Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // neutron_hp -- source file 26 // neutron_hp -- source file 27 // J.P. Wellisch, Nov-1996 27 // J.P. Wellisch, Nov-1996 28 // A prototype of the low energy neutron trans 28 // A prototype of the low energy neutron transport model. 29 // 29 // 30 // 09-May-06 fix in Sample by T. Koi 30 // 09-May-06 fix in Sample by T. Koi 31 // 080318 Fix Compilation warnings - gcc-4.3.0 31 // 080318 Fix Compilation warnings - gcc-4.3.0 by T. Koi 32 // (This fix has a real effect to the c << 32 // (This fix has a real effect to the code.) 33 // 080409 Fix div0 error with G4FPE by T. Koi 33 // 080409 Fix div0 error with G4FPE by T. Koi 34 // 080612 Fix contribution from Benoit Pirard 34 // 080612 Fix contribution from Benoit Pirard and Laurent Desorgher (Univ. Bern) #1 35 // 080714 Limiting the sum of energy of second 35 // 080714 Limiting the sum of energy of secondary particles by T. Koi 36 // 080801 Fix div0 error wiht G4FPE and memory 36 // 080801 Fix div0 error wiht G4FPE and memory leak by T. Koi 37 // 081024 G4NucleiPropertiesTable:: to G4Nucle 37 // 081024 G4NucleiPropertiesTable:: to G4NucleiProperties:: 38 // 38 // 39 // P. Arce, June-2014 Conversion neutron_hp to 39 // P. Arce, June-2014 Conversion neutron_hp to particle_hp 40 // 40 // 41 // June-2019 - E. Mendoza --> redefinition of << 42 // different than neutrons. << 43 // << 44 // V. Ivanchenko, July-2023 Basic revision of << 45 // << 46 << 47 #include "G4ParticleHPContAngularPar.hh" 41 #include "G4ParticleHPContAngularPar.hh" 48 << 49 #include "G4ParticleDefinition.hh" << 50 #include "G4Alpha.hh" << 51 #include "G4Deuteron.hh" << 52 #include "G4Electron.hh" << 53 #include "G4Gamma.hh" << 54 #include "G4He3.hh" << 55 #include "G4IonTable.hh" << 56 #include "G4Neutron.hh" << 57 #include "G4NucleiProperties.hh" << 58 #include "G4ParticleHPKallbachMannSyst.hh" << 59 #include "G4ParticleHPLegendreStore.hh" << 60 #include "G4ParticleHPManager.hh" << 61 #include "G4ParticleHPVector.hh" << 62 #include "G4PhysicalConstants.hh" 42 #include "G4PhysicalConstants.hh" >> 43 #include "G4SystemOfUnits.hh" >> 44 #include "G4ParticleHPLegendreStore.hh" >> 45 #include "G4Gamma.hh" >> 46 #include "G4Electron.hh" 63 #include "G4Positron.hh" 47 #include "G4Positron.hh" >> 48 #include "G4Neutron.hh" 64 #include "G4Proton.hh" 49 #include "G4Proton.hh" 65 #include "G4SystemOfUnits.hh" << 50 #include "G4Deuteron.hh" 66 #include "G4Triton.hh" 51 #include "G4Triton.hh" 67 << 52 #include "G4He3.hh" >> 53 #include "G4Alpha.hh" >> 54 #include "G4ParticleHPVector.hh" >> 55 #include "G4NucleiProperties.hh" >> 56 #include "G4ParticleHPKallbachMannSyst.hh" >> 57 #include "G4IonTable.hh" 68 #include <set> 58 #include <set> 69 #include <vector> << 59 70 << 60 G4ParticleHPContAngularPar::G4ParticleHPContAngularPar( G4ParticleDefinition* projectile) 71 G4ParticleHPContAngularPar::G4ParticleHPContAn << 61 { 72 { << 62 theAngular = 0; 73 theProjectile = (nullptr == p) ? G4Neutron:: << 63 currentMeanEnergy = -2; 74 toBeCached v; << 64 fresh = true; 75 fCache.Put(v); << 76 if (G4ParticleHPManager::GetInstance()->GetD << 77 } << 78 << 79 G4ParticleHPContAngularPar::G4ParticleHPContAn << 80 { << 81 theEnergy = val.theEnergy; << 82 nEnergies = val.nEnergies; << 83 nDiscreteEnergies = val.nDiscreteEnergies; << 84 nAngularParameters = val.nAngularParameters; << 85 theProjectile = val.theProjectile; << 86 theManager = val.theManager; << 87 theInt = val.theInt; << 88 adjustResult = val.adjustResult; << 89 theMinEner = val.theMinEner; << 90 theMaxEner = val.theMaxEner; << 91 theEnergiesTransformed = val.theEnergiesTran << 92 theDiscreteEnergies = val.theDiscreteEnergie << 93 theDiscreteEnergiesOwn = val.theDiscreteEner << 94 toBeCached v; << 95 fCache.Put(v); << 96 const std::size_t esize = nEnergies > 0 ? nE << 97 theAngular = new G4ParticleHPList[esize]; << 98 for (G4int ie = 0; ie < nEnergies; ++ie) { << 99 theAngular[ie].SetLabel(val.theAngular[ie] << 100 for (G4int ip = 0; ip < nAngularParameters << 101 theAngular[ie].SetValue(ip, val.theAngul << 102 } << 103 } << 104 } << 105 << 106 G4ParticleHPContAngularPar::~G4ParticleHPContA << 107 { << 108 delete[] theAngular; << 109 } << 110 << 111 void G4ParticleHPContAngularPar::Init(std::ist << 112 { << 113 adjustResult = true; 65 adjustResult = true; 114 if (G4ParticleHPManager::GetInstance()->GetD << 66 if ( getenv( "G4PHP_DO_NOT_ADJUST_FINAL_STATE" ) ) adjustResult = false; >> 67 adjustResult = true;//GDEB 115 68 116 theProjectile = (nullptr == p) ? G4Neutron:: << 69 theMinEner = DBL_MAX; 117 << 70 theMaxEner = -DBL_MAX; 118 aDataFile >> theEnergy >> nEnergies >> nDisc << 71 theProjectile = projectile; 119 theEnergy *= eV; << 120 const std::size_t esize = nEnergies > 0 ? nE << 121 theAngular = new G4ParticleHPList[esize]; << 122 G4double sEnergy; << 123 for (G4int i = 0; i < nEnergies; ++i) { << 124 aDataFile >> sEnergy; << 125 sEnergy *= eV; << 126 theAngular[i].SetLabel(sEnergy); << 127 theAngular[i].Init(aDataFile, nAngularPara << 128 theMinEner = std::min(theMinEner, sEnergy) << 129 theMaxEner = std::max(theMaxEner, sEnergy) << 130 } << 131 } 72 } 132 73 133 G4ReactionProduct* G4ParticleHPContAngularPar: << 74 void G4ParticleHPContAngularPar::Init(std::istream & aDataFile, G4ParticleDefinition* projectile) 134 << 75 { 135 << 76 adjustResult = true; 136 { << 77 if ( getenv( "G4PHP_DO_NOT_ADJUST_FINAL_STATE" ) ) adjustResult = false; 137 // The following line is needed because it m << 78 adjustResult = true;//GDEB 138 adjustResult = true; << 79 139 if (G4ParticleHPManager::GetInstance()->GetD << 80 theProjectile = projectile; 140 << 81 141 auto result = new G4ReactionProduct; << 82 aDataFile >> theEnergy >> nEnergies >> nDiscreteEnergies >> nAngularParameters; 142 auto Z = static_cast<G4int>(massCode / 1000) << 83 if( getenv("G4PHPTEST") ) 143 auto A = static_cast<G4int>(massCode - 1000 << 84 G4cout << this << " G4ParticleHPContAngularPar::Init( " << theEnergy << " " << nEnergies << " " << nDiscreteEnergies << " " << nAngularParameters << G4endl; //GDEB 144 if (massCode == 0) { << 85 theEnergy *= eV; 145 result->SetDefinition(G4Gamma::Gamma()); << 86 theAngular = new G4ParticleHPList [nEnergies]; 146 } << 87 for(G4int i=0; i<nEnergies; i++) 147 else if (A == 0) { << 88 { 148 result->SetDefinition(G4Electron::Electron << 89 G4double sEnergy; 149 if (Z == 1) result->SetDefinition(G4Positr << 90 aDataFile >> sEnergy; 150 } << 91 sEnergy*=eV; 151 else if (A == 1) { << 92 theAngular[i].SetLabel(sEnergy); 152 result->SetDefinition(G4Neutron::Neutron() << 93 theAngular[i].Init(aDataFile, nAngularParameters, 1.); 153 if (Z == 1) result->SetDefinition(G4Proton << 94 theMinEner = std::min(theMinEner,sEnergy); 154 } << 95 theMaxEner = std::max(theMaxEner,sEnergy); 155 else if (A == 2) { << 96 } 156 result->SetDefinition(G4Deuteron::Deuteron << 157 } << 158 else if (A == 3) { << 159 result->SetDefinition(G4Triton::Triton()); << 160 if (Z == 2) result->SetDefinition(G4He3::H << 161 } << 162 else if (A == 4) { << 163 result->SetDefinition(G4Alpha::Alpha()); << 164 if (Z != 2) << 165 throw G4HadronicException(__FILE__, __LI << 166 "G4ParticleHPC << 167 } << 168 else { << 169 result->SetDefinition(G4IonTable::GetIonTa << 170 } 97 } 171 98 172 G4int i(0); << 99 G4ReactionProduct * 173 G4int it(0); << 100 G4ParticleHPContAngularPar::Sample(G4double anEnergy, G4double massCode, G4double /*targetMass*/, 174 G4double fsEnergy(0); << 101 G4int angularRep, G4int /*interpolE*/ ) 175 G4double cosTh(0); << 102 { 176 /* << 103 if( getenv("G4PHPTEST") ) G4cout << " G4ParticleHPContAngularPar::Sample " << anEnergy << " " << massCode << " " << angularRep << G4endl; //GDEB 177 G4cout << "G4ParticleHPContAngularPar::Sampl << 104 G4ReactionProduct * result = new G4ReactionProduct; 178 << " angularRep=" << angularRep << " << 105 G4int Z = static_cast<G4int>(massCode/1000); 179 << " Ne=" << nEnergies << G4endl; << 106 G4int A = static_cast<G4int>(massCode-1000*Z); 180 */ << 107 if(massCode==0) 181 if (angularRep == 1) { << 108 { 182 if (nDiscreteEnergies != 0) { << 109 result->SetDefinition(G4Gamma::Gamma()); 183 // 1st check remaining_energy << 110 } 184 // if this is the first set it. (How?) << 111 else if(A==0) 185 if (fCache.Get().fresh) { << 112 { 186 // Discrete Lines, larger energies com << 113 result->SetDefinition(G4Electron::Electron()); 187 // Continues Emssions, low to high << 114 if(Z==1) result->SetDefinition(G4Positron::Positron()); 188 fCache.Get().remaining_energy = << 115 } 189 std::max(theAngular[0].GetLabel(), t << 116 else if(A==1) 190 fCache.Get().fresh = false; << 117 { 191 } << 118 result->SetDefinition(G4Neutron::Neutron()); 192 << 119 if(Z==1) result->SetDefinition(G4Proton::Proton()); 193 // Cheating for small remaining_energy << 120 } 194 // Temporary solution << 121 else if(A==2) 195 if (nDiscreteEnergies == nEnergies) { << 122 { 196 fCache.Get().remaining_energy = << 123 result->SetDefinition(G4Deuteron::Deuteron()); 197 std::max(fCache.Get().remaining_ener << 124 } 198 theAngular[nDiscreteEnergie << 125 else if(A==3) 199 } << 126 { 200 else { << 127 result->SetDefinition(G4Triton::Triton()); 201 G4double cont_min = 0.0; << 128 if(Z==2) result->SetDefinition(G4He3::He3()); 202 for (G4int j = nDiscreteEnergies; j < << 129 } 203 cont_min = theAngular[j].GetLabel(); << 130 else if(A==4) 204 if (theAngular[j].GetValue(0) != 0.0 << 131 { 205 } << 132 result->SetDefinition(G4Alpha::Alpha()); 206 fCache.Get().remaining_energy = std::m << 133 if(Z!=2) throw G4HadronicException(__FILE__, __LINE__, "G4ParticleHPContAngularPar: Unknown ion case 1"); 207 fCache.Get().remaining_energy, std:: << 134 } 208 << 135 else 209 } << 136 { >> 137 result->SetDefinition(G4IonTable::GetIonTable()->GetIon(Z,A,0)); >> 138 } >> 139 G4int i(0); >> 140 G4int it(0); >> 141 G4double fsEnergy(0); >> 142 G4double cosTh(0); 210 143 211 G4double random = G4UniformRand(); << 144 if( angularRep == 1 ) 212 auto running = new G4double[nEnergies + << 145 { 213 running[0] = 0.0; << 146 // 080612 Fix contribution from Benoit Pirard and Laurent Desorgher (Univ. Bern) #1 >> 147 //if (interpolE == 2) >> 148 //110609 above was wrong interupition, pointed out by E.Mendoza and D.Cano (CIMAT) >> 149 //Following are reviesd version written by T.Koi (SLAC) >> 150 if ( nDiscreteEnergies != 0 ) >> 151 { 214 152 215 G4double delta; << 153 //1st check remaining_energy 216 for (G4int j = 0; j < nDiscreteEnergies; << 154 // if this is the first set it. (How?) 217 delta = 0.0; << 155 if ( fresh == true ) 218 if (theAngular[j].GetLabel() <= fCache << 156 { 219 delta = theAngular[j].GetValue(0); << 157 //Discrete Lines, larger energies come first 220 running[j + 1] = running[j] + delta; << 158 //Continues Emssions, low to high LAST 221 } << 159 remaining_energy = std::max ( theAngular[0].GetLabel() , theAngular[nEnergies-1].GetLabel() ); >> 160 fresh = false; >> 161 } >> 162 >> 163 //Cheating for small remaining_energy >> 164 //TEMPORAL SOLUTION >> 165 if ( nDiscreteEnergies == nEnergies ) >> 166 { >> 167 remaining_energy = std::max ( remaining_energy , theAngular[nDiscreteEnergies-1].GetLabel() ); //Minimum Line >> 168 } >> 169 else >> 170 { >> 171 //G4double cont_min = theAngular[nDiscreteEnergies].GetLabel(); >> 172 //if ( theAngular[nDiscreteEnergies].GetLabel() == 0.0 ) cont_min = theAngular[nDiscreteEnergies+1].GetLabel(); >> 173 G4double cont_min=0.0; >> 174 for ( G4int j = nDiscreteEnergies ; j < nEnergies ; j++ ) >> 175 { >> 176 cont_min = theAngular[j].GetLabel(); >> 177 if ( theAngular[j].GetValue(0) != 0.0 ) break; >> 178 } >> 179 remaining_energy = std::max ( remaining_energy , std::min ( theAngular[nDiscreteEnergies-1].GetLabel() , cont_min ) ); //Minimum Line or grid >> 180 } >> 181 // >> 182 G4double random = G4UniformRand(); 222 183 223 G4double tot_prob_DIS = std::max(running << 184 G4double * running = new G4double[nEnergies+1]; >> 185 running[0] = 0.0; 224 186 225 G4double delta1; << 187 for ( G4int j = 0 ; j < nDiscreteEnergies ; j++ ) 226 for (G4int j = nDiscreteEnergies; j < nE << 188 { 227 delta1 = 0.0; << 189 G4double delta = 0.0; 228 G4double e_low = 0.0; << 190 if ( theAngular[j].GetLabel() <= remaining_energy ) delta = theAngular[i].GetValue(0); 229 G4double e_high = 0.0; << 191 running[j+1] = running[j] + delta; 230 if (theAngular[j].GetLabel() <= fCache << 192 } 231 delta1 = theAngular[j].GetValue(0); << 193 G4double tot_prob_DIS = running[ nDiscreteEnergies ]; 232 << 194 233 // To calculate Prob. e_low and e_high << 195 for ( G4int j = nDiscreteEnergies ; j < nEnergies ; j++ ) 234 // There are two cases: << 196 { 235 // 1: theAngular[nDiscreteEnergies].Ge << 197 G4double delta = 0.0; 236 // delta1 should be used between j- << 198 G4double e_low = 0.0; 237 // At j = nDiscreteEnergies (the fi << 199 G4double e_high = 0.0; 238 if (theAngular[j].GetLabel() != 0) { << 200 if ( theAngular[j].GetLabel() <= remaining_energy ) delta = theAngular[j].GetValue(0); 239 if (j == nDiscreteEnergies) { << 201 240 e_low = 0.0 / eV; << 202 //To calculate Prob. e_low and e_high should be in eV >> 203 //There are two case >> 204 //1:theAngular[nDiscreteEnergies].GetLabel() != 0.0 >> 205 // delta should be used between j-1 and j >> 206 // At j = nDiscreteEnergies (the first) e_low should be set explicitly >> 207 if ( theAngular[j].GetLabel() != 0 ) >> 208 { >> 209 if ( j == nDiscreteEnergies ) { >> 210 e_low = 0.0/eV; >> 211 } else { >> 212 e_low = theAngular[j-1].GetLabel()/eV; >> 213 } >> 214 e_high = theAngular[j].GetLabel()/eV; >> 215 } >> 216 //2:theAngular[nDiscreteEnergies].GetLabel() == 0.0 >> 217 // delta should be used between j and j+1 >> 218 if ( theAngular[j].GetLabel() == 0.0 ) { >> 219 e_low = theAngular[j].GetLabel()/eV; >> 220 if ( j != nEnergies-1 ) { >> 221 e_high = theAngular[j+1].GetLabel()/eV; >> 222 } else { >> 223 e_high = theAngular[j].GetLabel()/eV; >> 224 if ( theAngular[j].GetValue(0) != 0.0 ) { >> 225 throw G4HadronicException(__FILE__, __LINE__, "G4ParticleHPContAngularPar: Unexpected non zero value of theAngular[nEnergies-1].GetValue(0)"); >> 226 } >> 227 } >> 228 } >> 229 >> 230 running[j+1] = running[j] + ( ( e_high - e_low ) * delta ); >> 231 } >> 232 G4double tot_prob_CON = running[ nEnergies ] - running[ nDiscreteEnergies ]; >> 233 >> 234 /* >> 235 For FPE debugging >> 236 if (tot_prob_DIS + tot_prob_CON == 0 ) { >> 237 G4cout << "TKDB tot_prob_DIS + tot_prob_CON " << tot_prob_DIS + tot_prob_CON << G4endl; >> 238 G4cout << "massCode " << massCode << G4endl; >> 239 G4cout << "nDiscreteEnergies " << nDiscreteEnergies << " nEnergies " << nEnergies << G4endl; >> 240 for ( int j = nDiscreteEnergies ; j < nEnergies ; j++ ) { >> 241 G4cout << j << " " << theAngular[j].GetLabel() << " " << theAngular[j].GetValue(0) << G4endl; >> 242 } 241 } 243 } 242 else { << 244 */ 243 if (j < 1) j = 1; // Protection a << 245 // Normalize random 244 e_low = theAngular[j - 1].GetLabel << 246 random *= (tot_prob_DIS + tot_prob_CON); 245 } << 247 //2nd Judge Discrete or not This shoudl be relatively close to 1 For safty 246 e_high = theAngular[j].GetLabel() / << 248 if ( random <= ( tot_prob_DIS / ( tot_prob_DIS + tot_prob_CON ) ) || nDiscreteEnergies == nEnergies ) 247 } << 249 { 248 << 250 // Discrete Emission 249 // 2: theAngular[nDiscreteEnergies].Ge << 251 for ( G4int j = 0 ; j < nDiscreteEnergies ; j++ ) 250 // delta1 should be used between j << 252 { 251 if (theAngular[j].GetLabel() == 0.0) { << 253 //Here we should use i+1 252 e_low = theAngular[j].GetLabel() / e << 254 if ( random < running[ j+1 ] ) 253 if (j != nEnergies - 1) { << 255 { 254 e_high = theAngular[j + 1].GetLabe << 256 it = j; 255 } << 257 break; 256 else { << 258 } 257 e_high = theAngular[j].GetLabel() << 259 } 258 } << 260 fsEnergy = theAngular[ it ].GetLabel(); 259 } << 261 260 << 262 G4ParticleHPLegendreStore theStore(1); 261 running[j + 1] = running[j] + ((e_high << 263 theStore.Init(0,fsEnergy,nAngularParameters); 262 } << 264 for (G4int j=0;j<nAngularParameters;j++) 263 G4double tot_prob_CON = std::max(running << 265 { 264 << 266 theStore.SetCoeff(0,j,theAngular[it].GetValue(j)); 265 // Give up in the pathological case of n << 267 } 266 if (tot_prob_DIS == 0.0 && tot_prob_CON << 268 // use it to sample. 