Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/lepto_nuclear/src/G4NeutrinoElectronCcModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/hadronic/models/lepto_nuclear/src/G4NeutrinoElectronCcModel.cc (Version 11.3.0) and /processes/hadronic/models/lepto_nuclear/src/G4NeutrinoElectronCcModel.cc (Version 10.7.p4)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 //                                                 26 //
 27 // Geant4 Header : G4NeutrinoElectronCcModel       27 // Geant4 Header : G4NeutrinoElectronCcModel
 28 //                                                 28 //
 29 // Author : V.Grichine 26.4.17                     29 // Author : V.Grichine 26.4.17
 30 //                                                 30 //  
 31                                                    31 
 32 #include "G4NeutrinoElectronCcModel.hh"            32 #include "G4NeutrinoElectronCcModel.hh"
 33 #include "G4SystemOfUnits.hh"                      33 #include "G4SystemOfUnits.hh"
 34 #include "G4ParticleTable.hh"                      34 #include "G4ParticleTable.hh"
 35 #include "G4ParticleDefinition.hh"                 35 #include "G4ParticleDefinition.hh"
 36 #include "G4IonTable.hh"                           36 #include "G4IonTable.hh"
 37 #include "Randomize.hh"                            37 #include "Randomize.hh"
 38 #include "G4NeutrinoE.hh"                          38 #include "G4NeutrinoE.hh"
 39 #include "G4AntiNeutrinoE.hh"                      39 #include "G4AntiNeutrinoE.hh"
 40                                                    40 
 41 #include "G4NeutrinoMu.hh"                         41 #include "G4NeutrinoMu.hh"
 42 #include "G4AntiNeutrinoMu.hh"                     42 #include "G4AntiNeutrinoMu.hh"
 43 #include "G4NeutrinoTau.hh"                        43 #include "G4NeutrinoTau.hh"
 44 #include "G4AntiNeutrinoTau.hh"                    44 #include "G4AntiNeutrinoTau.hh"
 45 #include "G4MuonMinus.hh"                          45 #include "G4MuonMinus.hh"
 46 #include "G4TauMinus.hh"                           46 #include "G4TauMinus.hh"
 47 #include "G4HadronicParameters.hh"                 47 #include "G4HadronicParameters.hh"
 48 #include "G4PhysicsModelCatalog.hh"            << 
 49                                                    48 
 50 using namespace std;                               49 using namespace std;
 51 using namespace CLHEP;                             50 using namespace CLHEP;
 52                                                    51 
 53 G4NeutrinoElectronCcModel::G4NeutrinoElectronC     52 G4NeutrinoElectronCcModel::G4NeutrinoElectronCcModel(const G4String& name) 
 54   : G4HadronicInteraction(name)                    53   : G4HadronicInteraction(name)
 55 {                                                  54 {
 56   SetMinEnergy( 0.0*GeV );                         55   SetMinEnergy( 0.0*GeV );
 57   SetMaxEnergy( G4HadronicParameters::Instance     56   SetMaxEnergy( G4HadronicParameters::Instance()->GetMaxEnergy() );
 58   SetMinEnergy(1.e-6*eV);                          57   SetMinEnergy(1.e-6*eV);  
 59                                                    58 
 60   theNeutrinoE = G4NeutrinoE::NeutrinoE();         59   theNeutrinoE = G4NeutrinoE::NeutrinoE();
 61   theAntiNeutrinoE = G4AntiNeutrinoE::AntiNeut     60   theAntiNeutrinoE = G4AntiNeutrinoE::AntiNeutrinoE();
 62                                                    61 
 63   theNeutrinoMu = G4NeutrinoMu::NeutrinoMu();      62   theNeutrinoMu = G4NeutrinoMu::NeutrinoMu();
 64   theAntiNeutrinoMu = G4AntiNeutrinoMu::AntiNe     63   theAntiNeutrinoMu = G4AntiNeutrinoMu::AntiNeutrinoMu();
 65                                                    64 
 66   theNeutrinoTau = G4NeutrinoTau::NeutrinoTau(     65   theNeutrinoTau = G4NeutrinoTau::NeutrinoTau();
 67   theAntiNeutrinoTau = G4AntiNeutrinoTau::Anti     66   theAntiNeutrinoTau = G4AntiNeutrinoTau::AntiNeutrinoTau();
 68                                                    67   
 69   theMuonMinus = G4MuonMinus::MuonMinus();         68   theMuonMinus = G4MuonMinus::MuonMinus();
 70   theTauMinus  = G4TauMinus::TauMinus();           69   theTauMinus  = G4TauMinus::TauMinus();
