Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // INCL++ intra-nuclear cascade model 26 // INCL++ intra-nuclear cascade model 27 // Alain Boudard, CEA-Saclay, France << 27 // Pekka Kaitaniemi, CEA and Helsinki Institute of Physics 28 // Joseph Cugnon, University of Liege, Belgium << 28 // Davide Mancusi, CEA 29 // Jean-Christophe David, CEA-Saclay, France << 29 // Alain Boudard, CEA 30 // Pekka Kaitaniemi, CEA-Saclay, France, and H << 30 // Sylvie Leray, CEA 31 // Sylvie Leray, CEA-Saclay, France << 31 // Joseph Cugnon, University of Liege 32 // Davide Mancusi, CEA-Saclay, France << 32 // >> 33 // INCL++ revision: v5.0_rc3 33 // 34 // 34 #define INCLXX_IN_GEANT4_MODE 1 35 #define INCLXX_IN_GEANT4_MODE 1 35 36 36 #include "globals.hh" 37 #include "globals.hh" 37 38 38 #include "G4INCLElasticChannel.hh" 39 #include "G4INCLElasticChannel.hh" 39 #include "G4INCLRandom.hh" 40 #include "G4INCLRandom.hh" 40 #include "G4INCLKinematicsUtils.hh" 41 #include "G4INCLKinematicsUtils.hh" 41 #include "G4INCLParticleTable.hh" 42 #include "G4INCLParticleTable.hh" 42 #include "G4INCLCrossSections.hh" 43 #include "G4INCLCrossSections.hh" 43 #include "G4INCLGlobals.hh" 44 #include "G4INCLGlobals.hh" 44 45 45 namespace G4INCL { 46 namespace G4INCL { 46 47 47 ElasticChannel::ElasticChannel(Particle *p1, << 48 ElasticChannel::ElasticChannel(Nucleus *n, Particle *p1, Particle *p2) 48 :particle1(p1), particle2(p2) << 49 :theNucleus(n), particle1(p1), particle2(p2) 49 { 50 { 50 } 51 } 51 52 52 ElasticChannel::~ElasticChannel() 53 ElasticChannel::~ElasticChannel() 53 { 54 { 54 } 55 } 55 56 56 void ElasticChannel::fillFinalState(FinalSta << 57 FinalState* ElasticChannel::getFinalState() 57 { 58 { 58 ParticleType p1TypeOld = particle1->getTyp 59 ParticleType p1TypeOld = particle1->getType(); 59 ParticleType p2TypeOld = particle2->getTyp 60 ParticleType p2TypeOld = particle2->getType(); 60 61 61 /* Concerning the way we calculate the lab 62 /* Concerning the way we calculate the lab momentum, see the considerations 62 * in CrossSections::elasticNNLegacy(). 63 * in CrossSections::elasticNNLegacy(). 63 */ 64 */ 64 const G4double s = KinematicsUtils::square 65 const G4double s = KinematicsUtils::squareTotalEnergyInCM(particle1, particle2); 65 const G4double pl = KinematicsUtils::momen 66 const G4double pl = KinematicsUtils::momentumInLab(s, ParticleTable::effectiveNucleonMass, ParticleTable::effectiveNucleonMass); 66 67 67 const G4int isospin = ParticleTable::getIs 68 const G4int isospin = ParticleTable::getIsospin(particle1->getType()) + 68 ParticleTable::getIsospin(particle2->get 69 ParticleTable::getIsospin(particle2->getType()); 69 70 70 // Calculate the outcome of the channel: 71 // Calculate the outcome of the channel: 71 G4double psq = particle1->getMomentum().ma 72 G4double psq = particle1->getMomentum().mag2(); 72 G4double pnorm = std::sqrt(psq); 73 G4double pnorm = std::sqrt(psq); 73 G4double b = CrossSections::calculateNNAng << 74 G4double b = CrossSections::calculateNNDiffCrossSection(pl, isospin); 74 G4double btmax = 4.0 * psq * b; 75 G4double btmax = 4.0 * psq * b; 