267 delete[] running; << 269 cosTh = theStore.SampleMax(fsEnergy); 268 return result; << 270 //Done 269 } << 271 } 270 // Normalize random << 272 else 271 random *= (tot_prob_DIS + tot_prob_CON); << 273 { 272 // 2nd Judge Discrete or not << 274 // Continuous Emission 273 << 275 for ( G4int j = nDiscreteEnergies ; j < nEnergies ; j++ ) 274 // This should be relatively close to 1 << 276 { 275 if (random <= (tot_prob_DIS / (tot_prob_ << 277 //Here we should use i 276 || nDiscreteEnergies == nEnergies) << 278 if ( random < running[ j ] ) >> 279 { >> 280 it = j; >> 281 break; >> 282 } >> 283 } >> 284 >> 285 G4double x1 = running[it-1]; >> 286 G4double x2 = running[it]; >> 287 >> 288 G4double y1 = 0.0; >> 289 if ( it != nDiscreteEnergies ) >> 290 y1 = theAngular[it-1].GetLabel(); >> 291 G4double y2 = theAngular[it].GetLabel(); >> 292 >> 293 fsEnergy = theInt.Interpolate(theManager.GetInverseScheme(it), >> 294 random,x1,x2,y1,y2); >> 295 >> 296 G4ParticleHPLegendreStore theStore(2); >> 297 theStore.Init(0,y1,nAngularParameters); >> 298 theStore.Init(1,y2,nAngularParameters); >> 299 theStore.SetManager(theManager); >> 300 for (G4int j=0;j<nAngularParameters;j++) >> 301 { >> 302 G4int itt = it; >> 303 if ( it == nDiscreteEnergies ) itt = it+1; //"This case "it-1" has data for Discrete, so we will use an extrpolate values it and it+1 >> 304 if ( it == 0 ) >> 305 { >> 306 //Safty for unexpected it = 0; >> 307 //G4cout << "110611 G4ParticleHPContAngularPar::Sample it = 0; invetigation required " << G4endl; >> 308 itt = it+1; >> 309 } >> 310 theStore.SetCoeff(0,j,theAngular[itt-1].GetValue(j)); >> 311 theStore.SetCoeff(1,j,theAngular[itt].GetValue(j)); >> 312 } >> 313 // use it to sample. >> 314 cosTh = theStore.SampleMax(fsEnergy); >> 315 >> 316 //Done >> 317 } >> 318 >> 319 //TK080711 >> 320 if( adjustResult ) remaining_energy -= fsEnergy; >> 321 //TK080711 >> 322 >> 323 //080801b >> 324 delete[] running; >> 325 //080801b >> 326 } >> 327 else 277 { 328 { 278 // Discrete Emission << 329 // Only continue, TK will clean up 279 for (G4int j = 0; j < nDiscreteEnergie << 280 // Here we should use i+1 << 281 if (random < running[j + 1]) { << 282 it = j; << 283 break; << 284 } << 285 } << 286 fsEnergy = theAngular[it].GetLabel(); << 287 << 288 G4ParticleHPLegendreStore theStore(1); << 289 theStore.Init(0, fsEnergy, nAngularPar << 290 for (G4int j = 0; j < nAngularParamete << 291 theStore.SetCoeff(0, j, theAngular[i << 292 } << 293 // use it to sample. << 294 cosTh = theStore.SampleMax(fsEnergy); << 295 // Done << 296 } << 297 else { << 298 // Continuous emission << 299 for (G4int j = nDiscreteEnergies; j < << 300 // Here we should use i << 301 if (random < running[j]) { << 302 it = j; << 303 break; << 304 } << 305 } << 306 << 307 if (it < 1) it = 1; // Protection aga << 308 << 309 G4double x1 = running[it - 1]; << 310 G4double x2 = running[it]; << 311 << 312 G4double y1 = 0.0; << 313 if (it != nDiscreteEnergies) y1 = theA << 314 G4double y2 = theAngular[it].GetLabel( << 315 << 316 fsEnergy = theInt.Interpolate(theManag << 317 << 318 G4ParticleHPLegendreStore theStore(2); << 319 theStore.Init(0, y1, nAngularParameter << 320 theStore.Init(1, y2, nAngularParameter << 321 theStore.SetManager(theManager); << 322 G4int itt; << 323 for (G4int j = 0; j < nAngularParamete << 324 itt = it; << 325 if (it == nDiscreteEnergies) itt = i << 326 // "This case "it-1" has data for Di << 327 // it+1 << 328 theStore.SetCoeff(0, j, theAngular[i << 329 theStore.SetCoeff(1, j, theAngular[i << 330 } << 331 // use it to sample. << 332 cosTh = theStore.SampleMax(fsEnergy); << 333 << 334 // Done << 335 } << 336 330 337 // The remaining energy needs to be lowe << 331 //080714 338 // Otherwise additional photons with too << 332 if ( fresh == true ) 339 // adjustResult condition has been remov << 333 { 340 fCache.Get().remaining_energy -= fsEnerg << 334 remaining_energy = theAngular[ nEnergies-1 ].GetLabel(); 341 delete[] running; << 335 fresh = false; 342 << 336 } 343 // end (nDiscreteEnergies != 0) branch << 337 //080714 344 } << 338 G4double random = G4UniformRand(); 345 else { << 339 G4double * running = new G4double[nEnergies]; 346 // Only continue, TK will clean up << 340 running[0]=0; 347 if (fCache.Get().fresh) { << 341 G4double weighted = 0; 348 fCache.Get().remaining_energy = theAng << 342 for(i=1; i<nEnergies; i++) 349 fCache.Get().fresh = false; << 343 { >> 344 /* >> 345 if(i!=0) >> 346 { >> 347 running[i]=running[i-1]; >> 348 } >> 349 running[i] += theInt.GetBinIntegral(theManager.GetScheme(i-1), >> 350 theAngular[i-1].GetLabel(), theAngular[i].GetLabel(), >> 351 theAngular[i-1].GetValue(0), theAngular[i].GetValue(0)); >> 352 weighted += theInt.GetWeightedBinIntegral(theManager.GetScheme(i-1), >> 353 theAngular[i-1].GetLabel(), theAngular[i].GetLabel(), >> 354 theAngular[i-1].GetValue(0), theAngular[i].GetValue(0)); >> 355 */ >> 356 >> 357 running[i]=running[i-1]; >> 358 if ( remaining_energy >= theAngular[i].GetLabel() ) >> 359 { >> 360 running[i] += theInt.GetBinIntegral(theManager.GetScheme(i-1), >> 361 theAngular[i-1].GetLabel(), theAngular[i].GetLabel(), >> 362 theAngular[i-1].GetValue(0), theAngular[i].GetValue(0)); >> 363 weighted += theInt.GetWeightedBinIntegral(theManager.GetScheme(i-1), >> 364 theAngular[i-1].GetLabel(), theAngular[i].GetLabel(), >> 365 theAngular[i-1].GetValue(0), theAngular[i].GetValue(0)); >> 366 } >> 367 } >> 368 // cash the mean energy in this distribution >> 369 //080409 TKDB >> 370 if ( nEnergies == 1 || running[nEnergies-1] == 0 ) >> 371 currentMeanEnergy = 0.0; >> 372 else >> 373 { >> 374 currentMeanEnergy = weighted/running[nEnergies-1]; >> 375 } >> 376 >> 377 //080409 TKDB >> 378 if ( nEnergies == 1 ) it = 0; >> 379 >> 380 //080729 >> 381 if ( running[nEnergies-1] != 0 ) >> 382 { >> 383 for ( i = 1 ; i < nEnergies ; i++ ) >> 384 { >> 385 it = i; >> 386 if ( random < running [ i ] / running [ nEnergies-1 ] ) break; >> 387 } >> 388 } >> 389 >> 390 //080714 >> 391 if ( running [ nEnergies-1 ] == 0 ) it = 0; >> 392 //080714 >> 393 >> 394 if (it<nDiscreteEnergies||it==0) >> 395 { >> 396 if(it == 0) >> 397 { >> 398 fsEnergy = theAngular[it].GetLabel(); >> 399 G4ParticleHPLegendreStore theStore(1); >> 400 theStore.Init(0,fsEnergy,nAngularParameters); >> 401 for(i=0;i<nAngularParameters;i++) >> 402 { >> 403 theStore.SetCoeff(0,i,theAngular[it].GetValue(i)); >> 404 } >> 405 // use it to sample. >> 406 cosTh = theStore.SampleMax(fsEnergy); >> 407 } >> 408 else >> 409 { >> 410 G4double e1, e2; >> 411 e1 = theAngular[it-1].GetLabel(); >> 412 e2 = theAngular[it].GetLabel(); >> 413 fsEnergy = theInt.Interpolate(theManager.GetInverseScheme(it), >> 414 random, >> 415 running[it-1]/running[nEnergies-1], >> 416 running[it]/running[nEnergies-1], >> 