 71                                                    70 
 72   // PDG2016: sin^2 theta Weinberg                 71   // PDG2016: sin^2 theta Weinberg
 73                                                    72 
 74   fSin2tW = 0.23129; // 0.2312;                    73   fSin2tW = 0.23129; // 0.2312;
 75                                                    74 
 76   fCutEnergy = 0.; // default value                75   fCutEnergy = 0.; // default value
 77                                                    76 
 78   // Creator model ID                          << 
 79   secID = G4PhysicsModelCatalog::GetModelID( " << 
 80 }                                                  77 }
 81                                                    78 
 82                                                    79 
 83 G4NeutrinoElectronCcModel::~G4NeutrinoElectron     80 G4NeutrinoElectronCcModel::~G4NeutrinoElectronCcModel()
 84 {}                                                 81 {}
 85                                                    82 
 86                                                    83 
 87 void G4NeutrinoElectronCcModel::ModelDescripti     84 void G4NeutrinoElectronCcModel::ModelDescription(std::ostream& outFile) const
 88 {                                                  85 {
 89                                                    86 
 90     outFile << "G4NeutrinoElectronCcModel is a     87     outFile << "G4NeutrinoElectronCcModel is a neutrino-electron (neutral current) elastic scattering\n"
 91             << "model which uses the standard      88             << "model which uses the standard model \n"
 92             << "transfer parameterization.  Th     89             << "transfer parameterization.  The model is fully relativistic\n";
 93                                                    90 
 94 }                                                  91 }
 95                                                    92 
 96 //////////////////////////////////////////////     93 /////////////////////////////////////////////////////////
 97                                                    94 
 98 G4bool G4NeutrinoElectronCcModel::IsApplicable     95 G4bool G4NeutrinoElectronCcModel::IsApplicable(const G4HadProjectile & aPart, 
 99                  G4Nucleus & )                 <<  96                  G4Nucleus & targetNucleus)
100 {                                                  97 {
101   G4bool result  = false;                          98   G4bool result  = false;
102   G4String pName = aPart.GetDefinition()->GetP     99   G4String pName = aPart.GetDefinition()->GetParticleName();
103   if(pName == "anti_nu_mu" || pName == "anti_n    100   if(pName == "anti_nu_mu" || pName == "anti_nu_tau") return result; // no cc for anti_nu_(mu,tau)
104   G4double minEnergy = 0., energy = aPart.GetT    101   G4double minEnergy = 0., energy = aPart.GetTotalEnergy();
105   G4double fmass, emass = electron_mass_c2;       102   G4double fmass, emass = electron_mass_c2;
106                                                   103 
107   if(      pName == "nu_mu"  ) fmass = theMuon    104   if(      pName == "nu_mu"  ) fmass = theMuonMinus->GetPDGMass(); 
108   else if( pName == "nu_tau" ) fmass = theTauM    105   else if( pName == "nu_tau" ) fmass = theTauMinus->GetPDGMass(); 
109   else                         fmass = emass;     106   else                         fmass = emass;
110                                                   107 
111   minEnergy = (fmass-emass)*(fmass+emass)/emas    108   minEnergy = (fmass-emass)*(fmass+emass)/emass;
112   SetMinEnergy( minEnergy );                      109   SetMinEnergy( minEnergy );
113                                                   110   
114   if( ( pName == "nu_mu"   || pName == "nu_tau    111   if( ( pName == "nu_mu"   || pName == "nu_tau" ||  pName == "anti_nu_e"  ) &&  energy > minEnergy )
115   {                                               112   {
116     result = true;                                113     result = true;
117   }                                               114   }
                                                   >> 115   G4int Z = targetNucleus.GetZ_asInt();
