Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/lepto_nuclear/src/G4NeutrinoElectronCcModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/hadronic/models/lepto_nuclear/src/G4NeutrinoElectronCcModel.cc (Version 11.3.0) and /processes/hadronic/models/lepto_nuclear/src/G4NeutrinoElectronCcModel.cc (Version 10.2.p1)


  1 //                                                  1 
  2 // *******************************************    
  3 // * License and Disclaimer                       
  4 // *                                              
  5 // * The  Geant4 software  is  copyright of th    
  6 // * the Geant4 Collaboration.  It is provided    
  7 // * conditions of the Geant4 Software License    
  8 // * LICENSE and available at  http://cern.ch/    
  9 // * include a list of copyright holders.         
 10 // *                                              
 11 // * Neither the authors of this software syst    
 12 // * institutes,nor the agencies providing fin    
 13 // * work  make  any representation or  warran    
 14 // * regarding  this  software system or assum    
 15 // * use.  Please see the license in the file     
 16 // * for the full disclaimer and the limitatio    
 17 // *                                              
 18 // * This  code  implementation is the result     
 19 // * technical work of the GEANT4 collaboratio    
 20 // * By using,  copying,  modifying or  distri    
 21 // * any work based  on the software)  you  ag    
 22 // * use  in  resulting  scientific  publicati    
 23 // * acceptance of all terms of the Geant4 Sof    
 24 // *******************************************    
 25 //                                                
 26 //                                                
 27 // Geant4 Header : G4NeutrinoElectronCcModel      
 28 //                                                
 29 // Author : V.Grichine 26.4.17                    
 30 //                                                
 31                                                   
 32 #include "G4NeutrinoElectronCcModel.hh"           
 33 #include "G4SystemOfUnits.hh"                     
 34 #include "G4ParticleTable.hh"                     
 35 #include "G4ParticleDefinition.hh"                
 36 #include "G4IonTable.hh"                          
 37 #include "Randomize.hh"                           
 38 #include "G4NeutrinoE.hh"                         
 39 #include "G4AntiNeutrinoE.hh"                     
 40                                                   
 41 #include "G4NeutrinoMu.hh"                        
 42 #include "G4AntiNeutrinoMu.hh"                    
 43 #include "G4NeutrinoTau.hh"                       
 44 #include "G4AntiNeutrinoTau.hh"                   
 45 #include "G4MuonMinus.hh"                         
 46 #include "G4TauMinus.hh"                          
 47 #include "G4HadronicParameters.hh"                
 48 #include "G4PhysicsModelCatalog.hh"               
 49                                                   
 50 using namespace std;                              
 51 using namespace CLHEP;                            
 52                                                   
 53 G4NeutrinoElectronCcModel::G4NeutrinoElectronC    
 54   : G4HadronicInteraction(name)                   
 55 {                                                 
 56   SetMinEnergy( 0.0*GeV );                        
 57   SetMaxEnergy( G4HadronicParameters::Instance    
 58   SetMinEnergy(1.e-6*eV);                         
 59                                                   
 60   theNeutrinoE = G4NeutrinoE::NeutrinoE();        
 61   theAntiNeutrinoE = G4AntiNeutrinoE::AntiNeut    
 62                                                   
 63   theNeutrinoMu = G4NeutrinoMu::NeutrinoMu();     
 64   theAntiNeutrinoMu = G4AntiNeutrinoMu::AntiNe    
 65                                                   
 66   theNeutrinoTau = G4NeutrinoTau::NeutrinoTau(    
 67   theAntiNeutrinoTau = G4AntiNeutrinoTau::Anti    
 68                                                   
 69   theMuonMinus = G4MuonMinus::MuonMinus();        
 70   theTauMinus  = G4TauMinus::TauMinus();          
 71                                                   
 72   // PDG2016: sin^2 theta Weinberg                
 73                                                   
 74   fSin2tW = 0.23129; // 0.2312;                   
 75                                                   
 76   fCutEnergy = 0.; // default value               
 77                                                   
 78   // Creator model ID                             
 79   secID = G4PhysicsModelCatalog::GetModelID( "    
 80 }                                                 
 81                                                   
 82                                                   
 83 G4NeutrinoElectronCcModel::~G4NeutrinoElectron    