417 e1, e2); >> 418 // fill a Legendrestore >> 419 G4ParticleHPLegendreStore theStore(2); >> 420 theStore.Init(0,e1,nAngularParameters); >> 421 theStore.Init(1,e2,nAngularParameters); >> 422 for(i=0;i<nAngularParameters;i++) >> 423 { >> 424 theStore.SetCoeff(0,i,theAngular[it-1].GetValue(i)); >> 425 theStore.SetCoeff(1,i,theAngular[it].GetValue(i)); >> 426 } >> 427 // use it to sample. >> 428 theStore.SetManager(theManager); >> 429 cosTh = theStore.SampleMax(fsEnergy); >> 430 } >> 431 } >> 432 else // continuum contribution >> 433 { >> 434 G4double x1 = running[it-1]/running[nEnergies-1]; >> 435 G4double x2 = running[it]/running[nEnergies-1]; >> 436 G4double y1 = theAngular[it-1].GetLabel(); >> 437 G4double y2 = theAngular[it].GetLabel(); >> 438 fsEnergy = theInt.Interpolate(theManager.GetInverseScheme(it), >> 439 random,x1,x2,y1,y2); >> 440 G4ParticleHPLegendreStore theStore(2); >> 441 theStore.Init(0,y1,nAngularParameters); >> 442 theStore.Init(1,y2,nAngularParameters); >> 443 theStore.SetManager(theManager); >> 444 for(i=0;i<nAngularParameters;i++) >> 445 { >> 446 theStore.SetCoeff(0,i,theAngular[it-1].GetValue(i)); >> 447 theStore.SetCoeff(1,i,theAngular[it].GetValue(i)); >> 448 } >> 449 // use it to sample. >> 450 cosTh = theStore.SampleMax(fsEnergy); >> 451 } >> 452 delete [] running; >> 453 >> 454 //080714 >> 455 if( adjustResult ) remaining_energy -= fsEnergy; >> 456 //080714 >> 457 } >> 458 } >> 459 else if(angularRep==2) >> 460 { >> 461 // first get the energy (already the right for this incoming energy) >> 462 G4int j; >> 463 G4double * running = new G4double[nEnergies]; >> 464 running[0]=0; >> 465 G4double weighted = 0; >> 466 if( getenv("G4PHPTEST") ) G4cout << " G4ParticleHPContAngularPar::Sample nEnergies " << nEnergies << G4endl; >> 467 for(j=1; j<nEnergies; j++) >> 468 { >> 469 if(j!=0) running[j]=running[j-1]; >> 470 running[j] += theInt.GetBinIntegral(theManager.GetScheme(j-1), >> 471 theAngular[j-1].GetLabel(), theAngular[j].GetLabel(), >> 472 theAngular[j-1].GetValue(0), theAngular[j].GetValue(0)); >> 473 weighted += theInt.GetWeightedBinIntegral(theManager.GetScheme(j-1), >> 474 theAngular[j-1].GetLabel(), theAngular[j].GetLabel(), >> 475 theAngular[j-1].GetValue(0), theAngular[j].GetValue(0)); >> 476 if( getenv("G4PHPTEST") ) G4cout << " G4ParticleHPContAngularPar::Sample " << j << " running " << running[j] >> 477 << " " << theManager.GetScheme(j-1) << " " << theAngular[j-1].GetLabel() << " " << theAngular[j].GetLabel() << " " << theAngular[j-1].GetValue(0) << " " << theAngular[j].GetValue(0) << G4endl; //GDEB >> 478 } >> 479 // cash the mean energy in this distribution >> 480 //080409 TKDB >> 481 //currentMeanEnergy = weighted/running[nEnergies-1]; >> 482 if ( nEnergies == 1 ) >> 483 currentMeanEnergy = 0.0; >> 484 else >> 485 currentMeanEnergy = weighted/running[nEnergies-1]; >> 486 >> 487 G4int itt(0); >> 488 G4double randkal = G4UniformRand(); >> 489 //080409 TKDB >> 490 //for(i=0; i<nEnergies; i++) >> 491 for(j=1; j<nEnergies; j++) >> 492 { >> 493 itt = j; >> 494 if(randkal<running[j]/running[nEnergies-1]) break; 350 } 495 } 351 << 496 >> 497 // interpolate the secondary energy. >> 498 G4double x, x1,x2,y1,y2; >> 499 if(itt==0) itt=1; >> 500 x = randkal*running[nEnergies-1]; >> 501 x1 = running[itt-1]; >> 502 x2 = running[itt]; >> 503 G4double compoundFraction; >> 504 // interpolate energy >> 505 y1 = theAngular[itt-1].GetLabel(); >> 506 y2 = theAngular[itt].GetLabel(); >> 507 fsEnergy = theInt.Interpolate(theManager.GetInverseScheme(itt-1), >> 508 x, x1,x2,y1,y2); >> 509 if( getenv("G4PHPTEST") ) G4cout << itt << " G4particleHPContAngularPar fsEnergy " << fsEnergy << " " << theManager.GetInverseScheme(itt-1) << " x " << x << " " << x1 << " " << x2 << " y " << y1 << " " << y2 << G4endl; //GDEB >> 510 // for theta interpolate the compoundFractions >> 511 G4double cLow = theAngular[itt-1].GetValue(1); >> 512 G4double cHigh = theAngular[itt].GetValue(1); >> 513 compoundFraction = theInt.Interpolate(theManager.GetScheme(itt), >> 514 fsEnergy, y1, y2, cLow,cHigh); >> 515 if( getenv("G4PHPTEST") ) G4cout << itt << " G4particleHPContAngularPar compoundFraction " << compoundFraction << " E " << fsEnergy << " " << theManager.GetScheme(itt) << " ener " << fsEnergy << " y " << y1 << " " << y2 << " cLH " << cLow << " " << cHigh << G4endl; //GDEB >> 516 delete [] running; >> 517 >> 518 // get cosTh >> 519 G4double incidentEnergy = anEnergy; >> 520 G4double incidentMass = theProjectile->GetPDGMass(); >> 521 G4double productEnergy = fsEnergy; >> 522 G4double productMass = result->GetMass(); >> 523 G4int targetZ = G4int(theTargetCode/1000); >> 524 G4int targetA = G4int(theTargetCode-1000*targetZ); >> 525 // To correspond to natural composition (-nat-) data files. >> 526 if ( targetA == 0 ) >> 527 targetA = G4int ( theTarget->GetMass()/amu_c2 + 0.5 ); >> 528 G4double targetMass = theTarget->GetMass(); >> 529 G4int residualA = targetA+1-A; >> 530 G4int residualZ = targetZ-Z; >> 531 G4double residualMass = residualZ*G4Proton::Proton()->GetPDGMass(); >> 532 residualMass +=(residualA-residualZ)*theProjectile->GetPDGMass(); >> 533 residualMass -= G4NucleiProperties::GetBindingEnergy( residualA , residualZ ); >> 534 G4ParticleHPKallbachMannSyst theKallbach(compoundFraction, >> 535 incidentEnergy, incidentMass, >> 536 productEnergy, productMass, >> 537 residualMass, residualA, residualZ, >> 538 targetMass, targetA, targetZ); >> 539 cosTh = theKallbach.Sample(anEnergy); >> 540 if( getenv("G4PHPTEST") ) G4cout << " G4ParticleHPKallbachMannSyst::Sample resulttest " << cosTh << G4endl; //GDEB >> 541 } >> 542 else if(angularRep>10&&angularRep<16) >> 543 { 352 G4double random = G4UniformRand(); 544 G4double random = G4UniformRand(); 353 auto running = new G4double[nEnergies]; << 545 G4double * running = new G4double[nEnergies]; 354 running[0] = 0; << 546 running[0]=0; 355 G4double weighted = 0; 547 G4double weighted = 0; 356 for (i = 1; i < nEnergies; i++) { << 548 for(i=1; i<nEnergies; i++) 357 running[i] = running[i - 1]; << 549 { 358 if (fCache.Get().remaining_energy >= t << 550 if(i!=0) running[i]=running[i-1]; 359 running[i] += theInt.GetBinIntegral( << 551 running[i] += theInt.GetBinIntegral(theManager.GetScheme(i-1), 360 theManager.GetScheme(i - 1), theAn << 552 theAngular[i-1].GetLabel(), theAngular[i].GetLabel(), 361 theAngular[i - 1].GetValue(0), the << 553 theAngular[i-1].GetValue(0), theAngular[i].GetValue(0)); 362 weighted += theInt.GetWeightedBinInt << 554 weighted += theInt.GetWeightedBinIntegral(theManager.GetScheme(i-1), 363 theManager.GetScheme(i - 1), theAn << 555 theAngular[i-1].GetLabel(), theAngular[i].GetLabel(), 364 theAngular[i - 1].GetValue(0), the << 556 theAngular[i-1].GetValue(0), theAngular[i].GetValue(0)); 365 } << 557 } 366 } << 558 // cash the mean energy in this distribution 367 << 559 //currentMeanEnergy = weighted/running[nEnergies-1]; 368 // Cache the mean energy in this distrib << 560 if ( nEnergies == 1 ) 369 if (nEnergies == 1 || running[nEnergies << 561 currentMeanEnergy = 0.0; 370 fCache.Get().currentMeanEnergy = 0.0; << 562 else 371 } << 563 currentMeanEnergy = weighted/running[nEnergies-1]; 372 else { << 564 373 fCache.Get().currentMeanEnergy = weigh << 565 //080409 TKDB 374 } << 566 if ( nEnergies == 1 ) it = 0; 375 << 567 //for(i=0; i<nEnergies; i++) 376 if (nEnergies == 1) it = 0; << 568 for(i=1; i<nEnergies; i++) 377 if (running[nEnergies - 1] != 0) { << 569 { 378 for (i = 1; i < nEnergies; i++) { << 570 it = i; 379 it = i; << 571 if(random<running[i]/running[nEnergies-1]) break; 380 if (random < running[i] / running[nE << 381 } << 382 } 572 } 383 << 573 if(it<nDiscreteEnergies||it==0) 