                                                   >> 116         Z *= 1;
118                                                   117 
119   return result;                                  118   return result;
120 }                                                 119 }
121                                                   120 
122 //////////////////////////////////////////////    121 ////////////////////////////////////////////////
123 //                                                122 //
124 //                                                123 //
125                                                   124 
126 G4HadFinalState* G4NeutrinoElectronCcModel::Ap    125 G4HadFinalState* G4NeutrinoElectronCcModel::ApplyYourself(
127      const G4HadProjectile& aTrack, G4Nucleus& << 126      const G4HadProjectile& aTrack, G4Nucleus& targetNucleus)
128 {                                                 127 {
129   theParticleChange.Clear();                      128   theParticleChange.Clear();
130                                                   129 
131   const G4HadProjectile* aParticle = &aTrack;     130   const G4HadProjectile* aParticle = &aTrack;
132   G4double energy = aParticle->GetTotalEnergy(    131   G4double energy = aParticle->GetTotalEnergy();
133                                                   132 
134   G4String pName  = aParticle->GetDefinition()    133   G4String pName  = aParticle->GetDefinition()->GetParticleName();
135   G4double minEnergy(0.), fmass(0.), emass = e    134   G4double minEnergy(0.), fmass(0.), emass = electron_mass_c2;
136                                                   135 
137   if(      pName == "nu_mu"    ) fmass = theMu    136   if(      pName == "nu_mu"    ) fmass = theMuonMinus->GetPDGMass(); 
138   else if( pName == "nu_tau"   ) fmass = theTa    137   else if( pName == "nu_tau"   ) fmass = theTauMinus->GetPDGMass(); 
139   else                           fmass = emass    138   else                           fmass = emass;
140                                                   139 
141   minEnergy = (fmass-emass)*(fmass+emass)/emas    140   minEnergy = (fmass-emass)*(fmass+emass)/emass;
142                                                   141 
143   if( energy <= minEnergy )                       142   if( energy <= minEnergy ) 
144   {                                               143   {
145     theParticleChange.SetEnergyChange(energy);    144     theParticleChange.SetEnergyChange(energy);
146     theParticleChange.SetMomentumChange(aTrack    145     theParticleChange.SetMomentumChange(aTrack.Get4Momentum().vect().unit());
147     return &theParticleChange;                    146     return &theParticleChange;
148   }                                               147   }
149   G4double massf(0.), massf2(0.); // , emass =    148   G4double massf(0.), massf2(0.); // , emass = electron_mass_c2;
150   G4double sTot = 2.*energy*emass + emass*emas    149   G4double sTot = 2.*energy*emass + emass*emass;
151                                                   150  
152   G4LorentzVector lvp1 = aParticle->Get4Moment    151   G4LorentzVector lvp1 = aParticle->Get4Momentum();
153   G4LorentzVector lvt1(0.,0.,0.,electron_mass_    152   G4LorentzVector lvt1(0.,0.,0.,electron_mass_c2);
154   G4LorentzVector lvsum = lvp1+lvt1;              153   G4LorentzVector lvsum = lvp1+lvt1;
155   G4ThreeVector bst = lvsum.boostVector();        154   G4ThreeVector bst = lvsum.boostVector();
156                                                   155 
157   // sample and make final state in CMS frame     156   // sample and make final state in CMS frame
158                                                   157 
159   G4double cost = SampleCosCMS( aParticle );      158   G4double cost = SampleCosCMS( aParticle );
160   G4double sint = std::sqrt( (1.0 - cost)*(1.0    159   G4double sint = std::sqrt( (1.0 - cost)*(1.0 + cost) );
161   G4double phi  = G4UniformRand()*CLHEP::twopi    160   G4double phi  = G4UniformRand()*CLHEP::twopi;
162                                                   161 
163   G4ThreeVector eP( sint*std::cos(phi), sint*s    162   G4ThreeVector eP( sint*std::cos(phi), sint*std::sin(phi), cost );