 84 {}                                                
 85                                                   
 86                                                   
 87 void G4NeutrinoElectronCcModel::ModelDescripti    
 88 {                                                 
 89                                                   
 90     outFile << "G4NeutrinoElectronCcModel is a    
 91             << "model which uses the standard     
 92             << "transfer parameterization.  Th    
 93                                                   
 94 }                                                 
 95                                                   
 96 //////////////////////////////////////////////    
 97                                                   
 98 G4bool G4NeutrinoElectronCcModel::IsApplicable    
 99                  G4Nucleus & )                    
100 {                                                 
101   G4bool result  = false;                         
102   G4String pName = aPart.GetDefinition()->GetP    
103   if(pName == "anti_nu_mu" || pName == "anti_n    
104   G4double minEnergy = 0., energy = aPart.GetT    
105   G4double fmass, emass = electron_mass_c2;       
106                                                   
107   if(      pName == "nu_mu"  ) fmass = theMuon    
108   else if( pName == "nu_tau" ) fmass = theTauM    
109   else                         fmass = emass;     
110                                                   
111   minEnergy = (fmass-emass)*(fmass+emass)/emas    
112   SetMinEnergy( minEnergy );                      
113                                                   
114   if( ( pName == "nu_mu"   || pName == "nu_tau    
115   {                                               
116     result = true;                                
117   }                                               
118                                                   
119   return result;                                  
120 }                                                 
121                                                   
122 //////////////////////////////////////////////    
123 //                                                
124 //                                                
125                                                   
126 G4HadFinalState* G4NeutrinoElectronCcModel::Ap    
127      const G4HadProjectile& aTrack, G4Nucleus&    
128 {                                                 
129   theParticleChange.Clear();                      
130                                                   
131   const G4HadProjectile* aParticle = &aTrack;     
132   G4double energy = aParticle->GetTotalEnergy(    
133                                                   
134   G4String pName  = aParticle->GetDefinition()    
135   G4double minEnergy(0.), fmass(0.), emass = e    
136                                                   
137   if(      pName == "nu_mu"    ) fmass = theMu    
138   else if( pName == "nu_tau"   ) fmass = theTa    
139   else                           fmass = emass    
140                                                   
141   minEnergy = (fmass-emass)*(fmass+emass)/emas    
142                                                   
143   if( energy <= minEnergy )                       
144   {                                               
145     theParticleChange.SetEnergyChange(energy);    
146     theParticleChange.SetMomentumChange(aTrack    
147     return &theParticleChange;                    
148   }                                               
149   G4double massf(0.), massf2(0.); // , emass =    
150   G4double sTot = 2.*energy*emass + emass*emas    
151                                                   
152   G4LorentzVector lvp1 = aParticle->Get4Moment    
153   G4LorentzVector lvt1(0.,0.,0.,electron_mass_    
154   G4LorentzVector lvsum = lvp1+lvt1;              
155   G4ThreeVector bst = lvsum.boostVector();        
156                                                   
157   // sample and make final state in CMS frame     
158                                                   
159   G4double cost = SampleCosCMS( aParticle );      
160   G4double sint = std::sqrt( (1.0 - cost)*(1.0    
161   G4double phi  = G4UniformRand()*CLHEP::twopi    
162                                                   
163   G4ThreeVector eP( sint*std::cos(phi), sint*s    
164                                                   
165   if(      pName == "nu_mu"  ) massf = theMuon    
166   else if( pName == "nu_tau" ) massf = theTauM    
167                                                   
168   massf2 = massf*massf;                           
169                                                   
170   G4double epf = 0.5*(sTot - massf2)/sqrt(sTot    
171   // G4double etf = epf*(sTot + massf2)/(sTot     
172                                                   
173   eP *= epf;                                      