384 if (running[nEnergies - 1] == 0) it = 0; << 574 { 385 if (it < nDiscreteEnergies || it == 0) { << 575 if(it==0) 386 if (it == 0) { << 576 { 387 fsEnergy = theAngular[it].GetLabel() << 577 fsEnergy = theAngular[0].GetLabel(); 388 G4ParticleHPLegendreStore theStore(1 << 578 G4ParticleHPVector theStore; 389 theStore.Init(0, fsEnergy, nAngularP << 579 G4int aCounter = 0; 390 for (i = 0; i < nAngularParameters; << 580 for(G4int j=1; j<nAngularParameters; j+=2) 391 theStore.SetCoeff(0, i, theAngular << 581 { >> 582 theStore.SetX(aCounter, theAngular[0].GetValue(j)); >> 583 theStore.SetY(aCounter, theAngular[0].GetValue(j+1)); >> 584 aCounter++; 392 } 585 } 393 // use it to sample. << 586 G4InterpolationManager aMan; 394 cosTh = theStore.SampleMax(fsEnergy) << 587 aMan.Init(angularRep-10, nAngularParameters-1); >> 588 theStore.SetInterpolationManager(aMan); >> 589 cosTh = theStore.Sample(); 395 } 590 } 396 else { << 591 else 397 G4double e1, e2; << 592 { 398 e1 = theAngular[it - 1].GetLabel(); << 593 fsEnergy = theAngular[it].GetLabel(); 399 e2 = theAngular[it].GetLabel(); << 594 G4ParticleHPVector theStore; 400 fsEnergy = theInt.Interpolate(theMan << 595 G4InterpolationManager aMan; 401 runnin << 596 aMan.Init(angularRep-10, nAngularParameters-1); 402 runnin << 597 theStore.SetInterpolationManager(aMan); // Store interpolates f(costh) 403 // fill a Legendrestore << 598 G4InterpolationScheme currentScheme = theManager.GetInverseScheme(it); 404 G4ParticleHPLegendreStore theStore(2 << 599 G4int aCounter = 0; 405 theStore.Init(0, e1, nAngularParamet << 600 for(G4int j=1; j<nAngularParameters; j+=2) 406 theStore.Init(1, e2, nAngularParamet << 601 { 407 for (i = 0; i < nAngularParameters; << 602 theStore.SetX(aCounter, theAngular[it].GetValue(j)); 408 theStore.SetCoeff(0, i, theAngular << 603 theStore.SetY(aCounter, theInt.Interpolate(currentScheme, 409 theStore.SetCoeff(1, i, theAngular << 604 random, >> 605 running[it-1]/running[nEnergies-1], >> 606 running[it]/running[nEnergies-1], >> 607 theAngular[it-1].GetValue(j+1), >> 608 theAngular[it].GetValue(j+1))); >> 609 aCounter++; 410 } 610 } 411 // use it to sample. << 611 cosTh = theStore.Sample(); 412 theStore.SetManager(theManager); << 413 cosTh = theStore.SampleMax(fsEnergy) << 414 } 612 } 415 } 613 } 416 else { // continuum contribution << 614 else 417 G4double x1 = running[it - 1] / runnin << 615 { 418 G4double x2 = running[it] / running[nE << 616 G4double x1 = running[it-1]/running[nEnergies-1]; 419 G4double y1 = theAngular[it - 1].GetLa << 617 G4double x2 = running[it]/running[nEnergies-1]; >> 618 G4double y1 = theAngular[it-1].GetLabel(); 420 G4double y2 = theAngular[it].GetLabel( 619 G4double y2 = theAngular[it].GetLabel(); 421 fsEnergy = theInt.Interpolate(theManag << 620 fsEnergy = theInt.Interpolate(theManager.GetInverseScheme(it), 422 G4ParticleHPLegendreStore theStore(2); << 621 random,x1,x2,y1,y2); 423 theStore.Init(0, y1, nAngularParameter << 622 G4ParticleHPVector theBuff1; 424 theStore.Init(1, y2, nAngularParameter << 623 G4ParticleHPVector theBuff2; 425 theStore.SetManager(theManager); << 624 G4InterpolationManager aMan; 426 for (i = 0; i < nAngularParameters; i+ << 625 aMan.Init(angularRep-10, nAngularParameters-1); 427 theStore.SetCoeff(0, i, theAngular[i << 626 // theBuff1.SetInterpolationManager(aMan); // Store interpolates f(costh) 428 theStore.SetCoeff(1, i, theAngular[i << 627 // theBuff2.SetInterpolationManager(aMan); // Store interpolates f(costh) >> 628 // Bug Report #1366 from L. Russell >> 629 //for(i=0; i<nAngularParameters; i++) // i=1 ist wichtig! >> 630 //{ >> 631 // theBuff1.SetX(i, theAngular[it-1].GetValue(i)); >> 632 // theBuff1.SetY(i, theAngular[it-1].GetValue(i+1)); >> 633 // theBuff2.SetX(i, theAngular[it].GetValue(i)); >> 634 // theBuff2.SetY(i, theAngular[it].GetValue(i+1)); >> 635 // i++; >> 636 //} >> 637 { >> 638 G4int j; >> 639 for(i=0,j=1; i<nAngularParameters; i++,j+=2) >> 640 { >> 641 theBuff1.SetX(i, theAngular[it-1].GetValue(j)); >> 642 theBuff1.SetY(i, theAngular[it-1].GetValue(j+1)); >> 643 theBuff2.SetX(i, theAngular[it].GetValue(j)); >> 644 theBuff2.SetY(i, theAngular[it].GetValue(j+1)); 429 } 645 } 430 // use it to sample. << 431 cosTh = theStore.SampleMax(fsEnergy); << 432 } << 433 delete[] running; << 434 << 435 // The remaining energy needs to be lowe << 436 // *any* case. Otherwise additional pho << 437 // produced - therefore the adjustResul << 438 << 439 fCache.Get().remaining_energy -= fsEnerg << 440 // end if (nDiscreteEnergies != 0) << 441 } << 442 // end of (angularRep == 1) branch << 443 } << 444 else if (angularRep == 2) { << 445 // first get the energy (already the right << 446 G4int j; << 447 auto running = new G4double[nEnergies]; << 448 running[0] = 0; << 449 G4double weighted = 0; << 450 for (j = 1; j < nEnergies; ++j) { << 451 if (j != 0) running[j] = running[j - 1]; << 452 running[j] += theInt.GetBinIntegral(theM << 453 theA << 454 theA << 455 weighted += theInt.GetWeightedBinIntegra << 456 theManager.GetScheme(j - 1), theAngula << 457 theAngular[j - 1].GetValue(0), theAngu << 458 } << 459 << 460 // Cache the mean energy in this distribut << 461 if (nEnergies == 1) << 462 fCache.Get().currentMeanEnergy = 0.0; << 463 else << 464 fCache.Get().currentMeanEnergy = weighte << 465 << 466 G4int itt(0); << 467 G4double randkal = G4UniformRand(); << 468 for (j = 1; j < nEnergies; ++j) { << 469 itt = j; << 470 if (randkal*running[nEnergies - 1] < run << 471 } << 472 << 473 // Interpolate the secondary energy << 474 G4double x, x1, x2, y1, y2; << 475 if (itt == 0) itt = 1; << 476 x = randkal * running[nEnergies - 1]; << 477 x1 = running[itt - 1]; << 478 x2 = running[itt]; << 479 G4double compoundFraction; << 480 // interpolate energy << 481 y1 = theAngular[itt - 1].GetLabel(); << 482 y2 = theAngular[itt].GetLabel(); << 483 fsEnergy = theInt.Interpolate(theManager.G << 484 << 485 // For theta, interpolate the compoundFrac << 486 G4double cLow = theAngular[itt - 1].GetVal << 487 G4double cHigh = theAngular[itt].GetValue( << 488 compoundFraction = theInt.Interpolate(theM << 489 << 490 if (compoundFraction > 1.0) << 491 compoundFraction = 1.0; // Protection a << 492 << 493 delete[] running; << 494 << 495 // get cosTh << 496 G4double incidentEnergy = anEnergy; << 497 G4double incidentMass = theProjectile->Get << 498 G4double productEnergy = fsEnergy; << 499 G4double productMass = result->GetMass(); << 500 auto targetZ = G4int(fCache.Get().theTarge << 501 auto targetA = G4int(fCache.Get().theTarge << 502 << 503 // To correspond to natural composition (- << 504 if (targetA == 0) targetA = G4int(fCache.G << 505 G4double targetMass = fCache.Get().theTarg << 506 auto incidentA = G4int(incidentMass / amu_ << 507 auto incidentZ = G4int(theProjectile->GetP << 508 G4int residualA = targetA + incidentA - A; << 509 G4int residualZ = targetZ + incidentZ - Z; << 510 G4double residualMass = G4NucleiProperties << 511 << 512 G4ParticleHPKallbachMannSyst theKallbach( << 513 compoundFraction, incidentEnergy, incide << 514 residualA, residualZ, targetMass, target << 515 cosTh = theKallbach.Sample(anEnergy); << 516 // end (angularRep == 2) branch << 517 } << 518 else if (angularRep > 10 && angularRep < 16) << 519 G4double random = G4UniformRand(); << 520 auto running = new G4double[nEnergies]; << 521 running[0] = 0; << 522 G4double weighted = 0; << 523 for (i = 1; i < nEnergies; ++i) { << 524 if (i != 0) running[i] = running[i - 1]; << 525 running[i] += theInt.GetBinIntegral(theM << 526 theA << 527 theA << 528 weighted += theInt.GetWeightedBinIntegra << 529 theManager.GetScheme(i - 1), theAngula << 530 theAngular[i - 1].GetValue(0), theAngu << 531 } << 532 << 533 // Cache the mean energy in this distribut << 534 if (nEnergies == 1) << 535 fCache.Get().currentMeanEnergy = 0.0; << 536 else << 537 fCache.Get().currentMeanEnergy = weighte << 538 << 539 if (nEnergies == 1) it = 0; << 540 for (i = 1; i < nEnergies; i++) { << 541 it = i; << 542 if (random < running[i] / running[nEnerg << 543 } << 544 << 545 if (it < nDiscreteEnergies || it == 0) { << 546 if (it == 0) { << 547 fsEnergy = theAngular[0].GetLabel(); << 548 G4ParticleHPVector theStore; << 549 G4int aCounter = 0; << 550 for (G4int j = 1; j < nAngularParamete << 551 theStore.SetX(aCounter, theAngular[0 << 552 theStore.SetY(aCounter, theAngular[0 << 553 aCounter++; << 554 } 646 } 555 G4InterpolationManager aMan; << 556 aMan.Init(angularRep - 10, nAngularPar << 557 theStore.SetInterpolationManager(aMan) << 558 cosTh = theStore.Sample(); << 559 } << 560 else { << 561 fsEnergy = theAngular[it].GetLabel(); << 562 G4ParticleHPVector theStore; 647 G4ParticleHPVector theStore; 563 G4InterpolationManager aMan; << 648 theStore.SetInterpolationManager(aMan); // Store interpolates f(costh) 564 aMan.Init(angularRep - 10, nAngularPar << 649 x1 = y1; 565 theStore.SetInterpolationManager(aMan) << 650 x2 = y2; 566 G4InterpolationScheme currentScheme = << 651 G4double x, y; 567 G4int aCounter = 0; << 652 //for(i=0;i<theBuff1.GetVectorLength(); i++); 568 for (G4int j = 1; j < nAngularParamete << 653 for(i=0;i<theBuff1.GetVectorLength(); i++) 569 theStore.SetX(aCounter, theAngular[i << 654 { 570 theStore.SetY(aCounter, theInt.Inter << 655 x = theBuff1.GetX(i); // costh binning identical 571 << 656 y1 = theBuff1.GetY(i); 572 << 657 y2 = theBuff2.GetY(i); 573 << 658 y = theInt.Interpolate(theManager.GetScheme(it), 574 << 659 fsEnergy, theAngular[it-1].GetLabel(), 575 ++aCounter; << 660 theAngular[it].GetLabel(), y1, y2); >> 661 theStore.SetX(i, x); >> 662 theStore.SetY(i, y); 576 } 663 } 577 cosTh = theStore.Sample(); 664 cosTh = theStore.Sample(); 578 } 665 } >> 666 delete [] running; 579 } 667 } 580 else { << 668 else 581 G4double x1 = running[it - 1] / running[ << 669 { 582 G4double x2 = running[it] / running[nEne << 670 throw G4HadronicException(__FILE__, __LINE__, "G4ParticleHPContAngularPar::Sample: Unknown angular representation"); 583 G4double y1 = theAngular[it - 1].GetLabe << 584 G4double y2 = theAngular[it].GetLabel(); << 585 fsEnergy = theInt.Interpolate(theManager << 586 G4ParticleHPVector theBuff1; << 587 G4ParticleHPVector theBuff2; << 588 G4InterpolationManager aMan; << 589 aMan.Init(angularRep - 10, nAngularParam << 590 << 591 G4int j; << 592 for (i = 0, j = 1; i < nAngularParameter << 593 theBuff1.SetX(i, theAngular[it - 1].Ge << 594 theBuff1.SetY(i, theAngular[it - 1].Ge << 595 theBuff2.SetX(i, theAngular[it].GetVal << 596 theBuff2.SetY(i, theAngular[it].GetVal << 597 } << 598 << 599 G4ParticleHPVector theStore; << 600 theStore.SetInterpolationManager(aMan); << 601 x1 = y1; << 602 x2 = y2; << 603 G4double x, y; << 604 for (i = 0; i < theBuff1.GetVectorLength << 605 x = theBuff1.GetX(i); // costh binnin << 606 y1 = theBuff1.GetY(i); << 607 y2 = theBuff2.GetY(i); << 608 y = theInt.Interpolate(theManager.GetS << 609 theAngular[it]. << 610 theStore.SetX(i, x); << 611 theStore.SetY(i, y); << 612 } << 613 cosTh = theStore.Sample(); << 614 } 671 } 615 delete[] running; << 672 result->SetKineticEnergy(fsEnergy); 616 } << 673 G4double phi = twopi*G4UniformRand(); 617 else { << 674 G4double theta = std::acos(cosTh); 618 throw G4HadronicException(__FILE__, __LINE << 675 G4double sinth = std::sin(theta); 619 "G4ParticleHPCon << 676 G4double mtot = result->GetTotalMomentum(); >> 677 G4ThreeVector tempVector(mtot*sinth*std::cos(phi), mtot*sinth*std::sin(phi), mtot*std::cos(theta) ); >> 678 result->SetMomentum(tempVector); >> 679 // return the result. >> 680 return result; 620 } 681 } 621 //G4cout << " Efin=" << fsEnergy << G4endl; << 622 result->SetKineticEnergy(fsEnergy); << 623 682 624 G4double phi = twopi * G4UniformRand(); << 625 if(cosTh > 1.0) { cosTh = 1.0; } << 626 else if (cosTh < -1.0) { cosTh = -1.0; } << 627 G4double sinth = std::sqrt((1.0 - cosTh)*(1. << 628 G4double mtot = result->GetTotalMomentum(); << 629 G4ThreeVector tempVector(mtot * sinth * std: << 630 result->SetMomentum(tempVector); << 631 return result; << 632 } << 633 683 634 void G4ParticleHPContAngularPar::PrepareTableI << 684 #define MERGE_NEW 635 { << 636 // Discrete energies: store own energies in << 637 // << 638 // The data files sometimes have identical d << 639 // which would lead to overwriting the alrea << 640 // creating a hole in the lookup table. << 641 // No attempt is made here to correct for th << 642 // is subtracted from the energy in order to << 643 << 644 for (G4int ie = 0; ie < nDiscreteEnergies; i << 645 // check if energy is already present and << 646 G4double myE = theAngular[ie].GetLabel(); << 647 while (theDiscreteEnergiesOwn.find(myE) != << 648 myE -= 1e-6; << 649 } << 650 theDiscreteEnergiesOwn[myE] = ie; << 651 } << 652 return; << 653 } << 654 685 655 void G4ParticleHPContAngularPar::BuildByInterp << 686 void G4ParticleHPContAngularPar::PrepareTableInterpolation(const G4ParticleHPContAngularPar* angParPrev) 656 << 657 << 658 << 659 { 687 { 660 G4int ie, ie1, ie2, ie1Prev, ie2Prev; << 661 // Only rebuild the interpolation table if t << 662 // For several subsequent samplings of final << 663 // interaction the existing table should be << 664 if (!fCache.Get().fresh) return; << 665 << 666 // Make copies of angpar1 and angpar2. Since << 667 // it can not be excluded that one of them i << 668 // potentially the old "this" for creating t << 669 // memory corruption if the old is not store << 670 const G4ParticleHPContAngularPar copyAngpar1 << 671 << 672 nAngularParameters = copyAngpar1.nAngularPar << 673 theManager = copyAngpar1.theManager; << 674 theEnergy = anEnergy; << 675 theMinEner = DBL_MAX; // min and max will b << 676 theMaxEner = -DBL_MAX; << 677 << 678 // The two discrete sets must be merged. A v << 679 // be copied to the array in the end. Since << 680 // contains pointers, can't simply assign el << 681 // needs to call the explicit Set() method i << 682 << 683 // First, average probabilities for those li << 684 const std::map<G4double, G4int> discEnerOwn1 << 685 const std::map<G4double, G4int> discEnerOwn2 << 686 std::map<G4double, G4int>::const_iterator it << 687 std::map<G4double, G4int>::const_iterator it << 688 std::vector<G4ParticleHPList*> vAngular(disc << 689 G4double discEner1; << 690 for (itedeo1 = discEnerOwn1.cbegin(); itedeo << 691 discEner1 = itedeo1->first; << 692 if (discEner1 < theMinEner) { << 693 theMinEner = discEner1; << 694 } << 695 if (discEner1 > theMaxEner) { << 696 theMaxEner = discEner1; << 697 } << 698 ie1 = itedeo1->second; << 699 itedeo2 = discEnerOwn2.find(discEner1); << 700 if (itedeo2 == discEnerOwn2.cend()) { << 701 ie2 = -1; << 702 } << 703 else { << 704 ie2 = itedeo2->second; << 705 } << 706 vAngular[ie1] = new G4ParticleHPList(); << 707 vAngular[ie1]->SetLabel(copyAngpar1.theAng << 708 G4double val1, val2; << 709 for (G4int ip = 0; ip < nAngularParameters << 710 val1 = copyAngpar1.theAngular[ie1].GetVa << 711 if (ie2 != -1) { << 712 val2 = copyAngpar2.theAngular[ie2].Get << 713 } << 714 else { << 715 val2 = 0.; << 716 } << 717 G4double value = theInt.Interpolate(aSch << 718 copy << 719 vAngular[ie1]->SetValue(ip, value); << 720 } << 721 } // itedeo1 loop << 722 << 723 // Add the ones in set2 but not in set1 << 724 std::vector<G4ParticleHPList*>::const_iterat << 725 G4double discEner2; << 726 for (itedeo2 = discEnerOwn2.cbegin(); itedeo << 727 discEner2 = itedeo2->first; << 728 