164                                                   163 
165   if(      pName == "nu_mu"  ) massf = theMuon    164   if(      pName == "nu_mu"  ) massf = theMuonMinus->GetPDGMass();
166   else if( pName == "nu_tau" ) massf = theTauM    165   else if( pName == "nu_tau" ) massf = theTauMinus->GetPDGMass();
167                                                   166 
168   massf2 = massf*massf;                           167   massf2 = massf*massf;
169                                                   168 
170   G4double epf = 0.5*(sTot - massf2)/sqrt(sTot    169   G4double epf = 0.5*(sTot - massf2)/sqrt(sTot);
171   // G4double etf = epf*(sTot + massf2)/(sTot     170   // G4double etf = epf*(sTot + massf2)/(sTot - massf2);
172                                                   171 
173   eP *= epf;                                      172   eP *= epf;
174   G4LorentzVector lvp2( eP, epf );                173   G4LorentzVector lvp2( eP, epf );
175   lvp2.boost(bst); // back to lab frame           174   lvp2.boost(bst); // back to lab frame
176                                                   175 
177   G4LorentzVector lvt2 = lvsum - lvp2; // ?       176   G4LorentzVector lvt2 = lvsum - lvp2; // ?
178                                                   177 
179   G4DynamicParticle* aNu   = nullptr;             178   G4DynamicParticle* aNu   = nullptr; 
180   G4DynamicParticle* aLept = nullptr;             179   G4DynamicParticle* aLept = nullptr; 
181                                                   180 
182   if(  pName == "nu_mu" || pName == "nu_tau")     181   if(  pName == "nu_mu" || pName == "nu_tau")               
183   {                                               182   {
184     aNu = new G4DynamicParticle( theNeutrinoE,    183     aNu = new G4DynamicParticle( theNeutrinoE, lvp2 );
185   }                                               184   }
186   else if( pName == "anti_nu_e" )   aNu = new     185   else if( pName == "anti_nu_e" )   aNu = new G4DynamicParticle( theAntiNeutrinoMu, lvp2 ); // s-channel for mu (tau later)
187                                                   186   
188   if(  pName == "nu_mu" || pName == "anti_nu_e    187   if(  pName == "nu_mu" || pName == "anti_nu_e")       
189   {                                               188   {
190     aLept = new G4DynamicParticle( theMuonMinu    189     aLept = new G4DynamicParticle( theMuonMinus, lvt2 );
191   }                                               190   }
192   else if( pName == "nu_tau" ) // || pName ==     191   else if( pName == "nu_tau" ) // || pName == "anti_nu_tau") 
193   {                                               192   {
194     aLept = new G4DynamicParticle( theTauMinus    193     aLept = new G4DynamicParticle( theTauMinus, lvt2 );
195   }                                               194   }
196   if(aNu)   { theParticleChange.AddSecondary(  << 195   if(aNu)   { theParticleChange.AddSecondary( aNu ); }
197   if(aLept) { theParticleChange.AddSecondary(  << 196   if(aLept) { theParticleChange.AddSecondary( aLept ); }
                                                   >> 197 
                                                   >> 198   G4int Z = targetNucleus.GetZ_asInt();
                                                   >> 199         Z *= 1;
198                                                   200  
199   return &theParticleChange;                      201   return &theParticleChange;
200 }                                                 202 }
201                                                   203 
202 //////////////////////////////////////////////    204 //////////////////////////////////////////////////////
203 //                                                205 //
204 // sample recoil electron energy in lab frame     206 // sample recoil electron energy in lab frame
205                                                   207 
206 G4double G4NeutrinoElectronCcModel::SampleCosC    208 G4double G4NeutrinoElectronCcModel::SampleCosCMS(const G4HadProjectile* aParticle)
207 {                                                 209 {
208   G4double result = 0., cofL, cofR, cofLR, mas    210   G4double result = 0., cofL, cofR, cofLR, massf2, sTot, emass = electron_mass_c2, emass2;
