sample energies
118   G4int it, dummy;                             << 120    G4int it, dummy;
119   G4double tempE;                              << 121    G4double tempE;
120   for (i = 0; i < nPrompt; ++i) {              << 122    for(i=0; i<nPrompt; i++)
121     tempE =                                    << 123    {
122       thePromptNeutronEnDis.Sample(eKinetic, d << 124      tempE = thePromptNeutronEnDis.Sample(eKinetic, dummy); // energy distribution (file5) always in lab
123     theNeutrons[i].SetKineticEnergy(tempE);    << 125      theNeutrons[i].SetKineticEnergy(tempE);
124   }                                            << 126    }
125   for (i = nPrompt; i < nPrompt + nDelayed; ++ << 127    for(i=nPrompt; i<nPrompt+nDelayed; i++)
126     theNeutrons[i].SetKineticEnergy(theDelayed << 128    {
127     if (it == 0) theNeutrons[i].SetKineticEner << 129      theNeutrons[i].SetKineticEnergy(theDelayedNeutronEnDis.Sample(eKinetic, it));  // dito
128     theDecayConst[i - nPrompt] = theFinalState << 130      if(it==0) theNeutrons[i].SetKineticEnergy(thePromptNeutronEnDis.Sample(eKinetic, dummy));
129   }                                            << 131      theDecayConst[i-nPrompt] = theFinalStateNeutrons.GetDecayConstant(it); // this is returned
130                                                << 132    }
131   // sample neutron angular distribution       << 133 
132   for (i = 0; i < nPrompt + nDelayed; ++i) {   << 134 // sample neutron angular distribution
133     theNeutronAngularDis.SampleAndUpdate(      << 135    for(i=0; i<nPrompt+nDelayed; i++)
134       theNeutrons[i]);  // angular comes back  << 136    {
135   }                                            << 137      theNeutronAngularDis.SampleAndUpdate(theNeutrons[i]); // angular comes back in lab automatically
136                                                << 138    }
137   // already in lab. Add neutrons to dynamic p << 139    
138   for (i = 0; i < nPrompt + nDelayed; ++i) {   << 140 // already in lab. Add neutrons to dynamic particle vector
139     auto dp = new G4DynamicParticle;           << 141    for(i=0; i<nPrompt+nDelayed; i++)
140     dp->SetDefinition(theNeutrons[i].GetDefini << 142    {
141     dp->SetMomentum(theNeutrons[i].GetMomentum << 143       G4DynamicParticle * dp = new G4DynamicParticle;
142     aResult->push_back(dp);                    << 144       dp->SetDefinition(theNeutrons[i].GetDefinition());
                                                   >> 145       dp->SetMomentum(theNeutrons[i].GetMomentum());
                                                   >> 146       aResult->push_back(dp);
                                                   >> 147    }
                                                   >> 148    delete [] theNeutrons;
                                                   >> 149 // return the result
                                                   >> 150    return aResult;
143   }                                               151   }
144   return aResult;                              << 
145 }                                              << 
146                                                   152 
147 void G4ParticleHPFSFissionFS::SampleNeutronMul << 153 void G4ParticleHPFSFissionFS::SampleNeutronMult(G4int&all, G4int&Prompt, G4int&delayed, G4double eKinetic, G4int off)
148                                                << 
149 {                                                 154 {
150   G4double promptNeutronMulti = 0;             << 155    G4double promptNeutronMulti = 0;
151   promptNeutronMulti = theFinalStateNeutrons.G << 156    promptNeutronMulti = theFinalStateNeutrons.GetPrompt(eKinetic);
152   G4double delayedNeutronMulti = 0;            << 157    G4double delayedNeutronMulti = 0;
153   delayedNeutronMulti = theFinalStateNeutrons. << 158    delayedNeutronMulti = theFinalStateNeutrons.GetDelayed(eKinetic);
154                                                << 159    
155   if (delayedNeutronMulti == 0 && promptNeutro << 160    if(delayedNeutronMulti==0&&promptNeutronMulti==0)
156     Prompt = 0;                                << 161    {
157     delayed = 0;                               << 162      Prompt = 0;
158     G4double totalNeutronMulti = theFinalState << 163      delayed = 0;
159     all = (G4int)G4Poisson(totalNeutronMulti - << 164      G4double totalNeutronMulti = theFinalStateNeutrons.GetMean(eKinetic);
160     all += off;                                << 165      all = G4Poisson(totalNeutronMulti-off);
161   }                                            << 166      all += off;
162   else {                                       << 167    }
163     Prompt = (G4int)G4Poisson(promptNeutronMul << 168    else
164     Prompt += off;                             << 169    {   
165     delayed = (G4int)G4Poisson(delayedNeutronM << 170      Prompt  = G4Poisson(promptNeutronMulti-off);
166     all = Prompt + delayed;                    << 171      Prompt += off;
167   }                                            << 172      delayed = G4Poisson(delayedNeutronMulti);
                                                   >> 173      all = Prompt+delayed;
                                                   >> 174    }
168 }                                                 175 }
169                                                   176 
170 G4DynamicParticleVector* G4ParticleHPFSFission << 177 G4DynamicParticleVector * G4ParticleHPFSFissionFS::GetPhotons()
171 {                                                 178 {
172   // sample photons                            << 179 // sample photons
173   G4ReactionProductVector* temp;               << 180    G4ReactionProductVector * temp;
174   G4ReactionProduct boosted;                   << 181    G4ReactionProduct boosted;
175                                                << 182 // the photon distributions are in the Nucleus rest frame.
176   // the photon distributions are in the Nucle << 183    boosted.Lorentz( *(fCache.Get().theNeutronRP) , *(fCache.Get().theTarget) );
177   boosted.Lorentz(*(fCache.Get().theNeutronRP) << 184    G4double anEnergy = boosted.GetKineticEnergy();
178   G4double anEnergy = boosted.GetKineticEnergy << 185    temp = theFinalStatePhotons.GetPhotons(anEnergy);
179   temp = theFinalStatePhotons.GetPhotons(anEne << 186    if(temp == 0) { return 0; }
180   if (temp == nullptr) {                       << 187 
181     return nullptr;                            << 188 // lorentz transform, and add photons to final state
182   }                                            << 189    unsigned int i;
183                                                << 190    G4DynamicParticleVector * result = new G4DynamicParticleVector;
184   // lorentz transform, and add photons to fin << 191    for(i=0; i<temp->size(); i++)
185   unsigned int i;                              << 192    {
186   auto result = new G4DynamicParticleVector;   << 193      // back to lab
187   for (i = 0; i < temp->size(); ++i) {         << 194      temp->operator[](i)->Lorentz(*(temp->operator[](i)), -1.* (*(fCache.Get().theTarget)) );
188     // back to lab                             << 195      G4DynamicParticle * theOne = new G4DynamicParticle;
189     temp->operator[](i)->Lorentz(*(temp->opera << 196      theOne->SetDefinition(temp->operator[](i)->GetDefinition());
190     auto theOne = new G4DynamicParticle;       << 197      theOne->SetMomentum(temp->operator[](i)->GetMomentum());
191     theOne->SetDefinition(temp->operator[](i)- << 198      result->push_back(theOne);
192     theOne->SetMomentum(temp->operator[](i)->G << 199      delete temp->operator[](i);
193     result->push_back(theOne);                 << 200    }
194     delete temp->operator[](i);                << 201    delete temp;
195   }                                            << 202    return result;
196   delete temp;                                 << 
197   return result;                               << 
198 }                                                 203 }
199                                                   204