ie2 = itedeo2->second; << 729 G4bool notFound = true; << 730 itedeo1 = discEnerOwn1.find(discEner2); << 731 if (itedeo1 != discEnerOwn1.cend()) { << 732 notFound = false; << 733 } << 734 if (notFound) { << 735 // not yet in list << 736 if (discEner2 < theMinEner) { << 737 theMinEner = discEner2; << 738 } << 739 if (discEner2 > theMaxEner) { << 740 theMaxEner = discEner2; << 741 } << 742 // find position to insert << 743 G4bool isInserted = false; << 744 ie = 0; << 745 for (itv = vAngular.cbegin(); itv != vAn << 746 if (discEner2 > (*itv)->GetLabel()) { << 747 itv = vAngular.insert(itv, new G4Par << 748 (*itv)->SetLabel(copyAngpar2.theAngu << 749 isInserted = true; << 750 break; << 751 } << 752 } << 753 if (!isInserted) { << 754 ie = (G4int)vAngular.size(); << 755 vAngular.push_back(new G4ParticleHPLis << 756 vAngular[ie]->SetLabel(copyAngpar2.the << 757 isInserted = true; << 758 } << 759 688 760 G4double val1, val2; << 689 //----- Discrete energies: store own energies in a map for faster searching 761 for (G4int ip = 0; ip < nAngularParamete << 690 G4int ie; 762 val1 = 0; << 691 for(ie=0; ie<nDiscreteEnergies; ie++) { 763 val2 = copyAngpar2.theAngular[ie2].Get << 764 G4double value = theInt.Interpolate(aS << 765 co << 766 vAngular[ie]->SetValue(ip, value); << 767 } << 768 } // end if(notFound) << 769 } // end loop on itedeo2 << 770 << 771 // Store new discrete list << 772 nDiscreteEnergies = (G4int)vAngular.size(); << 773 delete[] theAngular; << 774 theAngular = nullptr; << 775 if (nDiscreteEnergies > 0) { << 776 theAngular = new G4ParticleHPList[nDiscret << 777 } << 778 theDiscreteEnergiesOwn.clear(); << 779 theDiscreteEnergies.clear(); << 780 for (ie = 0; ie < nDiscreteEnergies; ++ie) { << 781 theAngular[ie].SetLabel(vAngular[ie]->GetL << 782 for (G4int ip = 0; ip < nAngularParameters << 783 theAngular[ie].SetValue(ip, vAngular[ie] << 784 } << 785 theDiscreteEnergiesOwn[theAngular[ie].GetL 692 theDiscreteEnergiesOwn[theAngular[ie].GetLabel()] = ie; 786 theDiscreteEnergies.insert(theAngular[ie]. << 787 } 693 } >> 694 if( !angParPrev ) return; 788 695 789 // The continuous energies need to be made f << 696 //----- Discrete energies: use energies that appear in one or another 790 // ones. Therefore the re-assignemnt of theA << 697 for(ie=0; ie<nDiscreteEnergies; ie++) { 791 // after the continuous energy set is also f << 698 theDiscreteEnergies.insert(theAngular[ie].GetLabel()); 792 // total number of nEnergies is known and th << 793 << 794 // Get minimum and maximum energy interpolat << 795 // Don't use theMinEner or theMaxEner here, << 796 // need the interpolated range from the orig << 797 G4double interMinEner = copyAngpar1.GetMinEn << 798 + (theEnergy - copyA << 799 * (copyAngpar2.G << 800 / (copyAngpar2.G << 801 G4double interMaxEner = copyAngpar1.GetMaxEn << 802 + (theEnergy - copyA << 803 * (copyAngpar2.G << 804 / (copyAngpar2.G << 805 << 806 // Loop to energies of new set << 807 theEnergiesTransformed.clear(); << 808 << 809 G4int nEnergies1 = copyAngpar1.GetNEnergies( << 810 G4int nDiscreteEnergies1 = copyAngpar1.GetND << 811 G4double minEner1 = copyAngpar1.GetMinEner() << 812 G4double maxEner1 = copyAngpar1.GetMaxEner() << 813 G4int nEnergies2 = copyAngpar2.GetNEnergies( << 814 G4int nDiscreteEnergies2 = copyAngpar2.GetND << 815 G4double minEner2 = copyAngpar2.GetMinEner() << 816 G4double maxEner2 = copyAngpar2.GetMaxEner() << 817 << 818 // First build the list of transformed energ << 819 // to the new min max by assuming that the m << 820 // each set would be scalable to the new, in << 821 // max range << 822 << 823 G4double e1(0.); << 824 G4double eTNorm1(0.); << 825 for (ie1 = nDiscreteEnergies1; ie1 < nEnergi << 826 e1 = copyAngpar1.theAngular[ie1].GetLabel( << 827 eTNorm1 = (e1 - minEner1); << 828 if (maxEner1 != minEner1) eTNorm1 /= (maxE << 829 if (eTNorm1 >= 0 && eTNorm1 <= 1) theEnerg << 830 } 699 } 831 << 700 G4int nDiscreteEnergiesPrev = angParPrev->GetNDiscreteEnergies(); 832 G4double e2(0.); << 701 for(ie=0; ie<nDiscreteEnergiesPrev; ie++) { 833 G4double eTNorm2(0.); << 702 theDiscreteEnergies.insert(angParPrev->theAngular[ie].GetLabel()); 834 for (ie2 = nDiscreteEnergies2; ie2 < nEnergi << 703 } 835 e2 = copyAngpar2.theAngular[ie2].GetLabel( << 704 836 eTNorm2 = (e2 - minEner2); << 705 //--- Get the values for which interpolation will be done : all energies of this and previous ContAngularPar 837 if (maxEner2 != minEner2) eTNorm2 /= (maxE << 706 for(ie=nDiscreteEnergies; ie<nEnergies; ie++) { 838 if (eTNorm2 >= 0 && eTNorm2 <= 1) theEnerg << 707 G4double ener = theAngular[ie].GetLabel(); >> 708 G4double enerT = (ener-theMinEner)/(theMaxEner-theMinEner); >> 709 theEnergiesTransformed.insert(enerT); >> 710 //- if( getenv("G4PHPTEST2") ) G4cout <<this << " G4ParticleHPContAngularPar::PrepareTableInterpolation theEnergiesTransformed1 " << enerT << G4endl; //GDEB >> 711 } >> 712 G4int nEnergiesPrev = angParPrev->GetNEnergies(); >> 713 G4double minEnerPrev = angParPrev->GetMinEner(); >> 714 G4double maxEnerPrev = angParPrev->GetMaxEner(); >> 715 for(ie=nDiscreteEnergiesPrev; ie<nEnergiesPrev; ie++) { >> 716 G4double ener = angParPrev->theAngular[ie].GetLabel(); >> 717 G4double enerT = (ener-minEnerPrev)/(maxEnerPrev-minEnerPrev); >> 718 theEnergiesTransformed.insert(enerT); >> 719 //- if( getenv("G4PHPTEST2") ) G4cout << this << " G4ParticleHPContAngularPar::PrepareTableInterpolation theEnergiesTransformed2 " << enerT << G4endl; //GDEB 839 } 720 } >> 721 // add the maximum energy >> 722 theEnergiesTransformed.insert(1.); 840 723 841 // Now the list of energies is complete << 724 } 842 nEnergies = nDiscreteEnergies + (G4int)theEn << 843 725 844 // Create final array of angular parameters << 726 void G4ParticleHPContAngularPar::BuildByInterpolation(G4double anEnergy, G4InterpolationScheme aScheme, 845 const std::size_t esize = nEnergies > 0 ? nE << 727 G4ParticleHPContAngularPar & angpar1, 846 auto theNewAngular = new G4ParticleHPList[es << 728 G4ParticleHPContAngularPar & angpar2) 847 << 729 { 848 // Copy discrete energies and interpolated p << 730 G4int ie,ie1,ie2, ie1Prev, ie2Prev; 849 << 731 nAngularParameters = angpar1.nAngularParameters; 850 if (theAngular != nullptr) { << 732 theManager = angpar1.theManager; 851 for (ie = 0; ie < nDiscreteEnergies; ++ie) << 733 theEnergy = anEnergy; 852 theNewAngular[ie].SetLabel(theAngular[ie << 853 for (G4int ip = 0; ip < nAngularParamete << 854 theNewAngular[ie].SetValue(ip, theAngu << 855 } << 856 } << 857 delete[] theAngular; << 858 } << 859 theAngular = theNewAngular; << 860 734 861 // Interpolate the continuous energies for n << 735 nDiscreteEnergies = theDiscreteEnergies.size(); 862 auto iteet = theEnergiesTransformed.begin(); << 736 std::set<G4double>::const_iterator itede; >> 737 std::map<G4double,G4int> discEnerOwn1 = angpar1.GetDiscreteEnergiesOwn(); >> 738 std::map<G4double,G4int> discEnerOwn2 = angpar2.GetDiscreteEnergiesOwn(); >> 739 std::map<G4double,G4int>::const_iterator itedeo; >> 740 ie = 0; >> 741 for( itede = theDiscreteEnergies.begin(); itede != theDiscreteEnergies.end(); itede++, ie++ ) { >> 742 G4double discEner = *itede; >> 743 itedeo = discEnerOwn1.find(discEner); >> 744 if( itedeo == discEnerOwn1.end() ) { >> 745 ie1 = 0; >> 746 } else { >> 747 ie1 = -1; >> 748 } >> 749 itedeo = discEnerOwn2.find(discEner); >> 750 if( itedeo == discEnerOwn2.end() ) { >> 751 ie2 = 0; >> 752 } else { >> 753 ie2 = -1; >> 754 } 863 755 864 G4double e1Interp(0.); << 756 theAngular[ie].SetLabel(discEner); 865 G4double e2Interp(0.); << 757 G4double val1, val2; 866 for (ie = nDiscreteEnergies; ie < nEnergies; << 758 for(G4int ip=0; ip<nAngularParameters; ip++) { >> 759 