209                                                   211 
210   G4double energy = aParticle->GetTotalEnergy(    212   G4double energy = aParticle->GetTotalEnergy();
211                                                   213   
212   if( energy == 0.) return result; // vmg: < t    214   if( energy == 0.) return result; // vmg: < th?? as in xsc 
213                                                   215 
214   G4String pName  = aParticle->GetDefinition()    216   G4String pName  = aParticle->GetDefinition()->GetParticleName();
215                                                   217 
216   if( pName == "nu_mu" || pName == "nu_tau")      218   if( pName == "nu_mu" || pName == "nu_tau")
217   {                                               219   {
218     return 2.*G4UniformRand()-1.; // uniform s    220     return 2.*G4UniformRand()-1.; // uniform scattering cos in CMS
219   }                                               221   }
220   else if( pName == "anti_nu_mu" || pName == "    222   else if( pName == "anti_nu_mu" || pName == "anti_nu_tau")
221   {                                               223   {
222     emass2 = emass*emass;                         224     emass2 = emass*emass;
223     sTot = 2.*energy*emass + emass2;              225     sTot = 2.*energy*emass + emass2;
224                                                   226 
225     cofL = (sTot-emass2)/(sTot+emass2);           227     cofL = (sTot-emass2)/(sTot+emass2);
226                                                   228 
227     if(pName == "anti_nu_mu") massf2 = theMuon    229     if(pName == "anti_nu_mu") massf2 = theMuonMinus->GetPDGMass()*theMuonMinus->GetPDGMass();
228     else                      massf2 = theTauM    230     else                      massf2 = theTauMinus->GetPDGMass()*theTauMinus->GetPDGMass();
229                                                   231 
230     cofR = (sTot-massf2)/(sTot+massf2);           232     cofR = (sTot-massf2)/(sTot+massf2);
231                                                   233 
232     cofLR = cofL*cofR/3.;                         234     cofLR = cofL*cofR/3.;
233                                                   235 
234     // cofs of cos 3rd equation                   236     // cofs of cos 3rd equation
235                                                   237 
236     G4double a = cofLR;                           238     G4double a = cofLR;
237     G4double b = 0.5*(cofR+cofL);                 239     G4double b = 0.5*(cofR+cofL);
238     G4double c = 1.;                              240     G4double c = 1.;
239                                                   241 
240     G4double d  = -G4UniformRand()*2.*(1.+ cof    242     G4double d  = -G4UniformRand()*2.*(1.+ cofLR);
241              d += c - b + a;                      243              d += c - b + a;
242                                                   244 
243     // G4cout<<a<<"   "<<b<<"   "<<c<<"   "<<d    245     // G4cout<<a<<"   "<<b<<"   "<<c<<"   "<<d<<G4endl<<G4endl;
244                                                   246 
245     // cofs of the incomplete 3rd equation        247     // cofs of the incomplete 3rd equation
246                                                   248 
247     G4double p  = c/a;                            249     G4double p  = c/a;
248              p -= b*b/a/a/3.;                     250              p -= b*b/a/a/3.;
249                                                   251 
250     G4double q  = d/a;                            252     G4double q  = d/a;
251              q -= b*c/a/a/3.;                     253              q -= b*c/a/a/3.;
252              q += 2*b*b*b/a/a/a/27.;              254              q += 2*b*b*b/a/a/a/27.;
253                                                   255 
254                                                   256 
255     // cofs for the incomplete colutions          257     // cofs for the incomplete colutions
256                                                   258 
257     G4double D  = p*p*p/3./3./3.;                 259     G4double D  = p*p*p/3./3./3.;
258              D += q*q/2./2.;                      260              D += q*q/2./2.;