174   G4LorentzVector lvp2( eP, epf );                
175   lvp2.boost(bst); // back to lab frame           
176                                                   
177   G4LorentzVector lvt2 = lvsum - lvp2; // ?       
178                                                   
179   G4DynamicParticle* aNu   = nullptr;             
180   G4DynamicParticle* aLept = nullptr;             
181                                                   
182   if(  pName == "nu_mu" || pName == "nu_tau")     
183   {                                               
184     aNu = new G4DynamicParticle( theNeutrinoE,    
185   }                                               
186   else if( pName == "anti_nu_e" )   aNu = new     
187                                                   
188   if(  pName == "nu_mu" || pName == "anti_nu_e    
189   {                                               
190     aLept = new G4DynamicParticle( theMuonMinu    
191   }                                               
192   else if( pName == "nu_tau" ) // || pName ==     
193   {                                               
194     aLept = new G4DynamicParticle( theTauMinus    
195   }                                               
196   if(aNu)   { theParticleChange.AddSecondary(     
197   if(aLept) { theParticleChange.AddSecondary(     
198                                                   
199   return &theParticleChange;                      
200 }                                                 
201                                                   
202 //////////////////////////////////////////////    
203 //                                                
204 // sample recoil electron energy in lab frame     
205                                                   
206 G4double G4NeutrinoElectronCcModel::SampleCosC    
207 {                                                 
208   G4double result = 0., cofL, cofR, cofLR, mas    
209                                                   
210   G4double energy = aParticle->GetTotalEnergy(    
211                                                   
212   if( energy == 0.) return result; // vmg: < t    
213                                                   
214   G4String pName  = aParticle->GetDefinition()    
215                                                   
216   if( pName == "nu_mu" || pName == "nu_tau")      
217   {                                               
218     return 2.*G4UniformRand()-1.; // uniform s    
219   }                                               
220   else if( pName == "anti_nu_mu" || pName == "    
221   {                                               
222     emass2 = emass*emass;                         
223     sTot = 2.*energy*emass + emass2;              
224                                                   
225     cofL = (sTot-emass2)/(sTot+emass2);           
226                                                   
227     if(pName == "anti_nu_mu") massf2 = theMuon    
228     else                      massf2 = theTauM    
229                                                   
230     cofR = (sTot-massf2)/(sTot+massf2);           
231                                                   
232     cofLR = cofL*cofR/3.;                         
233                                                   
234     // cofs of cos 3rd equation                   
235                                                   
236     G4double a = cofLR;                           
237     G4double b = 0.5*(cofR+cofL);                 
238     G4double c = 1.;                              
239                                                   
240     G4double d  = -G4UniformRand()*2.*(1.+ cof    
241              d += c - b + a;                      
242                                                   
243     // G4cout<<a<<"   "<<b<<"   "<<c<<"   "<<d    
244                                                   
245     // cofs of the incomplete 3rd equation        
246                                                   
247     G4double p  = c/a;                            
248              p -= b*b/a/a/3.;                     
249                                                   
250     G4double q  = d/a;                            
251              q -= b*c/a/a/3.;                     
252              q += 2*b*b*b/a/a/a/27.;              
253                                                   
254                                                   
255     // cofs for the incomplete colutions          
256                                                   
257     G4double D  = p*p*p/3./3./3.;                 
258              D += q*q/2./2.;                      
259                                                   
260        // G4cout<<"D = "<<D<<G4endl;              
261        if(D < 0.) D = -D;                         
262      // G4complex A1 = G4complex(- q/2., std::    
263      // G4complex A  = std::pow(A1,1./3.);        
264                                                   
265      // G4complex B1 = G4complex(- q/2., -std:    
266      // G4complex B  = std::pow(B1,1./3.);        
267                                                   
268        G4double A, B;                             
269                                                   
270     G4double A1 = - q/2. + std::sqrt(D);          
271     if (A1 < 0.) A1 = -A1;                        
272     A = std::pow(A1,1./3.);                       
273     if (A1 < 0.) A = -A;                          
274                                                   
275     G4double B1 = - q/2. - std::sqrt(D);          
276     // G4double B = std::pow(-B1,1./3.);          
277     if(B1 < 0.) B1 = -B1;                         
278     B = std::pow(B1,1./3.);                       
279     if(B1 < 0.)   B = -B;                         
280     // G4cout<<"A1 = "<<A1<<"; A = "<<A<<"; B1    
281     // roots of the incomplete 3rd equation       
282                                                   
283     G4complex y1 =  A + B;                        
284     // G4complex y2 = -0.5*(A + B) + 0.5*std::    
285     // G4complex y3 = -0.5*(A + B) - 0.5*std::    
286                                                   
287     G4complex x1 = y1 - b/a/3.;                   
288     // G4complex x2 = y2 - b/a/3.;                
289     // G4complex x3 = y3 - b/a/3.;                
290     // G4cout<<"re_x1 = "<<real(x1)<<" + i*"<<    
291     // G4cout<<"re_x1 = "<<real(x1)<<"; re_x2     
292     // G4cout<<"im_x1 = "<<imag(x1)<<"; im_x2     
293                                                   
294     result = real(x1);                            
295   }                                               
296   else                                            
297   {                                               
298     return result;                                
299   }                                               
300   return result;                                  
301 }                                                 
302                                                   
303 //                                                
304 //                                                
305 ///////////////////////////                       
306