Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // neutron_hp -- source file 26 // neutron_hp -- source file 27 // J.P. Wellisch, Nov-1996 27 // J.P. Wellisch, Nov-1996 28 // A prototype of the low energy neutron trans 28 // A prototype of the low energy neutron transport model. 29 // 29 // 30 // 09-May-06 fix in Sample by T. Koi 30 // 09-May-06 fix in Sample by T. Koi 31 // 080318 Fix Compilation warnings - gcc-4.3.0 31 // 080318 Fix Compilation warnings - gcc-4.3.0 by T. Koi 32 // (This fix has a real effect to the c << 32 // (This fix has a real effect to the code.) 33 // 080409 Fix div0 error with G4FPE by T. Koi 33 // 080409 Fix div0 error with G4FPE by T. Koi 34 // 080612 Fix contribution from Benoit Pirard 34 // 080612 Fix contribution from Benoit Pirard and Laurent Desorgher (Univ. Bern) #1 35 // 080714 Limiting the sum of energy of second 35 // 080714 Limiting the sum of energy of secondary particles by T. Koi 36 // 080801 Fix div0 error wiht G4FPE and memory 36 // 080801 Fix div0 error wiht G4FPE and memory leak by T. Koi 37 // 081024 G4NucleiPropertiesTable:: to G4Nucle 37 // 081024 G4NucleiPropertiesTable:: to G4NucleiProperties:: 38 // 38 // 39 // P. Arce, June-2014 Conversion neutron_hp to 39 // P. Arce, June-2014 Conversion neutron_hp to particle_hp 40 // 40 // 41 // June-2019 - E. Mendoza --> redefinition of << 42 // different than neutrons. << 43 // << 44 // V. Ivanchenko, July-2023 Basic revision of << 45 // << 46 << 47 #include "G4ParticleHPContAngularPar.hh" 41 #include "G4ParticleHPContAngularPar.hh" 48 << 49 #include "G4ParticleDefinition.hh" << 50 #include "G4Alpha.hh" << 51 #include "G4Deuteron.hh" << 52 #include "G4Electron.hh" << 53 #include "G4Gamma.hh" << 54 #include "G4He3.hh" << 55 #include "G4IonTable.hh" << 56 #include "G4Neutron.hh" << 57 #include "G4NucleiProperties.hh" << 58 #include "G4ParticleHPKallbachMannSyst.hh" << 59 #include "G4ParticleHPLegendreStore.hh" << 60 #include "G4ParticleHPManager.hh" << 61 #include "G4ParticleHPVector.hh" << 62 #include "G4PhysicalConstants.hh" 42 #include "G4PhysicalConstants.hh" >> 43 #include "G4SystemOfUnits.hh" >> 44 #include "G4ParticleHPLegendreStore.hh" >> 45 #include "G4Gamma.hh" >> 46 #include "G4Electron.hh" 63 #include "G4Positron.hh" 47 #include "G4Positron.hh" >> 48 #include "G4Neutron.hh" 64 #include "G4Proton.hh" 49 #include "G4Proton.hh" 65 #include "G4SystemOfUnits.hh" << 50 #include "G4Deuteron.hh" 66 #include "G4Triton.hh" 51 #include "G4Triton.hh" 67 << 52 #include "G4He3.hh" >> 53 #include "G4Alpha.hh" >> 54 #include "G4ParticleHPVector.hh" >> 55 #include "G4NucleiProperties.hh" >> 56 #include "G4ParticleHPKallbachMannSyst.hh" >> 57 #include "G4IonTable.hh" 68 #include <set> 58 #include <set> 69 #include <vector> << 59 70 << 60 G4ParticleHPContAngularPar::G4ParticleHPContAngularPar( G4ParticleDefinition* projectile ) 71 G4ParticleHPContAngularPar::G4ParticleHPContAn << 61 { 72 { << 62 theAngular = 0; 73 theProjectile = (nullptr == p) ? G4Neutron:: << 63 if ( fCache.Get() == 0 ) cacheInit(); 74 toBeCached v; << 64 fCache.Get()->currentMeanEnergy = -2; 75 fCache.Put(v); << 65 fCache.Get()->fresh = true; 76 if (G4ParticleHPManager::GetInstance()->GetD << 77 } << 78 << 79 G4ParticleHPContAngularPar::G4ParticleHPContAn << 80 { << 81 theEnergy = val.theEnergy; << 82 nEnergies = val.nEnergies; << 83 nDiscreteEnergies = val.nDiscreteEnergies; << 84 nAngularParameters = val.nAngularParameters; << 85 theProjectile = val.theProjectile; << 86 theManager = val.theManager; << 87 theInt = val.theInt; << 88 adjustResult = val.adjustResult; << 89 theMinEner = val.theMinEner; << 90 theMaxEner = val.theMaxEner; << 91 theEnergiesTransformed = val.theEnergiesTran << 92 theDiscreteEnergies = val.theDiscreteEnergie << 93 theDiscreteEnergiesOwn = val.theDiscreteEner << 94 toBeCached v; << 95 fCache.Put(v); << 96 const std::size_t esize = nEnergies > 0 ? nE << 97 theAngular = new G4ParticleHPList[esize]; << 98 for (G4int ie = 0; ie < nEnergies; ++ie) { << 99 theAngular[ie].SetLabel(val.theAngular[ie] << 100 for (G4int ip = 0; ip < nAngularParameters << 101 theAngular[ie].SetValue(ip, val.theAngul << 102 } << 103 } << 104 } << 105 << 106 G4ParticleHPContAngularPar::~G4ParticleHPContA << 107 { << 108 delete[] theAngular; << 109 } << 110 << 111 void G4ParticleHPContAngularPar::Init(std::ist << 112 { << 113 adjustResult = true; 66 adjustResult = true; 114 if (G4ParticleHPManager::GetInstance()->GetD << 67 if ( getenv( "G4PHP_DO_NOT_ADJUST_FINAL_STATE" ) ) adjustResult = false; 115 68 116 theProjectile = (nullptr == p) ? G4Neutron:: << 69 theMinEner = DBL_MAX; >> 70 theMaxEner = -DBL_MAX; >> 71 theProjectile = projectile; 117 72 118 aDataFile >> theEnergy >> nEnergies >> nDisc << 73 theEnergy = 0.0; 119 theEnergy *= eV; << 74 nEnergies = 0; 120 const std::size_t esize = nEnergies > 0 ? nE << 75 nDiscreteEnergies = 0; 121 theAngular = new G4ParticleHPList[esize]; << 76 nAngularParameters = 0; 122 G4double sEnergy; << 123 for (G4int i = 0; i < nEnergies; ++i) { << 124 aDataFile >> sEnergy; << 125 sEnergy *= eV; << 126 theAngular[i].SetLabel(sEnergy); << 127 theAngular[i].Init(aDataFile, nAngularPara << 128 theMinEner = std::min(theMinEner, sEnergy) << 129 theMaxEner = std::max(theMaxEner, sEnergy) << 130 } << 131 } 77 } 132 78 133 G4ReactionProduct* G4ParticleHPContAngularPar: << 79 void G4ParticleHPContAngularPar::Init(std::istream & aDataFile, G4ParticleDefinition* projectile) 134 << 80 { 135 << 81 adjustResult = true; 136 { << 82 if ( getenv( "G4PHP_DO_NOT_ADJUST_FINAL_STATE" ) ) adjustResult = false; 137 // The following line is needed because it m << 83 138 adjustResult = true; << 84 theProjectile = projectile; 139 if (G4ParticleHPManager::GetInstance()->GetD << 85 140 << 86 aDataFile >> theEnergy >> nEnergies >> nDiscreteEnergies >> nAngularParameters; 141 auto result = new G4ReactionProduct; << 87 /*if( getenv("G4PHPTEST") )*/ 142 auto Z = static_cast<G4int>(massCode / 1000) << 88 theEnergy *= eV; 143 auto A = static_cast<G4int>(massCode - 1000 << 89 theAngular = new G4ParticleHPList [nEnergies]; 144 if (massCode == 0) { << 90 for(G4int i=0; i<nEnergies; i++) 145 result->SetDefinition(G4Gamma::Gamma()); << 91 { 146 } << 92 G4double sEnergy; 147 else if (A == 0) { << 93 aDataFile >> sEnergy; 148 result->SetDefinition(G4Electron::Electron << 94 sEnergy*=eV; 149 if (Z == 1) result->SetDefinition(G4Positr << 95 theAngular[i].SetLabel(sEnergy); 150 } << 96 theAngular[i].Init(aDataFile, nAngularParameters, 1.); 151 else if (A == 1) { << 97 theMinEner = std::min(theMinEner,sEnergy); 152 result->SetDefinition(G4Neutron::Neutron() << 98 theMaxEner = std::max(theMaxEner,sEnergy); 153 if (Z == 1) result->SetDefinition(G4Proton << 99 } 154 } << 155 else if (A == 2) { << 156 result->SetDefinition(G4Deuteron::Deuteron << 157 } << 158 else if (A == 3) { << 159 result->SetDefinition(G4Triton::Triton()); << 160 if (Z == 2) result->SetDefinition(G4He3::H << 161 } << 162 else if (A == 4) { << 163 result->SetDefinition(G4Alpha::Alpha()); << 164 if (Z != 2) << 165 throw G4HadronicException(__FILE__, __LI << 166 "G4ParticleHPC << 167 } << 168 else { << 169 result->SetDefinition(G4IonTable::GetIonTa << 170 } 100 } 171 101 172 G4int i(0); << 102 G4ReactionProduct * 173 G4int it(0); << 103 G4ParticleHPContAngularPar::Sample(G4double anEnergy, G4double massCode, G4double /*targetMass*/, 174 G4double fsEnergy(0); << 104 G4int angularRep, G4int /*interpolE*/ ) 175 G4double cosTh(0); << 105 { 176 /* << 106 if( getenv("G4PHPTEST") ) G4cout << " G4ParticleHPContAngularPar::Sample " << anEnergy << " " << massCode << " " << angularRep << G4endl; //GDEB 177 G4cout << "G4ParticleHPContAngularPar::Sampl << 107 if ( fCache.Get() == 0 ) cacheInit(); 178 << " angularRep=" << angularRep << " << 108 G4ReactionProduct * result = new G4ReactionProduct; 179 << " Ne=" << nEnergies << G4endl; << 109 G4int Z = static_cast<G4int>(massCode/1000); 180 */ << 110 G4int A = static_cast<G4int>(massCode-1000*Z); 181 if (angularRep == 1) { << 111 if(massCode==0) 182 if (nDiscreteEnergies != 0) { << 112 { 183 // 1st check remaining_energy << 113 result->SetDefinition(G4Gamma::Gamma()); 184 // if this is the first set it. (How?) << 114 } 185 if (fCache.Get().fresh) { << 115 else if(A==0) 186 // Discrete Lines, larger energies com << 116 { 187 // Continues Emssions, low to high << 117 result->SetDefinition(G4Electron::Electron()); 188 fCache.Get().remaining_energy = << 118 if(Z==1) result->SetDefinition(G4Positron::Positron()); 189 std::max(theAngular[0].GetLabel(), t << 119 } 190 fCache.Get().fresh = false; << 120 else if(A==1) 191 } << 121 { 192 << 122 result->SetDefinition(G4Neutron::Neutron()); 193 // Cheating for small remaining_energy << 123 if(Z==1) result->SetDefinition(G4Proton::Proton()); 194 // Temporary solution << 124 } 195 if (nDiscreteEnergies == nEnergies) { << 125 else if(A==2) 196 fCache.Get().remaining_energy = << 126 { 197 std::max(fCache.Get().remaining_ener << 127 result->SetDefinition(G4Deuteron::Deuteron()); 198 theAngular[nDiscreteEnergie << 128 } 199 } << 129 else if(A==3) 200 else { << 130 { 201 G4double cont_min = 0.0; << 131 result->SetDefinition(G4Triton::Triton()); 202 for (G4int j = nDiscreteEnergies; j < << 132 if(Z==2) result->SetDefinition(G4He3::He3()); 203 cont_min = theAngular[j].GetLabel(); << 133 } 204 if (theAngular[j].GetValue(0) != 0.0 << 134 else if(A==4) 205 } << 135 { 206 fCache.Get().remaining_energy = std::m << 136 result->SetDefinition(G4Alpha::Alpha()); 207 fCache.Get().remaining_energy, std:: << 137 if(Z!=2) throw G4HadronicException(__FILE__, __LINE__, "G4ParticleHPContAngularPar: Unknown ion case 1"); 208 << 138 } 209 } << 139 else 210 << 140 { 211 G4double random = G4UniformRand(); << 141 result->SetDefinition(G4IonTable::GetIonTable()->GetIon(Z,A,0)); 212 auto running = new G4double[nEnergies + << 142 } 213 running[0] = 0.0; << 143 G4int i(0); >> 144 G4int it(0); >> 145 G4double fsEnergy(0); >> 146 G4double cosTh(0); 214 147 215 G4double delta; << 148 if( angularRep == 1 ) 216 for (G4int j = 0; j < nDiscreteEnergies; << 149 { 217 delta = 0.0; << 150 // 080612 Fix contribution from Benoit Pirard and Laurent Desorgher (Univ. Bern) #1 218 if (theAngular[j].GetLabel() <= fCache << 151 //if (interpolE == 2) 219 delta = theAngular[j].GetValue(0); << 152 //110609 above was wrong interupition, pointed out by E.Mendoza and D.Cano (CIMAT) 220 running[j + 1] = running[j] + delta; << 153 //Following are reviesd version written by T.Koi (SLAC) 221 } << 154 if ( nDiscreteEnergies != 0 ) >> 155 { 222 156 223 G4double tot_prob_DIS = std::max(running << 157 //1st check remaining_energy >> 158 // if this is the first set it. (How?) >> 159 if ( fCache.Get()->fresh == true ) >> 160 { >> 161 //Discrete Lines, larger energies come first >> 162 //Continues Emssions, low to high LAST >> 163 fCache.Get()->remaining_energy = std::max ( theAngular[0].GetLabel() , theAngular[nEnergies-1].GetLabel() ); >> 164 fCache.Get()->fresh = false; >> 165 } >> 166 >> 167 //Cheating for small remaining_energy >> 168 //TEMPORAL SOLUTION >> 169 if ( nDiscreteEnergies == nEnergies ) >> 170 { >> 171 fCache.Get()->remaining_energy = std::max ( fCache.Get()->remaining_energy , theAngular[nDiscreteEnergies-1].GetLabel() ); //Minimum Line >> 172 } >> 173 else >> 174 { >> 175 //G4double cont_min = theAngular[nDiscreteEnergies].GetLabel(); >> 176 //if ( theAngular[nDiscreteEnergies].GetLabel() == 0.0 ) cont_min = theAngular[nDiscreteEnergies+1].GetLabel(); >> 177 G4double cont_min=0.0; >> 178 for ( G4int j = nDiscreteEnergies ; j < nEnergies ; j++ ) >> 179 { >> 180 cont_min = theAngular[j].GetLabel(); >> 181 if ( theAngular[j].GetValue(0) != 0.0 ) break; >> 182 } >> 183 fCache.Get()->remaining_energy = std::max ( fCache.Get()->remaining_energy , std::min ( theAngular[nDiscreteEnergies-1].GetLabel() , cont_min ) ); //Minimum Line or grid >> 184 } >> 185 // >> 186 G4double random = G4UniformRand(); 224 187 225 G4double delta1; << 188 G4double * running = new G4double[nEnergies+1]; 226 for (G4int j = nDiscreteEnergies; j < nE << 189 running[0] = 0.0; 227 delta1 = 0.0; << 228 G4double e_low = 0.0; << 229 G4double e_high = 0.0; << 230 if (theAngular[j].GetLabel() <= fCache << 231 delta1 = theAngular[j].GetValue(0); << 232 << 233 // To calculate Prob. e_low and e_high << 234 // There are two cases: << 235 // 1: theAngular[nDiscreteEnergies].Ge << 236 // delta1 should be used between j- << 237 // At j = nDiscreteEnergies (the fi << 238 if (theAngular[j].GetLabel() != 0) { << 239 if (j == nDiscreteEnergies) { << 240 e_low = 0.0 / eV; << 241 } << 242 else { << 243 if (j < 1) j = 1; // Protection a << 244 e_low = theAngular[j - 1].GetLabel << 245 } << 246 e_high = theAngular[j].GetLabel() / << 247 } << 248 190 249 // 2: theAngular[nDiscreteEnergies].Ge << 191 for ( G4int j = 0 ; j < nDiscreteEnergies ; j++ ) 250 // delta1 should be used between j << 192 { 251 if (theAngular[j].GetLabel() == 0.0) { << 193 G4double delta = 0.0; 252 e_low = theAngular[j].GetLabel() / e << 194 if ( theAngular[j].GetLabel() <= fCache.Get()->remaining_energy ) delta = theAngular[i].GetValue(0); 253 if (j != nEnergies - 1) { << 195 running[j+1] = running[j] + delta; 254 e_high = theAngular[j + 1].GetLabe << 196 } >> 197 G4double tot_prob_DIS = running[ nDiscreteEnergies ]; >> 198 >> 199 for ( G4int j = nDiscreteEnergies ; j < nEnergies ; j++ ) >> 200 { >> 201 G4double delta = 0.0; >> 202 G4double e_low = 0.0; >> 203 G4double e_high = 0.0; >> 204 if ( theAngular[j].GetLabel() <= fCache.Get()->remaining_energy ) delta = theAngular[j].GetValue(0); >> 205 >> 206 //To calculate Prob. e_low and e_high should be in eV >> 207 //There are two case >> 208 //1:theAngular[nDiscreteEnergies].GetLabel() != 0.0 >> 209 // delta should be used between j-1 and j >> 210 // At j = nDiscreteEnergies (the first) e_low should be set explicitly >> 211 if ( theAngular[j].GetLabel() != 0 ) >> 212 { >> 213 if ( j == nDiscreteEnergies ) { >> 214 e_low = 0.0/eV; >> 215 } else { >> 216 e_low = theAngular[j-1].GetLabel()/eV; >> 217 } >> 218 e_high = theAngular[j].GetLabel()/eV; >> 219 } >> 220 //2:theAngular[nDiscreteEnergies].GetLabel() == 0.0 >> 221 // delta should be used between j and j+1 >> 222 if ( theAngular[j].GetLabel() == 0.0 ) { >> 223 e_low = theAngular[j].GetLabel()/eV; >> 224 if ( j != nEnergies-1 ) { >> 225 e_high = theAngular[j+1].GetLabel()/eV; >> 226 } else { >> 227 e_high = theAngular[j].GetLabel()/eV; >> 228 if ( theAngular[j].GetValue(0) != 0.0 ) { >> 229 throw G4HadronicException(__FILE__, __LINE__, "G4ParticleHPContAngularPar: Unexpected non zero value of theAngular[nEnergies-1].GetValue(0)"); >> 230 } >> 231 } >> 232 } >> 233 >> 234 running[j+1] = running[j] + ( ( e_high - e_low ) * delta ); >> 235 } >> 236 G4double tot_prob_CON = running[ nEnergies ] - running[ nDiscreteEnergies ]; >> 237 >> 238 /* >> 239 For FPE debugging >> 240 if (tot_prob_DIS + tot_prob_CON == 0 ) { >> 241 G4cout << "TKDB tot_prob_DIS + tot_prob_CON " << tot_prob_DIS + tot_prob_CON << G4endl; >> 242 G4cout << "massCode " << massCode << G4endl; >> 243 G4cout << "nDiscreteEnergies " << nDiscreteEnergies << " nEnergies " << nEnergies << G4endl; >> 244 for ( int j = nDiscreteEnergies ; j < nEnergies ; j++ ) { >> 245 G4cout << j << " " << theAngular[j].GetLabel() << " " << theAngular[j].GetValue(0) << G4endl; >> 246 } 255 } 247 } 256 else { << 248 */ 257 e_high = theAngular[j].GetLabel() << 249 // Normalize random 258 } << 250 random *= (tot_prob_DIS + tot_prob_CON); 259 } << 251 //2nd Judge Discrete or not This shoudl be relatively close to 1 For safty 260 << 252 if ( random <= ( tot_prob_DIS / ( tot_prob_DIS + tot_prob_CON ) ) || nDiscreteEnergies == nEnergies ) 261 running[j + 1] = running[j] + ((e_high << 253 { 262 } << 254 // Discrete Emission 263 G4double tot_prob_CON = std::max(running << 255 for ( G4int j = 0 ; j < nDiscreteEnergies ; j++ ) 264 << 256 { 265 // Give up in the pathological case of n << 257 //Here we should use i+1 266 if (tot_prob_DIS == 0.0 && tot_prob_CON << 258 if ( random < running[ j+1 ] ) 267 delete[] running; << 259 { 268 return result; << 260 it = j; 269 } << 261 break; 270 // Normalize random << 262 } 271 random *= (tot_prob_DIS + tot_prob_CON); << 263 } 272 // 2nd Judge Discrete or not << 264 fsEnergy = theAngular[ it ].GetLabel(); 273 << 265 274 // This should be relatively close to 1 << 266 G4ParticleHPLegendreStore theStore(1); 275 if (random <= (tot_prob_DIS / (tot_prob_ << 267 theStore.Init(0,fsEnergy,nAngularParameters); 276 || nDiscreteEnergies == nEnergies) << 268 for (G4int j=0;j<nAngularParameters;j++) >> 269 { >> 270 theStore.SetCoeff(0,j,theAngular[it].GetValue(j)); >> 271 } >> 272 // use it to sample. >> 273 cosTh = theStore.SampleMax(fsEnergy); >> 274 //Done >> 275 } >> 276 else >> 277 { >> 278 // Continuous Emission >> 279 for ( G4int j = nDiscreteEnergies ; j < nEnergies ; j++ ) >> 280 { >> 281 //Here we should use i >> 282 if ( random < running[ j ] ) >> 283 { >> 284 it = j; >> 285 break; >> 286 } >> 287 } >> 288 >> 289 G4double x1 = running[it-1]; >> 290 G4double x2 = running[it]; >> 291 >> 292 G4double y1 = 0.0; >> 293 if ( it != nDiscreteEnergies ) >> 294 y1 = theAngular[it-1].GetLabel(); >> 295 G4double y2 = theAngular[it].GetLabel(); >> 296 >> 297 fsEnergy = theInt.Interpolate(theManager.GetInverseScheme(it), >> 298 random,x1,x2,y1,y2); >> 299 >> 300 G4ParticleHPLegendreStore theStore(2); >> 301 theStore.Init(0,y1,nAngularParameters); >> 302 theStore.Init(1,y2,nAngularParameters); >> 303 theStore.SetManager(theManager); >> 304 for (G4int j=0;j<nAngularParameters;j++) >> 305 { >> 306 G4int itt = it; >> 307 if ( it == nDiscreteEnergies ) itt = it+1; //"This case "it-1" has data for Discrete, so we will use an extrpolate values it and it+1 >> 308 if ( it == 0 ) >> 309 { >> 310 //Safty for unexpected it = 0; >> 311 //G4cout << "110611 G4ParticleHPContAngularPar::Sample it = 0; invetigation required " << G4endl; >> 312 itt = it+1; >> 313 } >> 314 theStore.SetCoeff(0,j,theAngular[itt-1].GetValue(j)); >> 315 theStore.SetCoeff(1,j,theAngular[itt].GetValue(j)); >> 316 } >> 317 // use it to sample. >> 318 cosTh = theStore.SampleMax(fsEnergy); >> 319 >> 320 //Done >> 321 } >> 322 >> 323 //TK080711 >> 324 if( adjustResult ) fCache.Get()->remaining_energy -= fsEnergy; >> 325 //TK080711 >> 326 >> 327 //080801b >> 328 delete[] running; >> 329 //080801b >> 330 } >> 331 else 277 { 332 { 278 // Discrete Emission << 333 // Only continue, TK will clean up 279 for (G4int j = 0; j < nDiscreteEnergie << 280 // Here we should use i+1 << 281 if (random < running[j + 1]) { << 282 it = j; << 283 break; << 284 } << 285 } << 286 fsEnergy = theAngular[it].GetLabel(); << 287 334 288 G4ParticleHPLegendreStore theStore(1); << 335 //080714 289 theStore.Init(0, fsEnergy, nAngularPar << 336 if ( fCache.Get()->fresh == true ) 290 for (G4int j = 0; j < nAngularParamete << 337 { 291 theStore.SetCoeff(0, j, theAngular[i << 338 fCache.Get()->remaining_energy = theAngular[ nEnergies-1 ].GetLabel(); 292 } << 339 fCache.Get()->fresh = false; 293 // use it to sample. << 340 } 294 cosTh = theStore.SampleMax(fsEnergy); << 341 //080714 295 // Done << 342 G4double random = G4UniformRand(); 296 } << 343 G4double * running = new G4double[nEnergies]; 297 else { << 344 running[0]=0; 298 // Continuous emission << 345 G4double weighted = 0; 299 for (G4int j = nDiscreteEnergies; j < << 346 for(i=1; i<nEnergies; i++) 300 // Here we should use i << 347 { 301 if (random < running[j]) { << 348 /* 302 it = j; << 349 if(i!=0) 303 break; << 350 { 304 } << 351 running[i]=running[i-1]; 305 } << 352 } 306 << 353 running[i] += theInt.GetBinIntegral(theManager.GetScheme(i-1), 307 if (it < 1) it = 1; // Protection aga << 354 theAngular[i-1].GetLabel(), theAngular[i].GetLabel(), 308 << 355 theAngular[i-1].GetValue(0), theAngular[i].GetValue(0)); 309 G4double x1 = running[it - 1]; << 356 weighted += theInt.GetWeightedBinIntegral(theManager.GetScheme(i-1), 310 G4double x2 = running[it]; << 357 theAngular[i-1].GetLabel(), theAngular[i].GetLabel(), 311 << 358 theAngular[i-1].GetValue(0), theAngular[i].GetValue(0)); 312 G4double y1 = 0.0; << 359 */ 313 if (it != nDiscreteEnergies) y1 = theA << 360 314 G4double y2 = theAngular[it].GetLabel( << 361 running[i]=running[i-1]; 315 << 362 if ( fCache.Get()->remaining_energy >= theAngular[i].GetLabel() ) 316 fsEnergy = theInt.Interpolate(theManag << 363 { 317 << 364 running[i] += theInt.GetBinIntegral(theManager.GetScheme(i-1), 318 G4ParticleHPLegendreStore theStore(2); << 365 theAngular[i-1].GetLabel(), theAngular[i].GetLabel(), 319 theStore.Init(0, y1, nAngularParameter << 366 theAngular[i-1].GetValue(0), theAngular[i].GetValue(0)); 320 theStore.Init(1, y2, nAngularParameter << 367 weighted += theInt.GetWeightedBinIntegral(theManager.GetScheme(i-1), 321 theStore.SetManager(theManager); << 368 theAngular[i-1].GetLabel(), theAngular[i].GetLabel(), 322 G4int itt; << 369 theAngular[i-1].GetValue(0), theAngular[i].GetValue(0)); 323 for (G4int j = 0; j < nAngularParamete << 370 } 324 itt = it; << 371 } 325 if (it == nDiscreteEnergies) itt = i << 372 // cash the mean energy in this distribution 326 // "This case "it-1" has data for Di << 373 //080409 TKDB 327 // it+1 << 374 if ( nEnergies == 1 || running[nEnergies-1] == 0 ) 328 theStore.SetCoeff(0, j, theAngular[i << 375 fCache.Get()->currentMeanEnergy = 0.0; 329 theStore.SetCoeff(1, j, theAngular[i << 376 else 330 } << 377 { 331 // use it to sample. << 378 fCache.Get()->currentMeanEnergy = weighted/running[nEnergies-1]; 332 cosTh = theStore.SampleMax(fsEnergy); << 379 } 333 << 380 334 // Done << 381 //080409 TKDB 335 } << 382 if ( nEnergies == 1 ) it = 0; 336 << 383 337 // The remaining energy needs to be lowe << 384 //080729 338 // Otherwise additional photons with too << 385 if ( running[nEnergies-1] != 0 ) 339 // adjustResult condition has been remov << 386 { 340 fCache.Get().remaining_energy -= fsEnerg << 387 for ( i = 1 ; i < nEnergies ; i++ ) 341 delete[] running; << 388 { 342 << 389 it = i; 343 // end (nDiscreteEnergies != 0) branch << 390 if ( random < running [ i ] / running [ nEnergies-1 ] ) break; 344 } << 391 } 345 else { << 392 } 346 // Only continue, TK will clean up << 393 347 if (fCache.Get().fresh) { << 394 //080714 348 fCache.Get().remaining_energy = theAng << 395 if ( running [ nEnergies-1 ] == 0 ) it = 0; 349 fCache.Get().fresh = false; << 396 //080714 >> 397 >> 398 if (it<nDiscreteEnergies||it==0) >> 399 { >> 400 if(it == 0) >> 401 { >> 402 fsEnergy = theAngular[it].GetLabel(); >> 403 G4ParticleHPLegendreStore theStore(1); >> 404 theStore.Init(0,fsEnergy,nAngularParameters); >> 405 for(i=0;i<nAngularParameters;i++) >> 406 { >> 407 theStore.SetCoeff(0,i,theAngular[it].GetValue(i)); >> 408 } >> 409 // use it to sample. >> 410 cosTh = theStore.SampleMax(fsEnergy); >> 411 } >> 412 else >> 413 { >> 414 G4double e1, e2; >> 415 e1 = theAngular[it-1].GetLabel(); >> 416 e2 = theAngular[it].GetLabel(); >> 417 fsEnergy = theInt.Interpolate(theManager.GetInverseScheme(it), >> 418 random, >> 419 running[it-1]/running[nEnergies-1], >> 420 running[it]/running[nEnergies-1], >> 421 e1, e2); >> 422 // fill a Legendrestore >> 423 G4ParticleHPLegendreStore