259                                                   261 
260        // G4cout<<"D = "<<D<<G4endl;              262        // G4cout<<"D = "<<D<<G4endl;
261        if(D < 0.) D = -D;                         263        if(D < 0.) D = -D;
262      // G4complex A1 = G4complex(- q/2., std::    264      // G4complex A1 = G4complex(- q/2., std::sqrt(-D) );
263      // G4complex A  = std::pow(A1,1./3.);        265      // G4complex A  = std::pow(A1,1./3.);
264                                                   266 
265      // G4complex B1 = G4complex(- q/2., -std:    267      // G4complex B1 = G4complex(- q/2., -std::sqrt(-D) );
266      // G4complex B  = std::pow(B1,1./3.);        268      // G4complex B  = std::pow(B1,1./3.);
267                                                   269 
268        G4double A, B;                             270        G4double A, B;
269                                                   271 
270     G4double A1 = - q/2. + std::sqrt(D);          272     G4double A1 = - q/2. + std::sqrt(D);
271     if (A1 < 0.) A1 = -A1;                        273     if (A1 < 0.) A1 = -A1;
272     A = std::pow(A1,1./3.);                       274     A = std::pow(A1,1./3.);
273     if (A1 < 0.) A = -A;                          275     if (A1 < 0.) A = -A;
274                                                   276 
275     G4double B1 = - q/2. - std::sqrt(D);          277     G4double B1 = - q/2. - std::sqrt(D);
276     // G4double B = std::pow(-B1,1./3.);          278     // G4double B = std::pow(-B1,1./3.);
277     if(B1 < 0.) B1 = -B1;                         279     if(B1 < 0.) B1 = -B1;
278     B = std::pow(B1,1./3.);                       280     B = std::pow(B1,1./3.);
279     if(B1 < 0.)   B = -B;                         281     if(B1 < 0.)   B = -B;
280     // G4cout<<"A1 = "<<A1<<"; A = "<<A<<"; B1    282     // G4cout<<"A1 = "<<A1<<"; A = "<<A<<"; B1 = "<<B1<<"; B = "<<B<<G4endl;
281     // roots of the incomplete 3rd equation       283     // roots of the incomplete 3rd equation
282                                                   284 
283     G4complex y1 =  A + B;                        285     G4complex y1 =  A + B;
284     // G4complex y2 = -0.5*(A + B) + 0.5*std::    286     // G4complex y2 = -0.5*(A + B) + 0.5*std::sqrt(3.)*(A - B)*G4complex(0.,1.);
285     // G4complex y3 = -0.5*(A + B) - 0.5*std::    287     // G4complex y3 = -0.5*(A + B) - 0.5*std::sqrt(3.)*(A - B)*G4complex(0.,1.);
286                                                   288  
287     G4complex x1 = y1 - b/a/3.;                   289     G4complex x1 = y1 - b/a/3.;
288     // G4complex x2 = y2 - b/a/3.;                290     // G4complex x2 = y2 - b/a/3.;
289     // G4complex x3 = y3 - b/a/3.;                291     // G4complex x3 = y3 - b/a/3.;
290     // G4cout<<"re_x1 = "<<real(x1)<<" + i*"<<    292     // G4cout<<"re_x1 = "<<real(x1)<<" + i*"<<imag(x1)<<G4endl;
291     // G4cout<<"re_x1 = "<<real(x1)<<"; re_x2     293     // G4cout<<"re_x1 = "<<real(x1)<<"; re_x2 = "<<real(x2)<<"; re_x3 = "<<real(x3)<<G4endl;
292     // G4cout<<"im_x1 = "<<imag(x1)<<"; im_x2     294     // G4cout<<"im_x1 = "<<imag(x1)<<"; im_x2 = "<<imag(x2)<<"; im_x3 = "<<imag(x3)<<G4endl<<G4endl;
293                                                   295 
294     result = real(x1);                            296     result = real(x1);
295   }                                               297   }
296   else                                            298   else 
297   {                                               299   {
298     return result;                                300     return result;
299   }                                               301   }
300   return result;                                  302   return result;
301 }                                                 303 }
302                                                   304 
303 //                                                305 //
304 //                                                306 //
305 ///////////////////////////                       307 ///////////////////////////
306                                                   308