75 G4double z = std::exp(-btmax); 76 G4double z = std::exp(-btmax); 76 G4double ranres = Random::shoot(); 77 G4double ranres = Random::shoot(); 77 G4double y = 1.0 - ranres * (1.0 - z); 78 G4double y = 1.0 - ranres * (1.0 - z); 78 G4double T = std::log(y)/b; 79 G4double T = std::log(y)/b; 79 G4int iexpi = 0; 80 G4int iexpi = 0; 80 G4double apt = 1.0; 81 G4double apt = 1.0; 81 82 82 // Handle np case 83 // Handle np case 83 if((particle1->getType() == Proton && part 84 if((particle1->getType() == Proton && particle2->getType() == Neutron) || 84 (particle1->getType() == Neutron && par << 85 (particle1->getType() == Neutron && particle2->getType() == Proton)) { 85 if(pl > 800.0) { 86 if(pl > 800.0) { 86 const G4double x = 0.001 * pl; // Tran 87 const G4double x = 0.001 * pl; // Transform to GeV 87 apt = (800.0/pl)*(800.0/pl); 88 apt = (800.0/pl)*(800.0/pl); 88 G4double cpt = std::max(6.23 * std::ex 89 G4double cpt = std::max(6.23 * std::exp(-1.79*x), 0.3); 89 G4double alphac = 100.0 * 1.0e-6; 90 G4double alphac = 100.0 * 1.0e-6; 90 G4double aaa = (1 + apt) * (1 - std::e 91 G4double aaa = (1 + apt) * (1 - std::exp(-btmax))/b; 91 G4double argu = psq * alphac; 92 G4double argu = psq * alphac; 92 93 93 if(argu >= 8) { 94 if(argu >= 8) { 94 argu = 0.0; 95 argu = 0.0; 95 } else { 96 } else { 96 argu = std::exp(-4.0 * argu); 97 argu = std::exp(-4.0 * argu); 97 } 98 } 98 99 99 G4double aac = cpt * (1.0 - argu)/alph 100 G4double aac = cpt * (1.0 - argu)/alphac; 100 G4double fracpn = aaa/(aac + aaa); 101 G4double fracpn = aaa/(aac + aaa); 101 if(Random::shoot() > fracpn) { 102 if(Random::shoot() > fracpn) { 102 z = std::exp(-4.0 * psq *alphac); 103 z = std::exp(-4.0 * psq *alphac); 103 iexpi = 1; 104 iexpi = 1; 104 y = 1.0 - ranres*(1.0 - z); 105 y = 1.0 - ranres*(1.0 - z); 105 T = std::log(y)/alphac; 106 T = std::log(y)/alphac; 106 } 107 } 107 } 108 } 108 } 109 } 109 110 110 G4double ctet = 1.0 + 0.5*T/psq; 111 G4double ctet = 1.0 + 0.5*T/psq; 111 if(std::abs(ctet) > 1.0) ctet = Math::sign 112 if(std::abs(ctet) > 1.0) ctet = Math::sign(ctet); 112 G4double stet = std::sqrt(1.0 - ctet*ctet) 113 G4double stet = std::sqrt(1.0 - ctet*ctet); 113 G4double rndm = Random::shoot(); 114 G4double rndm = Random::shoot(); 114 115 115 G4double fi = Math::twoPi * rndm; 116 G4double fi = Math::twoPi * rndm; 116 G4double cfi = std::cos(fi); 117 G4double cfi = std::cos(fi); 117 G4double sfi = std::sin(fi); 118 G4double sfi = std::sin(fi); 118 119 119 G4double xx = particle1->getMomentum().per 120 G4double xx = particle1->getMomentum().perp2(); 120 G4double zz = std::pow(particle1->getMomen 121 G4double zz = std::pow(particle1->getMomentum().getZ(), 2); 121 122 122 if(xx >= (zz * 1.0e-8)) { 123 if(xx >= (zz * 1.0e-8)) { 123 ThreeVector p = particle1->getMomentum() 124 ThreeVector p = particle1->getMomentum(); 124 G4double yn = std::sqrt(xx); 125 G4double yn = std::sqrt(xx); 125 G4double zn = yn * pnorm; 126 G4double zn = yn * pnorm; 126 G4double ex[3], ey[3], ez[3]; 127 G4double ex[3], ey[3], ez[3]; 127 ez[0] = p.getX() / pnorm; 128 ez[0] = p.getX() / pnorm; 128 ez[1] = p.getY() / pnorm; 