theStore(2); >> 424 theStore.Init(0,e1,nAngularParameters); >> 425 theStore.Init(1,e2,nAngularParameters); >> 426 for(i=0;i<nAngularParameters;i++) >> 427 { >> 428 theStore.SetCoeff(0,i,theAngular[it-1].GetValue(i)); >> 429 theStore.SetCoeff(1,i,theAngular[it].GetValue(i)); >> 430 } >> 431 // use it to sample. >> 432 theStore.SetManager(theManager); >> 433 cosTh = theStore.SampleMax(fsEnergy); >> 434 } >> 435 } >> 436 else // continuum contribution >> 437 { >> 438 G4double x1 = running[it-1]/running[nEnergies-1]; >> 439 G4double x2 = running[it]/running[nEnergies-1]; >> 440 G4double y1 = theAngular[it-1].GetLabel(); >> 441 G4double y2 = theAngular[it].GetLabel(); >> 442 fsEnergy = theInt.Interpolate(theManager.GetInverseScheme(it), >> 443 random,x1,x2,y1,y2); >> 444 G4ParticleHPLegendreStore theStore(2); >> 445 theStore.Init(0,y1,nAngularParameters); >> 446 theStore.Init(1,y2,nAngularParameters); >> 447 theStore.SetManager(theManager); >> 448 for(i=0;i<nAngularParameters;i++) >> 449 { >> 450 theStore.SetCoeff(0,i,theAngular[it-1].GetValue(i)); >> 451 theStore.SetCoeff(1,i,theAngular[it].GetValue(i)); >> 452 } >> 453 // use it to sample. >> 454 cosTh = theStore.SampleMax(fsEnergy); >> 455 } >> 456 delete [] running; >> 457 >> 458 //080714 >> 459 if( adjustResult ) fCache.Get()->remaining_energy -= fsEnergy; >> 460 //080714 >> 461 } >> 462 } >> 463 else if(angularRep==2) >> 464 { >> 465 // first get the energy (already the right for this incoming energy) >> 466 G4int j; >> 467 G4double * running = new G4double[nEnergies]; >> 468 running[0]=0; >> 469 G4double weighted = 0; >> 470 if( getenv("G4PHPTEST") ) G4cout << " G4ParticleHPContAngularPar::Sample nEnergies " << nEnergies << G4endl; >> 471 for(j=1; j<nEnergies; j++) >> 472 { >> 473 if(j!=0) running[j]=running[j-1]; >> 474 running[j] += theInt.GetBinIntegral(theManager.GetScheme(j-1), >> 475 theAngular[j-1].GetLabel(), theAngular[j].GetLabel(), >> 476 theAngular[j-1].GetValue(0), theAngular[j].GetValue(0)); >> 477 weighted += theInt.GetWeightedBinIntegral(theManager.GetScheme(j-1), >> 478 theAngular[j-1].GetLabel(), theAngular[j].GetLabel(), >> 479 theAngular[j-1].GetValue(0), theAngular[j].GetValue(0)); >> 480 if( getenv("G4PHPTEST") ) G4cout << " G4ParticleHPContAngularPar::Sample " << j << " running " << running[j] >> 481 << " " << theManager.GetScheme(j-1) << " " << theAngular[j-1].GetLabel() << " " << theAngular[j].GetLabel() << " " << theAngular[j-1].GetValue(0) << " " << theAngular[j].GetValue(0) << G4endl; //GDEB >> 482 } >> 483 // cash the mean energy in this distribution >> 484 //080409 TKDB >> 485 //currentMeanEnergy = weighted/running[nEnergies-1]; >> 486 if ( nEnergies == 1 ) >> 487 fCache.Get()->currentMeanEnergy = 0.0; >> 488 else >> 489 fCache.Get()->currentMeanEnergy = weighted/running[nEnergies-1]; >> 490 >> 491 G4int itt(0); >> 492 G4double randkal = G4UniformRand(); >> 493 //080409 TKDB >> 494 //for(i=0; i<nEnergies; i++) >> 495 for(j=1; j<nEnergies; j++) >> 496 { >> 497 itt = j; >> 498 if(randkal<running[j]/running[nEnergies-1]) break; 350 } 499 } 351 << 500 >> 501 // interpolate the secondary energy. >> 502 G4double x, x1,x2,y1,y2; >> 503 if(itt==0) itt=1; >> 504 x = randkal*running[nEnergies-1]; >> 505 x1 = running[itt-1]; >> 506 x2 = running[itt]; >> 507 G4double compoundFraction; >> 508 // interpolate energy >> 509 y1 = theAngular[itt-1].GetLabel(); >> 510 y2 = theAngular[itt].GetLabel(); >> 511 fsEnergy = theInt.Interpolate(theManager.GetInverseScheme(itt-1), >> 512 x, x1,x2,y1,y2); >> 513 if( getenv("G4PHPTEST") ) G4cout << itt << " G4particleHPContAngularPar fsEnergy " << fsEnergy << " " << theManager.GetInverseScheme(itt-1) << " x " << x << " " << x1 << " " << x2 << " y " << y1 << " " << y2 << G4endl; //GDEB >> 514 // for theta interpolate the compoundFractions >> 515 G4double cLow = theAngular[itt-1].GetValue(1); >> 516 G4double cHigh = theAngular[itt].GetValue(1); >> 517 compoundFraction = theInt.Interpolate(theManager.GetScheme(itt), >> 518 fsEnergy, y1, y2, cLow,cHigh); >> 519 if( getenv("G4PHPTEST") ) G4cout << itt << " G4particleHPContAngularPar compoundFraction " << compoundFraction << " E " << fsEnergy << " " << theManager.GetScheme(itt) << " ener " << fsEnergy << " y " << y1 << " " << y2 << " cLH " << cLow << " " << cHigh << G4endl; //GDEB >> 520 delete [] running; >> 521 >> 522 // get cosTh >> 523 G4double incidentEnergy = anEnergy; >> 524 G4double incidentMass = theProjectile->GetPDGMass(); >> 525 G4double productEnergy = fsEnergy; >> 526 G4double productMass = result->GetMass(); >> 527 G4int targetZ = G4int(fCache.Get()->theTargetCode/1000); >> 528 G4int targetA = G4int(fCache.Get()->theTargetCode-1000*targetZ); >> 529 // To correspond to natural composition (-nat-) data files. >> 530 if ( targetA == 0 ) >> 531 targetA = G4int ( fCache.Get()->theTarget->GetMass()/amu_c2 + 0.5 ); >> 532 G4double targetMass = fCache.Get()->theTarget->GetMass(); >> 533 G4int residualA = targetA+1-A; >> 534 G4int residualZ = targetZ-Z; >> 535 G4double residualMass = residualZ*G4Proton::Proton()->GetPDGMass(); >> 536 residualMass +=(residualA-residualZ)*theProjectile->GetPDGMass(); >> 537 residualMass -= G4NucleiProperties::GetBindingEnergy( residualA , residualZ ); >> 538 G4ParticleHPKallbachMannSyst theKallbach(compoundFraction, >> 539 incidentEnergy, incidentMass, >> 540 productEnergy, productMass, >> 541 residualMass, residualA, residualZ, >> 542 targetMass, targetA, targetZ); >> 543 cosTh = theKallbach.Sample(anEnergy); >> 544 if( getenv("G4PHPTEST") ) G4cout << " G4ParticleHPKallbachMannSyst::Sample resulttest " << cosTh << G4endl; //GDEB >> 545 } >> 546 else if(angularRep>10&&angularRep<16) >> 547 { 352 G4double random = G4UniformRand(); 548 G4double random = G4UniformRand(); 353 auto running = new G4double[nEnergies]; << 549 G4double * running = new G4double[nEnergies]; 354 running[0] = 0; << 550 running[0]=0; 355 G4double weighted = 0; 551 G4double weighted = 0; 356 for (i = 1; i < nEnergies; i++) { << 552 for(i=1; i<nEnergies; i++) 357 running[i] = running[i - 1]; << 553 { 358 if (fCache.Get().remaining_energy >= t << 554 if(i!=0) running[i]=running[i-1]; 359 running[i] += theInt.GetBinIntegral( << 555 running[i] += theInt.GetBinIntegral(theManager.GetScheme(i-1), 360 theManager.GetScheme(i - 1), theAn << 556 theAngular[i-1].GetLabel(), theAngular[i].GetLabel(), 361 theAngular[i - 1].GetValue(0), the << 557 theAngular[i-1].GetValue(0), theAngular[i].GetValue(0)); 362 weighted += theInt.GetWeightedBinInt << 558 weighted += theInt.GetWeightedBinIntegral(theManager.GetScheme(i-1), 363 theManager.GetScheme(i - 1), theAn << 559 theAngular[i-1].GetLabel(), theAngular[i].GetLabel(), 364 theAngular[i - 1].GetValue(0), the << 560 theAngular[i-1].GetValue(0), theAngular[i].GetValue(0)); 365 } << 561 } 366 } << 562 // cash the mean energy in this distribution 367 << 563 //currentMeanEnergy = weighted/running[nEnergies-1]; 368 // Cache the mean energy in this distrib << 564 if ( nEnergies == 1 ) 369 if (nEnergies == 1 || running[nEnergies << 565 fCache.Get()->currentMeanEnergy = 0.0; 370 fCache.Get().currentMeanEnergy = 0.0; << 566 else 371 } << 567 fCache.Get()->currentMeanEnergy = weighted/running[nEnergies-1]; 372 else { << 568 373 fCache.Get().currentMeanEnergy = weigh << 569 //080409 TKDB 374 } << 570 if ( nEnergies == 1 ) it = 0; 375 << 571 //for(i=0; i<nEnergies; i++) 376 if (nEnergies == 1) it = 0; << 572 for(i=1; i<nEnergies; i++) 377 if (running[nEnergies - 1] != 0) { << 573 { 378 for (i = 1; i < nEnergies; i++) { << 574 it = i; 379 it = i; << 575 if(random<running[i]/running[nEnergies-1]) break; 380 if (random < running[i] / running[nE << 381 } << 382 } 576 } 383 << 577 if(it<nDiscreteEnergies||it==0) 