if( ie1 != -1 ) { >> 760 val1 = angpar1.theAngular[ie1].GetValue(ip); >> 761 } else { >> 762 val1 = 0.; >> 763 } >> 764 if( ie2 != -1 ) { >> 765 val2 = angpar2.theAngular[ie2].GetValue(ip); >> 766 } else { >> 767 val2 = 0.; >> 768 } >> 769 >> 770 G4double value = theInt.Interpolate(aScheme, anEnergy, >> 771 angpar1.theEnergy, angpar2.theEnergy, >> 772 val1, >> 773 val2); >> 774 if( getenv("G4PHPTEST2") ) G4cout << ie << " " << ip << " G4ParticleHPContAngularPar::Merge DiscreteEnergies val1 " << val1 << " val2 " << val2 << " value " << value << G4endl; //GDEB >> 775 >> 776 theAngular[ie].SetValue(ip, value); >> 777 } >> 778 } >> 779 >> 780 if(theAngular != 0) delete [] theAngular; >> 781 nEnergies = nDiscreteEnergies + angpar2.GetNEnergiesTransformed(); >> 782 theAngular = new G4ParticleHPList [nEnergies]; >> 783 >> 784 //---- Get minimum and maximum energy interpolating >> 785 theMinEner = angpar1.GetMinEner() + (theEnergy-angpar1.GetEnergy()) * (angpar2.GetMinEner()-angpar1.GetMinEner())/(angpar2.GetEnergy()-angpar1.GetEnergy()); >> 786 theMaxEner = angpar1.GetMaxEner() + (theEnergy-angpar1.GetEnergy()) * (angpar2.GetMaxEner()-angpar1.GetMaxEner())/(angpar2.GetEnergy()-angpar1.GetEnergy()); >> 787 >> 788 if( getenv("G4PHPTEST2") ) G4cout << " G4ParticleHPContAngularPar::Merge E " << anEnergy << " minmax " << theMinEner << " " << theMaxEner << G4endl; //GDEB >> 789 >> 790 //--- Loop to energies of new set >> 791 std::set<G4double> energiesTransformed = angpar2.GetEnergiesTransformed(); >> 792 std::set<G4double>::const_iterator iteet = energiesTransformed.begin(); >> 793 G4int nEnergies1 = angpar1.GetNEnergies(); >> 794 G4int nDiscreteEnergies1 = angpar1.GetNDiscreteEnergies(); >> 795 G4double minEner1 = angpar1.GetMinEner(); >> 796 G4double maxEner1 = angpar1.GetMaxEner(); >> 797 G4int nEnergies2 = angpar2.GetNEnergies(); >> 798 G4int nDiscreteEnergies2 = angpar2.GetNDiscreteEnergies(); >> 799 G4double minEner2 = angpar2.GetMinEner(); >> 800 G4double maxEner2 = angpar2.GetMaxEner(); >> 801 for(ie=nDiscreteEnergies; ie<nEnergies; ie++,iteet++) { 867 G4double eT = (*iteet); 802 G4double eT = (*iteet); 868 803 869 //--- Use eT1 = eT: Get energy and paramet << 804 //--- Use eT1 = eT: Get energy and parameters of angpar1 for this eT 870 e1Interp = (maxEner1 - minEner1) * eT + mi << 805 G4double e1 = (maxEner1-minEner1) * eT + minEner1; 871 //----- Get parameter value corresponding << 806 //----- Get parameter value corresponding to this e1 872 for (ie1 = nDiscreteEnergies1; ie1 < nEner << 807 for(ie1=nDiscreteEnergies1; ie1<nEnergies1; ie1++) { 873 if ((copyAngpar1.theAngular[ie1].GetLabe << 808 if( (angpar1.theAngular[ie1].GetLabel() - e1) > 1.E-10*e1 ) break; 874 } 809 } 875 ie1Prev = ie1 - 1; 810 ie1Prev = ie1 - 1; 876 if (ie1 == 0) ++ie1Prev; << 811 if( ie1 == 0 ) ie1Prev++; 877 if (ie1 == nEnergies1) { << 812 if( ie1 == nEnergies1 ) { 878 ie1--; 813 ie1--; 879 ie1Prev = ie1; 814 ie1Prev = ie1; 880 } 815 } 881 << 816 //--- Use eT2 = eT: Get energy and parameters of angpar2 for this eT 882 //--- Use eT2 = eT: Get energy and paramet << 817 G4double e2 = (maxEner2-minEner2) * eT + minEner2; 883 e2Interp = (maxEner2 - minEner2) * eT + mi << 818 //----- Get parameter value corresponding to this e2 884 //----- Get parameter value corresponding << 819 for(ie2=nDiscreteEnergies2; ie2<nEnergies2; ie2++) { 885 for (ie2 = nDiscreteEnergies2; ie2 < nEner << 820 // G4cout << " GET IE2 " << ie2 << " - " << angpar2.theAngular[ie2].GetLabel() - e2 << " " << angpar2.theAngular[ie2].GetLabel() << " " << e2 <<G4endl; 886 if ((copyAngpar2.theAngular[ie2].GetLabe << 821 if( (angpar2.theAngular[ie2].GetLabel() - e2) > 1.E-10*e2 ) break; 887 } 822 } 888 ie2Prev = ie2 - 1; 823 ie2Prev = ie2 - 1; 889 if (ie2 == 0) ++ie2Prev; << 824 if( ie2 == 0 ) ie2Prev++; 890 if (ie2 == nEnergies2) { << 825 if( ie2 == nEnergies2 ) { 891 ie2--; 826 ie2--; 892 ie2Prev = ie2; 827 ie2Prev = ie2; 893 } 828 } 894 829 895 //---- Energy corresponding to energy tran << 830 //---- Energy corresponding to energy transformed 896 G4double eN = (interMaxEner - interMinEner << 831 G4double eN = (theMaxEner-theMinEner) * eT + theMinEner; 897 << 832 if( getenv("G4PHPTEST2") ) G4cout << ie << " " << ie1 << " " << ie2 << " G4ParticleHPContAngularPar::loop eT " << eT << " -> eN " << eN << " e1 " << e1 << " e2 " << e2 << G4endl; //GDEB >> 833 898 theAngular[ie].SetLabel(eN); 834 theAngular[ie].SetLabel(eN); 899 if (eN < theMinEner) { << 835 900 theMinEner = eN; << 836 for(G4int ip=0; ip<nAngularParameters; ip++) { 901 } << 837 G4double val1 = theInt.Interpolate2(theManager.GetScheme(ie), 902 if (eN > theMaxEner) { << 838 e1, 903 theMaxEner = eN; << 839 angpar1.theAngular[ie1Prev].GetLabel(), 904 } << 840 angpar1.theAngular[ie1].GetLabel(), 905 << 841 angpar1.theAngular[ie1Prev].GetValue(ip), 906 G4double val1(0.); << 842 angpar1.theAngular[ie1].GetValue(ip)) * (maxEner1-minEner1); 907 G4double val2(0.); << 843 G4double val2 = theInt.Interpolate2(theManager.GetScheme(ie), 908 G4double value(0.); << 844 e2, 909 for (G4int ip = 0; ip < nAngularParameters << 845 angpar2.theAngular[ie2Prev].GetLabel(), 910 val1 = theInt.Interpolate2( << 846 angpar2.theAngular[ie2].GetLabel(), 911 theManager.GetScheme(ie), e1Int << 847 angpar2.theAngular[ie2Prev].GetValue(ip), 912 copyAngpar1.theAngular[ie1].Get << 848 angpar2.theAngular[ie2].GetValue(ip)) * (maxEner2-minEner2); 913 copyAngpar1.theAngular[ie1].Get << 849 914 * (maxEner1 - minEner1); << 850 G4double value = theInt.Interpolate(aScheme, anEnergy, 915 val2 = theInt.Interpolate2( << 851 angpar1.theEnergy, angpar2.theEnergy, 916 theManager.GetScheme(ie), e2Int << 852 val1, 917 copyAngpar2.theAngular[ie2].Get << 853 val2); 918 copyAngpar2.theAngular[ie2].Get << 854 value /= (theMaxEner-theMinEner); 919 * (maxEner2 - minEner2); << 855 if( getenv("G4PHPTEST2") ) G4cout << ie << " " << ip << " G4ParticleHPContAngularPar::Merge val1 " << val1 << " val2 " << val2 << " value " << value << G4endl; //GDEB 920 << 856 //- val1 = angpar1.theAngular[ie1-1].GetValue(ip) * (maxEner1-minEner1); 921 value = theInt.Interpolate(aScheme, anEn << 857 //- val2 = angpar2.theAngular[ie2-1].GetValue(ip) * (maxEner2-minEner2); 922 val1, val2); << 858 //- if( getenv("G4PHPTEST2") ) G4cout << ie << " " << ip << " G4ParticleHPContAngularPar::MergeOLD val1 " << val1 << " val2 " << val2 << " value " << value << G4endl; //GDEB 923 if (interMaxEner != interMinEner) { << 859 924 value /= (interMaxEner - interMinEner) << 925 } << 926 else if (value != 0) { << 927 throw G4HadronicException(__FILE__, __ << 928 "G4ParticleH << 929 "interMaxEne << 930 } << 931 theAngular[ie].SetValue(ip, value); 860 theAngular[ie].SetValue(ip, value); 932 } 861 } 933 } // end loop on nDiscreteEnergies << 862 } 934 863 935 for (itv = vAngular.cbegin(); itv != vAngula << 864 if( getenv("G4PHPTEST2") ) { 936 delete (*itv); << 865 G4cout << " G4ParticleHPContAngularPar::Merge ANGPAR1 " << G4endl; //GDEB >> 866 angpar1.Dump(); >> 867 G4cout << " G4ParticleHPContAngularPar::Merge ANGPAR2 " << G4endl; >> 868 angpar2.Dump(); >> 869 G4cout << " G4ParticleHPContAngularPar::Merge ANGPARNEW " << G4endl; >> 870 Dump(); >> 871 } 937 } 872 } 938 873 939 void G4ParticleHPContAngularPar::Dump() const << 874 void G4ParticleHPContAngularPar::Dump() 940 { 875 { 941 G4cout << theEnergy << " " << nEnergies << " << 876 G4cout << theEnergy << " " << nEnergies << " " << nDiscreteEnergies << " " << nAngularParameters << G4endl; 942 << G4endl; << 943 877 944 for (G4int ii = 0; ii < nEnergies; ++ii) << 878 for(G4int ii=0; ii<nEnergies; ii++) { 945 theAngular[ii].Dump(); 879 theAngular[ii].Dump(); >> 880 } >> 881 946 } 882 } 947 883