129 ez[1] = p.getY() / pnorm; 129 ez[2] = p.getZ() / pnorm; 130 ez[2] = p.getZ() / pnorm; 130 131 131 // Vector Ex is chosen arbitrarily: 132 // Vector Ex is chosen arbitrarily: 132 ex[0] = p.getY() / yn; 133 ex[0] = p.getY() / yn; 133 ex[1] = -p.getX() / yn; 134 ex[1] = -p.getX() / yn; 134 ex[2] = 0.0; 135 ex[2] = 0.0; 135 136 136 ey[0] = p.getX() * p.getZ() / zn; 137 ey[0] = p.getX() * p.getZ() / zn; 137 ey[1] = p.getY() * p.getZ() / zn; 138 ey[1] = p.getY() * p.getZ() / zn; 138 ey[2] = -xx/zn; 139 ey[2] = -xx/zn; 139 140 140 G4double pX = (ex[0]*cfi*stet + ey[0]*sf 141 G4double pX = (ex[0]*cfi*stet + ey[0]*sfi*stet + ez[0]*ctet) * pnorm; 141 G4double pY = (ex[1]*cfi*stet + ey[1]*sf 142 G4double pY = (ex[1]*cfi*stet + ey[1]*sfi*stet + ez[1]*ctet) * pnorm; 142 G4double pZ = (ex[2]*cfi*stet + ey[2]*sf 143 G4double pZ = (ex[2]*cfi*stet + ey[2]*sfi*stet + ez[2]*ctet) * pnorm; 143 144 144 ThreeVector p1momentum = ThreeVector(pX, 145 ThreeVector p1momentum = ThreeVector(pX, pY, pZ); 145 particle1->setMomentum(p1momentum); 146 particle1->setMomentum(p1momentum); 146 particle2->setMomentum(-p1momentum); 147 particle2->setMomentum(-p1momentum); 147 } else { // if(xx < (zz * 1.0e-8)) { 148 } else { // if(xx < (zz * 1.0e-8)) { 148 G4double momZ = particle1->getMomentum() 149 G4double momZ = particle1->getMomentum().getZ(); 149 G4double pX = momZ * cfi * stet; 150 G4double pX = momZ * cfi * stet; 150 G4double pY = momZ * sfi * stet; 151 G4double pY = momZ * sfi * stet; 151 G4double pZ = momZ * ctet; 152 G4double pZ = momZ * ctet; 152 153 153 ThreeVector p1momentum(pX, pY, pZ); 154 ThreeVector p1momentum(pX, pY, pZ); 154 particle1->setMomentum(p1momentum); 155 particle1->setMomentum(p1momentum); 155 particle2->setMomentum(-p1momentum); 156 particle2->setMomentum(-p1momentum); 156 } 157 } 157 158 158 // Handle backward scattering here. 159 // Handle backward scattering here. 159 160 160 if((particle1->getType() == Proton && part 161 if((particle1->getType() == Proton && particle2->getType() == Neutron) || 161 (particle1->getType() == Neutron && par << 162 (particle1->getType() == Neutron && particle2->getType() == Proton)) { 162 rndm = Random::shoot(); 163 rndm = Random::shoot(); 163 apt = 1.0; 164 apt = 1.0; 164 if(pl > 800.0) { 165 if(pl > 800.0) { 165 apt = std::pow(800.0/pl, 2); 166 apt = std::pow(800.0/pl, 2); 166 } 167 } 167 if(iexpi == 1 || rndm > 1.0/(1.0 + apt)) 168 if(iexpi == 1 || rndm > 1.0/(1.0 + apt)) { 168 particle1->setType(p2TypeOld); 169 particle1->setType(p2TypeOld); 169 particle2->setType(p1TypeOld); 170 particle2->setType(p1TypeOld); 170 } 171 } 171 } 172 } 172 173 173 // Note: there is no need to update the ki 174 // Note: there is no need to update the kinetic energies of the particles, 174 // as this is elastic scattering. 175 // as this is elastic scattering. 175 176 >> 177 FinalState *fs = new FinalState(); 176 fs->addModifiedParticle(particle1); 178 fs->addModifiedParticle(particle1); 177 fs->addModifiedParticle(particle2); 179 fs->addModifiedParticle(particle2); >> 180 >> 181 return fs; 178 182 179 } 183 } 180 184 181 } 185 } 182 186