384 if (running[nEnergies - 1] == 0) it = 0; << 578 { 385 if (it < nDiscreteEnergies || it == 0) { << 579 if(it==0) 386 if (it == 0) { << 580 { 387 fsEnergy = theAngular[it].GetLabel() << 581 fsEnergy = theAngular[0].GetLabel(); 388 G4ParticleHPLegendreStore theStore(1 << 582 G4ParticleHPVector theStore; 389 theStore.Init(0, fsEnergy, nAngularP << 583 G4int aCounter = 0; 390 for (i = 0; i < nAngularParameters; << 584 for(G4int j=1; j<nAngularParameters; j+=2) 391 theStore.SetCoeff(0, i, theAngular << 585 { >> 586 theStore.SetX(aCounter, theAngular[0].GetValue(j)); >> 587 theStore.SetY(aCounter, theAngular[0].GetValue(j+1)); >> 588 aCounter++; 392 } 589 } 393 // use it to sample. << 590 G4InterpolationManager aMan; 394 cosTh = theStore.SampleMax(fsEnergy) << 591 aMan.Init(angularRep-10, nAngularParameters-1); >> 592 theStore.SetInterpolationManager(aMan); >> 593 cosTh = theStore.Sample(); 395 } 594 } 396 else { << 595 else 397 G4double e1, e2; << 596 { 398 e1 = theAngular[it - 1].GetLabel(); << 597 fsEnergy = theAngular[it].GetLabel(); 399 e2 = theAngular[it].GetLabel(); << 598 G4ParticleHPVector theStore; 400 fsEnergy = theInt.Interpolate(theMan << 599 G4InterpolationManager aMan; 401 runnin << 600 aMan.Init(angularRep-10, nAngularParameters-1); 402 runnin << 601 theStore.SetInterpolationManager(aMan); // Store interpolates f(costh) 403 // fill a Legendrestore << 602 G4InterpolationScheme currentScheme = theManager.GetInverseScheme(it); 404 G4ParticleHPLegendreStore theStore(2 << 603 G4int aCounter = 0; 405 theStore.Init(0, e1, nAngularParamet << 604 for(G4int j=1; j<nAngularParameters; j+=2) 406 theStore.Init(1, e2, nAngularParamet << 605 { 407 for (i = 0; i < nAngularParameters; << 606 theStore.SetX(aCounter, theAngular[it].GetValue(j)); 408 theStore.SetCoeff(0, i, theAngular << 607 theStore.SetY(aCounter, theInt.Interpolate(currentScheme, 409 theStore.SetCoeff(1, i, theAngular << 608 random, >> 609 running[it-1]/running[nEnergies-1], >> 610 running[it]/running[nEnergies-1], >> 611 theAngular[it-1].GetValue(j+1), >> 612 theAngular[it].GetValue(j+1))); >> 613 aCounter++; 410 } 614 } 411 // use it to sample. << 615 cosTh = theStore.Sample(); 412 theStore.SetManager(theManager); << 413 cosTh = theStore.SampleMax(fsEnergy) << 414 } 616 } 415 } 617 } 416 else { // continuum contribution << 618 else 417 G4double x1 = running[it - 1] / runnin << 619 { 418 G4double x2 = running[it] / running[nE << 620 G4double x1 = running[it-1]/running[nEnergies-1]; 419 G4double y1 = theAngular[it - 1].GetLa << 621 G4double x2 = running[it]/running[nEnergies-1]; >> 622 G4double y1 = theAngular[it-1].GetLabel(); 420 G4double y2 = theAngular[it].GetLabel( 623 G4double y2 = theAngular[it].GetLabel(); 421 fsEnergy = theInt.Interpolate(theManag << 624 fsEnergy = theInt.Interpolate(theManager.GetInverseScheme(it), 422 G4ParticleHPLegendreStore theStore(2); << 625 random,x1,x2,y1,y2); 423 theStore.Init(0, y1, nAngularParameter << 626 G4ParticleHPVector theBuff1; 424 theStore.Init(1, y2, nAngularParameter << 627 G4ParticleHPVector theBuff2; 425 theStore.SetManager(theManager); << 628 G4InterpolationManager aMan; 426 for (i = 0; i < nAngularParameters; i+ << 629 aMan.Init(angularRep-10, nAngularParameters-1); 427 theStore.SetCoeff(0, i, theAngular[i << 630 // theBuff1.SetInterpolationManager(aMan); // Store interpolates f(costh) 428 theStore.SetCoeff(1, i, theAngular[i << 631 // theBuff2.SetInterpolationManager(aMan); // Store interpolates f(costh) >> 632 // Bug Report #1366 from L. Russell >> 633 //for(i=0; i<nAngularParameters; i++) // i=1 ist wichtig! >> 634 //{ >> 635 // theBuff1.SetX(i, theAngular[it-1].GetValue(i)); >> 636 // theBuff1.SetY(i, theAngular[it-1].GetValue(i+1)); >> 637 // theBuff2.SetX(i, theAngular[it].GetValue(i)); >> 638 // theBuff2.SetY(i, theAngular[it].GetValue(i+1)); >> 639 // i++; >> 640 //} >> 641 { >> 642 G4int j; >> 643 for(i=0,j=1; i<nAngularParameters; i++,j+=2) >> 644 { >> 645 theBuff1.SetX(i, theAngular[it-1].GetValue(j)); >> 646 theBuff1.SetY(i, theAngular[it-1].GetValue(j+1)); >> 647 theBuff2.SetX(i, theAngular[it].GetValue(j)); >> 648 theBuff2.SetY(i, theAngular[it].GetValue(j+1)); 429 } 649 } 430 // use it to sample. << 431 cosTh = theStore.SampleMax(fsEnergy); << 432 } << 433 delete[] running; << 434 << 435 // The remaining energy needs to be lowe << 436 // *any* case. Otherwise additional pho << 437 // produced - therefore the adjustResul << 438 << 439 fCache.Get().remaining_energy -= fsEnerg << 440 // end if (nDiscreteEnergies != 0) << 441 } << 442 // end of (angularRep == 1) branch << 443 } << 444 else if (angularRep == 2) { << 445 // first get the energy (already the right << 446 G4int j; << 447 auto running = new G4double[nEnergies]; << 448 running[0] = 0; << 449 G4double weighted = 0; << 450 for (j = 1; j < nEnergies; ++j) { << 451 if (j != 0) running[j] = running[j - 1]; << 452 running[j] += theInt.GetBinIntegral(theM << 453 theA << 454 theA << 455 weighted += theInt.GetWeightedBinIntegra << 456 theManager.GetScheme(j - 1), theAngula << 457 theAngular[j - 1].GetValue(0), theAngu << 458 } << 459 << 460 // Cache the mean energy in this distribut << 461 if (nEnergies == 1) << 462 fCache.Get().currentMeanEnergy = 0.0; << 463 else << 464 fCache.Get().currentMeanEnergy = weighte << 465 << 466 G4int itt(0); << 467 G4double randkal = G4UniformRand(); << 468 for (j = 1; j < nEnergies; ++j) { << 469 itt = j; << 470 if (randkal*running[nEnergies - 1] < run << 471 } << 472 << 473 // Interpolate the secondary energy << 474 G4double x, x1, x2, y1, y2; << 475 if (itt == 0) itt = 1; << 476 x = randkal * running[nEnergies - 1]; << 477 x1 = running[itt - 1]; << 478 x2 = running[itt]; << 479 G4double compoundFraction; << 480 // interpolate energy << 481 y1 = theAngular[itt - 1].GetLabel(); << 482 y2 = theAngular[itt].GetLabel(); << 483 fsEnergy = theInt.Interpolate(theManager.G << 484 << 485 // For theta, interpolate the compoundFrac << 486 G4double cLow = theAngular[itt - 1].GetVal << 487 G4double cHigh = theAngular[itt].GetValue( << 488 compoundFraction = theInt.Interpolate(theM << 489 << 490 if (compoundFraction > 1.0) << 491 compoundFraction = 1.0; // Protection a << 492 << 493 delete[] running; << 494 << 495 // get cosTh << 496 G4double incidentEnergy = anEnergy; << 497 G4double incidentMass = theProjectile->Get << 498 G4double productEnergy = fsEnergy; << 499 G4double productMass = result->GetMass(); << 500 auto targetZ = G4int(fCache.Get().theTarge << 501 auto targetA = G4int(fCache.Get().theTarge << 502 << 503 // To correspond to natural composition (- << 504 if (targetA == 0) targetA = G4int(fCache.G << 505 G4double targetMass = fCache.Get().theTarg << 506 auto incidentA = G4int(incidentMass / amu_ << 507 auto incidentZ = G4int(theProjectile->GetP << 508 G4int residualA = targetA + incidentA - A; << 509 G4int residualZ = targetZ + incidentZ - Z; << 510 G4double residualMass = G4NucleiProperties << 511 << 512 G4ParticleHPKallbachMannSyst theKallbach( << 513 compoundFraction, incidentEnergy, incide << 514 residualA, residualZ, targetMass, target << 515 cosTh = theKallbach.Sample(anEnergy); << 516 // end (angularRep == 2) branch << 517 } << 518 else if (angularRep > 10 && angularRep < 16) << 519 G4double random = G4UniformRand(); << 520 auto running = new G4double[nEnergies]; << 521 running[0] = 0; << 522 G4double weighted = 0; << 523 for (i = 1; i < nEnergies; ++i) { << 524 if (i != 0) running[i] = running[i - 1]; << 525 running[i] += theInt.GetBinIntegral(theM << 526 theA << 527 theA << 528 weighted += theInt.GetWeightedBinIntegra << 529 theManager.GetScheme(i - 1), theAngula << 530 theAngular[i - 1].GetValue(0), theAngu << 531 } << 532 << 533 // Cache the mean energy in this distribut << 534 if (nEnergies == 1) << 535 fCache.Get().currentMeanEnergy = 0.0; << 536 else << 537 fCache.Get().currentMeanEnergy = weighte << 538 << 539 if (nEnergies == 1) it = 0; << 540 for (i = 1; i < nEnergies; i++) { << 541 it = i; << 542 if (random < running[i] / running[nEnerg << 543 } << 544 << 545 if (it < nDiscreteEnergies || it == 0) { << 546 if (it == 0) { << 547 fsEnergy = theAngular[0].GetLabel(); << 548 G4ParticleHPVector theStore; << 549 G4int aCounter = 0; << 550 for (G4int j = 1; j < nAngularParamete << 551 theStore.SetX(aCounter, theAngular[0 << 552 theStore.SetY(aCounter, theAngular[0 << 553 aCounter++; << 554 } 650 } 555 G4InterpolationManager aMan; << 556 aMan.Init(angularRep - 10, nAngularPar << 557 theStore.SetInterpolationManager(aMan) << 558 cosTh = theStore.Sample(); << 559 } << 560 else { << 561 fsEnergy = theAngular[it].GetLabel(); << 562 G4ParticleHPVector theStore; 651 G4ParticleHPVector theStore; 563 G4InterpolationManager aMan; << 652 theStore.SetInterpolationManager(aMan); // Store interpolates f(costh) 564 aMan.Init(angularRep - 10, nAngularPar << 653 x1 = y1; 565 theStore.SetInterpolationManager(aMan) << 654 x2 = y2; 566 G4InterpolationScheme currentScheme = << 655 G4double x, y; 567 G4int aCounter = 0; << 656 //for(i=0;i<theBuff1.GetVectorLength(); i++); 568 for (G4int j = 1; j < nAngularParamete << 657 for(i=0;i<theBuff1.GetVectorLength(); i++) 569 theStore.SetX(aCounter, theAngular[i << 658 { 570 theStore.SetY(aCounter, theInt.Inter << 659 x = theBuff1.GetX(i); // costh binning identical 571 << 660 y1 = theBuff1.GetY(i); 572 << 661 y2 = theBuff2.GetY(i); 573 << 662 y = theInt.Interpolate(theManager.GetScheme(it), 574 << 663 fsEnergy, theAngular[it-1].GetLabel(), 575 ++aCounter; << 664 theAngular[it].GetLabel(), y1, y2); >> 665 theStore.SetX(i, x); >> 666 theStore.SetY(i, y); 576 } 667 } 577 cosTh = theStore.Sample(); 668 cosTh = theStore.Sample(); 578 } 669 } >> 670 delete [] running; 579 } 671 } 580 else { << 672 else 581 G4double x1 = running[it - 1] / running[ << 673 { 582 G4double x2 = running[it] / running[nEne << 674 throw G4HadronicException(__FILE__, __LINE__, "G4ParticleHPContAngularPar::Sample: Unknown angular representation"); 583 G4double y1 = theAngular[it - 1].GetLabe << 584 G4double y2 = theAngular[it].GetLabel(); << 585 fsEnergy = theInt.Interpolate(theManager << 586 G4ParticleHPVector theBuff1; << 587 G4ParticleHPVector theBuff2; << 588 G4InterpolationManager aMan; << 589 aMan.Init(angularRep - 10, nAngularParam << 590 << 591 G4int j; << 592 for (i = 0, j = 1; i < nAngularParameter << 593 theBuff1.SetX(i, theAngular[it - 1].Ge << 594 theBuff1.SetY(i, theAngular[it - 1].Ge << 595 theBuff2.SetX(i, theAngular[it].GetVal << 596 theBuff2.SetY(i, theAngular[it].GetVal << 597 } << 598 << 599 G4ParticleHPVector theStore; << 600 theStore.SetInterpolationManager(aMan); << 601 x1 = y1; << 602 x2 = y2; << 603 G4double x, y; << 604 for (i = 0; i < theBuff1.GetVectorLength << 605 x = theBuff1.GetX(i); // costh binnin << 606 y1 = theBuff1.GetY(i); << 607 y2 = theBuff2.GetY(i); << 608 y = theInt.Interpolate(theManager.GetS << 609 theAngular[it]. << 610 theStore.SetX(i, x); << 611 theStore.SetY(i, y); << 612 } << 613 cosTh = theStore.Sample(); << 614 } 675 } 615 delete[] running; << 676 result->SetKineticEnergy(fsEnergy); 616 } << 677 G4double phi = twopi*G4UniformRand(); 617 else { << 678 G4double theta = std::acos(cosTh); 618 throw G4HadronicException(__FILE__, __LINE << 679 G4double sinth = std::sin(theta); 619 "G4ParticleHPCon << 680 G4double mtot = result->GetTotalMomentum(); >> 681 G4ThreeVector tempVector(mtot*sinth*std::cos(phi), mtot*sinth*std::sin(phi), mtot*std::cos(theta) ); >> 682 result->SetMomentum(tempVector); >> 683 // return the result. >> 684 return result; 620 } 685 } 621 //G4cout << " Efin=" << fsEnergy << G4endl; << 622 result->SetKineticEnergy(fsEnergy); << 623 686 624 G4double phi = twopi * G4UniformRand(); << 625 if(cosTh > 1.0) { cosTh = 1.0; } << 626 else if (cosTh < -1.0) { cosTh = -1.0; } << 627 G4double sinth = std::sqrt((1.0 - cosTh)*(1. << 628 G4double mtot = result->GetTotalMomentum(); << 629 G4ThreeVector tempVector(mtot * sinth * std: << 630 result->SetMomentum(tempVector); << 631 return result; << 632 } << 633 687 634 void G4ParticleHPContAngularPar::PrepareTableI << 688 #define MERGE_NEW 635 { << 636 // Discrete energies: store own energies in << 637 // << 638 // The data files sometimes have identical d << 639 // which would lead to overwriting the alrea << 640 // creating a hole in the lookup table. << 641 // No attempt is made here to correct for th << 642 // is subtracted from the energy in order to << 643 << 644 for (G4int ie = 0; ie < nDiscreteEnergies; i << 645 // check if energy is already present and << 646 G4double myE = theAngular[ie].GetLabel(); << 647 while (theDiscreteEnergiesOwn.find(myE) != << 648 myE -= 1e-6; << 649 } << 650 theDiscreteEnergiesOwn[myE] = ie; << 651 } << 652 return; << 653 } << 654 689 655 void G4ParticleHPContAngularPar::BuildByInterp << 690 void G4ParticleHPContAngularPar::PrepareTableInterpolation(const G4ParticleHPContAngularPar* angParPrev) 656 << 657 << 658 << 659 { 691 { 660 G4int ie, ie1, ie2, ie1Prev, ie2Prev; << 661 // Only rebuild the interpolation table if t << 662 // For several subsequent samplings of final << 663 // interaction the existing table should be << 664 if (!fCache.Get().fresh) return; << 665 << 666 // Make copies of angpar1 and angpar2. Since << 667 // it can not be excluded that one of them i << 668 // potentially the old "this" for creating t << 669 // memory corruption if the old is not store << 670 const G4ParticleHPContAngularPar copyAngpar1 << 671 << 672 nAngularParameters = copyAngpar1.nAngularPar << 673 theManager = copyAngpar1.theManager; << 674 theEnergy = anEnergy; << 675 theMinEner = DBL_MAX; // min and max will b << 676 theMaxEner = -DBL_MAX; << 677 692 678 // The two discrete sets must be merged. A v << 693 //----- Discrete energies: store own energies in a map for faster searching 679 // be copied to the array in the end. Since << 694 G4int ie; 680 // contains pointers, can't simply assign el << 695 for(ie=0; ie<nDiscreteEnergies; ie++) { 681 // needs to call the explicit Set() method i << 682 << 683 // First, average probabilities for those li << 684 const std::map<G4double, G4int> discEnerOwn1 << 685 const std::map<G4double, G4int> discEnerOwn2 << 686 std::map<G4double, G4int>::const_iterator it << 687 std::map<G4double, G4int>::const_iterator it << 688 std::vector<G4ParticleHPList*> vAngular(disc << 689 G4double discEner1; << 690 for (itedeo1 = discEnerOwn1.cbegin(); itedeo << 691 discEner1 = itedeo1->first; << 692 if (discEner1 < theMinEner) { << 693 theMinEner = discEner1; << 694 } << 695 if (discEner1 > theMaxEner) { << 696 theMaxEner = discEner1; << 697 } << 698 ie1 = itedeo1->second; << 699 itedeo2 = discEnerOwn2.find(discEner1); << 700 if (itedeo2 == discEnerOwn2.cend()) { << 701 ie2 = -1; << 702 } << 703 else { << 704 ie2 = itedeo2->second; << 705 } << 706 vAngular[ie1] = new G4ParticleHPList(); << 707 vAngular[ie1]->SetLabel(copyAngpar1.theAng << 708 G4double val1, val2; << 709 for (G4int ip = 0; ip < nAngularParameters << 710 val1 = copyAngpar1.theAngular[ie1].GetVa << 711 if (ie2 != -1) { << 712 val2 = copyAngpar2.theAngular[ie2].Get << 713 } << 714 else { << 715 val2 = 0.; << 716 } << 717 G4double value = theInt.Interpolate(aSch << 718 copy << 719 vAngular[ie1]->SetValue(ip, value); << 720 } << 721 } // itedeo1 loop << 722 << 723 // Add the ones in set2 but not in set1 << 724 std::vector<G4ParticleHPList*>::const_iterat << 725 G4double discEner2; << 726 for (itedeo2 = discEnerOwn2.cbegin(); itedeo << 727 discEner2 = itedeo2->first; << 728 ie2 = itedeo2->second; << 729 G4bool notFound = true; << 730 itedeo1 = discEnerOwn1.find(discEner2); << 731 if (itedeo1 != discEnerOwn1.cend()) { << 732 notFound = false; << 733 } << 734 if (notFound) { << 735 // not yet in list << 736 if (discEner2 < theMinEner) { << 737 theMinEner = discEner2; << 738 } << 739 if (discEner2 > theMaxEner) { << 740 theMaxEner = discEner2; << 741 } << 742 // find position to insert << 743 G4bool isInserted = false; << 744 ie = 0; << 745 for (itv = vAngular.cbegin(); itv != vAn << 746 if (discEner2 > (*itv)->GetLabel()) { << 747 itv = vAngular.insert(itv, new G4Par << 748 (*itv)->SetLabel(copyAngpar2.theAngu << 749 isInserted = true; << 750 break; << 751 } << 752 } << 753 if (!isInserted) { << 754 ie = (G4int)vAngular.size(); << 755 vAngular.push_back(new G4ParticleHPLis << 756 vAngular[ie]->SetLabel(copyAngpar2.the << 757 isInserted = true; << 758 } << 759 << 760 G4double val1, val2; << 761 for (G4int ip = 0; ip < nAngularParamete << 762 val1 = 0; << 763 val2 = copyAngpar2.theAngular[ie2].Get << 764 G4double value = theInt.Interpolate(aS << 765 co << 766 vAngular[ie]->SetValue(ip, value); << 767 } << 768 } // end if(notFound) << 769 } // end loop on itedeo2 << 770 << 771 // Store new discrete list << 772 nDiscreteEnergies = (G4int)vAngular.size(); << 773 delete[] theAngular; << 774 theAngular = nullptr; << 775 if (nDiscreteEnergies > 0) { << 776 theAngular = new G4ParticleHPList[nDiscret << 777 } << 778 theDiscreteEnergiesOwn.clear(); << 779 theDiscreteEnergies.clear(); << 780 for (ie = 0; ie < nDiscreteEnergies; ++ie) { << 781 theAngular[ie].SetLabel(vAngular[ie]->GetL << 782 for (G4int ip = 0; ip < nAngularParameters << 783 theAngular[ie].SetValue(ip, vAngular[ie] << 784 } << 785 theDiscreteEnergiesOwn[theAngular[ie].GetL 696 theDiscreteEnergiesOwn[theAngular[ie].GetLabel()] = ie; 786 theDiscreteEnergies.insert(theAngular[ie]. << 787 } 697 } >> 698 if( !angParPrev ) return; 788 699 789 // The continuous energies need to be made f << 700 //----- Discrete energies: use energies that appear in one or another 790 // ones. Therefore the re-assignemnt of theA << 701 for(ie=0; ie<nDiscreteEnergies; ie++) { 791 // after the continuous energy set is also f << 702 theDiscreteEnergies.insert(theAngular[ie].GetLabel()); 792 // total number of nEnergies is known and th << 793 << 794 // Get minimum and maximum energy interpolat << 795 // Don't use theMinEner or theMaxEner here, << 796 // need the interpolated range from the orig << 797 G4double interMinEner = copyAngpar1.GetMinEn << 798 + (theEnergy - copyA << 799 * (copyAngpar2.G << 800 / (copyAngpar2.G << 801 G4double interMaxEner = copyAngpar1.GetMaxEn << 802 + (theEnergy - copyA << 803 * (copyAngpar2.G << 804 / (copyAngpar2.G << 805 << 806 // Loop to energies of new set << 807 theEnergiesTransformed.clear(); << 808 << 809 G4int nEnergies1 = copyAngpar1.GetNEnergies( << 810 G4int nDiscreteEnergies1 = copyAngpar1.GetND << 811 G4double minEner1 = copyAngpar1.GetMinEner() << 812 G4double maxEner1 = copyAngpar1.GetMaxEner() << 813 G4int nEnergies2 = copyAngpar2.GetNEnergies( << 814 G4int nDiscreteEnergies2 = copyAngpar2.GetND << 815 G4double minEner2 = copyAngpar2.GetMinEner() << 816 G4double maxEner2 = copyAngpar2.GetMaxEner() << 817 << 818 // First build the list of transformed energ << 819 // to the new min max by assuming that the m << 820 // each set would be scalable to the new, in << 821 // max range << 822 << 823 G4double e1(0.); << 824 G4double eTNorm1(0.); << 825 for (ie1 = nDiscreteEnergies1; ie1 < nEnergi << 826 e1 = copyAngpar1.theAngular[ie1].GetLabel( << 827 eTNorm1 = (e1 - minEner1); << 828 if (maxEner1 != minEner1) eTNorm1 /= (maxE << 829 if (eTNorm1 >= 0 && eTNorm1 <= 1) theEnerg << 830 } 703 } 831 << 704 G4int nDiscreteEnergiesPrev = angParPrev->GetNDiscreteEnergies(); 832 G4double e2(0.); << 705 for(ie=0; ie<nDiscreteEnergiesPrev; ie++) { 833 G4double eTNorm2(0.); << 706 theDiscreteEnergies.insert(angParPrev->theAngular[ie].GetLabel()); 834 for (ie2 = nDiscreteEnergies2; ie2 < nEnergi << 707 } 835 e2 = copyAngpar2.theAngular[ie2].GetLabel( << 708 836 eTNorm2 = (e2 - minEner2); << 709 //--- Get the values for which interpolation will be done : all energies of this and previous ContAngularPar 837 if (maxEner2 != minEner2) eTNorm2 /= (maxE << 710 for(ie=nDiscreteEnergies; ie<nEnergies; ie++) { 838 if (eTNorm2 >= 0 && eTNorm2 <= 1) theEnerg << 711 G4double ener = theAngular[ie].GetLabel(); >> 712 G4double enerT = (ener-theMinEner)/(theMaxEner-theMinEner); >> 713 theEnergiesTransformed.insert(enerT); >> 714 //- if( getenv("G4PHPTEST2") ) G4cout <<this << " G4ParticleHPContAngularPar::PrepareTableInterpolation theEnergiesTransformed1 " << enerT << G4endl; //GDEB >> 715 } >> 716 G4int nEnergiesPrev = angParPrev->GetNEnergies(); >> 717 G4double minEnerPrev = angParPrev->GetMinEner(); >> 718 G4double maxEnerPrev = angParPrev->GetMaxEner(); >> 719 for(ie=nDiscreteEnergiesPrev; ie<nEnergiesPrev; ie++) { >> 720 G4double ener = angParPrev->theAngular[ie].GetLabel(); >> 721 G4double enerT = (ener-minEnerPrev)/(maxEnerPrev-minEnerPrev); >> 722 theEnergiesTransformed.insert(enerT); >> 723 //- if( getenv("G4PHPTEST2") ) G4cout << this << " G4ParticleHPContAngularPar::PrepareTableInterpolation theEnergiesTransformed2 " << enerT << G4endl; //GDEB 839 } 724 } >> 725 // add the maximum energy >> 726 theEnergiesTransformed.insert(1.); 840 727 841 // Now the list of energies is complete << 728 } 842 nEnergies = nDiscreteEnergies + (G4int)theEn << 843 729 844 // Create final array of angular parameters << 730 void G4ParticleHPContAngularPar::BuildByInterpolation(G4double anEnergy, G4InterpolationScheme aScheme, 845 const std::size_t esize = nEnergies > 0 ? nE << 731 G4ParticleHPContAngularPar & angpar1, 846 auto theNewAngular = new G4ParticleHPList[es << 732 G4ParticleHPContAngularPar & angpar2) 847 << 733 { 848 // Copy discrete energies and interpolated p << 734 G4int ie,ie1,ie2, ie1Prev, ie2Prev; 849 << 735 nAngularParameters = angpar1.nAngularParameters; 850 if (theAngular != nullptr) { << 736 theManager = angpar1.theManager; 851 for (ie = 0; ie < nDiscreteEnergies; ++ie) << 737 theEnergy = anEnergy; 852 theNewAngular[ie].SetLabel(theAngular[ie << 853 for (G4int ip = 0; ip < nAngularParamete << 854 theNewAngular[ie].SetValue(ip, theAngu << 855 } << 856 } << 857 delete[] theAngular; << 858 } << 859 theAngular = theNewAngular; << 860 738 861 // Interpolate the continuous energies for n << 739 nDiscreteEnergies = theDiscreteEnergies.size(); 862 auto iteet = theEnergiesTransformed.begin(); << 740 std::set<G4double>::const_iterator itede; >> 741 std::map<G4double,G4int> discEnerOwn1 = angpar1.GetDiscreteEnergiesOwn(); >> 742 std::map<G4double,G4int> discEnerOwn2 = angpar2.GetDiscreteEnergiesOwn(); >> 743 std::map<G4double,G4int>::const_iterator itedeo; >> 744 ie = 0; >> 745 for( itede = theDiscreteEnergies.begin(); itede != theDiscreteEnergies.end(); itede++, ie++ ) { >> 746 G4double discEner = *itede; >> 747 itedeo = discEnerOwn1.find(discEner); >> 748 if( itedeo == discEnerOwn1.end() ) { >> 749 ie1 = 0; >> 750 } else { >> 751 ie1 = -1; >> 752 } >> 753 itedeo = discEnerOwn2.find(discEner); >> 754 if( itedeo == discEnerOwn2.end() ) { >> 755 ie2 = 0; >> 756 } else { >> 757 ie2 = -1; >> 758 } 863 759 864 G4double e1Interp(0.); << 760 theAngular[ie].SetLabel(discEner); 865 G4double e2Interp(0.); << 761 G4double val1, val2; 866 for (ie = nDiscreteEnergies; ie < nEnergies; << 762 for(G4int ip=0; ip<nAngularParameters; ip++) { >> 763 if( ie1 != -1 ) { >> 764 val1 = angpar1.theAngular[ie1].GetValue(ip); >> 765 } else { >> 766 val1 = 0.; >> 767 } >> 768 if( ie2 != -1 ) { >> 769 val2 = angpar2.theAngular[ie2].GetValue(ip); >> 770 } else { >> 771 val2 = 0.; >> 772 } >> 773 >> 774 G4double value = theInt.Interpolate(aScheme, anEnergy, >> 775 angpar1.theEnergy, angpar2.theEnergy, >> 776 val1, >> 777 val2); >> 778 if( getenv("G4PHPTEST2") ) G4cout << ie << " " << ip << " G4ParticleHPContAngularPar::Merge DiscreteEnergies val1 " << val1 << " val2 " << val2 << " value " << value << G4endl; //GDEB >> 779 >> 780 theAngular[ie].SetValue(ip, value); >> 781 } >> 782 } >> 783 >> 784 if(theAngular != 0) delete [] theAngular; >> 785 nEnergies = nDiscreteEnergies + angpar2.GetNEnergiesTransformed(); >> 786 theAngular = new G4ParticleHPList [nEnergies]; >> 787 >> 788 //---- Get minimum and maximum energy interpolating >> 789 theMinEner = angpar1.GetMinEner() + (theEnergy-angpar1.GetEnergy()) * (angpar2.GetMinEner()-angpar1.GetMinEner())/(angpar2.GetEnergy()-angpar1.GetEnergy()); >> 790 theMaxEner = angpar1.GetMaxEner() + (theEnergy-angpar1.GetEnergy()) * (angpar2.GetMaxEner()-angpar1.GetMaxEner())/(angpar2.GetEnergy()-angpar1.GetEnergy()); >> 791 >> 792 if( getenv("G4PHPTEST2") ) G4cout << " G4ParticleHPContAngularPar::Merge E " << anEnergy << " minmax " << theMinEner << " " << theMaxEner << G4endl; //GDEB >> 793 >> 794 //--- Loop to energies of new set >> 795 std::set<G4double> energiesTransformed = angpar2.GetEnergiesTransformed(); >> 796 std::set<G4double>::const_iterator iteet = energiesTransformed.begin(); >> 797 G4int nEnergies1 = angpar1.GetNEnergies(); >> 798 G4int nDiscreteEnergies1 = angpar1.GetNDiscreteEnergies(); >> 799 G4double minEner1 = angpar1.GetMinEner(); >> 800 G4double maxEner1 = angpar1.GetMaxEner(); >> 801 G4int nEnergies2 = angpar2.GetNEnergies(); >> 802 G4int nDiscreteEnergies2 = angpar2.GetNDiscreteEnergies(); >> 803 G4double minEner2 = angpar2.GetMinEner(); >> 804 G4double maxEner2 = angpar2.GetMaxEner(); >> 805 for(ie=nDiscreteEnergies; ie<nEnergies; ie++,iteet++) { 867 G4double eT = (*iteet); 806 G4double eT = (*iteet); 868 807 869 //--- Use eT1 = eT: Get energy and paramet << 808 //--- Use eT1 = eT: Get energy and parameters of angpar1 for this eT 870 e1Interp = (maxEner1 - minEner1) * eT + mi << 809 G4double e1 = (maxEner1-minEner1) * eT + minEner1; 871 //----- Get parameter value corresponding << 810 //----- Get parameter value corresponding to this e1 872 for (ie1 = nDiscreteEnergies1; ie1 < nEner << 811 for(ie1=nDiscreteEnergies1; ie1<nEnergies1; ie1++) { 873 if ((copyAngpar1.theAngular[ie1].GetLabe << 812 if( (angpar1.theAngular[ie1].GetLabel() - e1) > 1.E-10*e1 ) break; 874 } 813 } 875 ie1Prev = ie1 - 1; 814 ie1Prev = ie1 - 1; 876 if (ie1 == 0) ++ie1Prev; << 815 if( ie1 == 0 ) ie1Prev++; 877 if (ie1 == nEnergies1) { << 816 if( ie1 == nEnergies1 ) { 878 ie1--; 817 ie1--; 879 ie1Prev = ie1; 818 ie1Prev = ie1; 880 } 819 } 881 << 820 //--- Use eT2 = eT: Get energy and parameters of angpar2 for this eT 882 //--- Use eT2 = eT: Get energy and paramet << 821 G4double e2 = (maxEner2-minEner2) * eT + minEner2; 883 e2Interp = (maxEner2 - minEner2) * eT + mi << 822 //----- Get parameter value corresponding to this e2 884 //----- Get parameter value corresponding << 823 for(ie2=nDiscreteEnergies2; ie2<nEnergies2; ie2++) { 885 for (ie2 = nDiscreteEnergies2; ie2 < nEner << 824 // G4cout << " GET IE2 " << ie2 << " - " << angpar2.theAngular[ie2].GetLabel() - e2 << " " << angpar2.theAngular[ie2].GetLabel() << " " << e2 <<G4endl; 886 if ((copyAngpar2.theAngular[ie2].GetLabe << 825 if( (angpar2.theAngular[ie2].GetLabel() - e2) > 1.E-10*e2 ) break; 887 } 826 } 888 ie2Prev = ie2 - 1; 827 ie2Prev = ie2 - 1; 889 if (ie2 == 0) ++ie2Prev; << 828 if( ie2 == 0 ) ie2Prev++; 890 if (ie2 == nEnergies2) { << 829 if( ie2 == nEnergies2 ) { 891 ie2--; 830 ie2--; 892 ie2Prev = ie2; 831 ie2Prev = ie2; 893 } 832 } 894 833 895 //---- Energy corresponding to energy tran << 834 //---- Energy corresponding to energy transformed 896 G4double eN = (interMaxEner - interMinEner << 835 G4double eN = (theMaxEner-theMinEner) * eT + theMinEner; 897 << 836 if( getenv("G4PHPTEST2") ) G4cout << ie << " " << ie1 << " " << ie2 << " G4ParticleHPContAngularPar::loop eT " << eT << " -> eN " << eN << " e1 " << e1 << " e2 " << e2 << G4endl; //GDEB >> 837 898 theAngular[ie].SetLabel(eN); 838 theAngular[ie].SetLabel(eN); 899 if (eN < theMinEner) { << 839 900 theMinEner = eN; << 840 for(G4int ip=0; ip<nAngularParameters; ip++) { 901 } << 841 G4double val1 = theInt.Interpolate2(theManager.GetScheme(ie), 902 if (eN > theMaxEner) { << 842 e1, 903 theMaxEner = eN; << 843 angpar1.theAngular[ie1Prev].GetLabel(), 904 } << 844 angpar1.theAngular[ie1].GetLabel(), 905 << 845 angpar1.theAngular[ie1Prev].GetValue(ip), 906 G4double val1(0.); << 846 angpar1.theAngular[ie1].GetValue(ip)) * (maxEner1-minEner1); 907 G4double val2(0.); << 847 G4double val2 = theInt.Interpolate2(theManager.GetScheme(ie), 908 G4double value(0.); << 848 e2, 909 for (G4int ip = 0; ip < nAngularParameters << 849 angpar2.theAngular[ie2Prev].GetLabel(), 910 val1 = theInt.Interpolate2( << 850 angpar2.theAngular[ie2].GetLabel(), 911 theManager.GetScheme(ie), e1Int << 851 angpar2.theAngular[ie2Prev].GetValue(ip), 912 copyAngpar1.theAngular[ie1].Get << 852 angpar2.theAngular[ie2].GetValue(ip)) * (maxEner2-minEner2); 913 copyAngpar1.theAngular[ie1].Get << 853 914 * (maxEner1 - minEner1); << 854 G4double value = theInt.Interpolate(aScheme, anEnergy, 915 val2 = theInt.Interpolate2( << 855 angpar1.theEnergy, angpar2.theEnergy, 916 theManager.GetScheme(ie), e2Int << 856 val1, 917 copyAngpar2.theAngular[ie2].Get << 857 val2); 918 copyAngpar2.theAngular[ie2].Get << 858 //value /= (theMaxEner-theMinEner); 919 * (maxEner2 - minEner2); << 859 if ( theMaxEner != theMinEner ) { 920 << 860 value /= (theMaxEner-theMinEner); 921 value = theInt.Interpolate(aScheme, anEn << 861 } else if ( value != 0 ) { 922 val1, val2); << 862 throw G4HadronicException(__FILE__, __LINE__, "G4ParticleHPContAngularPar::PrepareTableInterpolation theMaxEner == theMinEner and value != 0."); 923 if (interMaxEner != interMinEner) { << 863 } 924 value /= (interMaxEner - interMinEner) << 864 if( getenv("G4PHPTEST2") ) G4cout << ie << " " << ip << " G4ParticleHPContAngularPar::Merge val1 " << val1 << " val2 " << val2 << " value " << value << G4endl; //GDEB 925 } << 865 //- val1 = angpar1.theAngular[ie1-1].GetValue(ip) * (maxEner1-minEner1); 926 else if (value != 0) { << 866 //- val2 = angpar2.theAngular[ie2-1].GetValue(ip) * (maxEner2-minEner2); 927 throw G4HadronicException(__FILE__, __ << 867 //- if( getenv("G4PHPTEST2") ) G4cout << ie << " " << ip << " G4ParticleHPContAngularPar::MergeOLD val1 " << val1 << " val2 " << val2 << " value " << value << G4endl; //GDEB 928 "G4ParticleH << 868 929 "interMaxEne << 930 } << 931 theAngular[ie].SetValue(ip, value); 869 theAngular[ie].SetValue(ip, value); 932 } 870 } 933 } // end loop on nDiscreteEnergies << 871 } 934 872 935 for (itv = vAngular.cbegin(); itv != vAngula << 873 if( getenv("G4PHPTEST2") ) { 936 delete (*itv); << 874 G4cout << " G4ParticleHPContAngularPar::Merge ANGPAR1 " << G4endl; //GDEB >> 875 angpar1.Dump(); >> 876 G4cout << " G4ParticleHPContAngularPar::Merge ANGPAR2 " << G4endl; >> 877 angpar2.Dump(); >> 878 G4cout << " G4ParticleHPContAngularPar::Merge ANGPARNEW " << G4endl; >> 879 Dump(); >> 880 } 937 } 881 } 938 882 939 void G4ParticleHPContAngularPar::Dump() const << 883 void G4ParticleHPContAngularPar::Dump() 940 { 884 { 941 G4cout << theEnergy << " " << nEnergies << " << 885 G4cout << theEnergy << " " << nEnergies << " " << nDiscreteEnergies << " " << nAngularParameters << G4endl; 942 << G4endl; << 943 886 944 for (G4int ii = 0; ii < nEnergies; ++ii) << 887 for(G4int ii=0; ii<nEnergies; ii++) { 945 theAngular[ii].Dump(); 888 theAngular[ii].Dump(); >> 889 } >> 890 946 } 891 } 947 892