Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // INCL++ intra-nuclear cascade model 27 // Alain Boudard, CEA-Saclay, France 28 // Joseph Cugnon, University of Liege, Belgium 29 // Jean-Christophe David, CEA-Saclay, France 30 // Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland 31 // Sylvie Leray, CEA-Saclay, France 32 // Davide Mancusi, CEA-Saclay, France 33 // 34 #define INCLXX_IN_GEANT4_MODE 1 35 36 #include "globals.hh" 37 38 #ifndef G4INCLCrossSections_hh 39 #define G4INCLCrossSections_hh 1 40 41 #include "G4INCLICrossSections.hh" 42 #include "G4INCLConfig.hh" 43 44 namespace G4INCL { 45 namespace CrossSections { 46 G4double elastic(Particle const * const p1, Particle const * const p2); 47 G4double total(Particle const * const p1, Particle const * const p2); 48 49 G4double NDeltaToNN(Particle const * const p1, Particle const * const p2); 50 G4double NNToNDelta(Particle const * const p1, Particle const * const p2); 51 G4double NNToxPiNN(const G4int xpi, Particle const * const p1, Particle const * const p2); 52 G4double piNToDelta(Particle const * const p1, Particle const * const p2); 53 G4double piNToxPiN(const G4int xpi, Particle const * const p1, Particle const * const p2); 54 G4double piNToEtaN(Particle const * const p1, Particle const * const p2); 55 G4double piNToOmegaN(Particle const * const p1, Particle const * const p2); 56 G4double piNToEtaPrimeN(Particle const * const p1, Particle const * const p2); 57 G4double etaNToPiN(Particle const * const p1, Particle const * const p2); 58 G4double etaNToPiPiN(Particle const * const p1, Particle const * const p2); 59 G4double omegaNToPiN(Particle const * const p1, Particle const * const p2); 60 G4double omegaNToPiPiN(Particle const * const p1, Particle const * const p2); 61 G4double etaPrimeNToPiN(Particle const * const p1, Particle const * const p2); 62 63 G4double NNToNNEta(Particle const * const p1, Particle const * const p2); 64 G4double NNToNNEtaExclu(Particle const * const p1, Particle const * const p2); 65 G4double NNToNNEtaxPi(const G4int xpi, Particle const * const p1, Particle const * const p2); 66 G4double NNToNDeltaEta(Particle const * const p1, Particle const * const p2); 67 G4double NNToNNOmega(Particle const * const p1, Particle const * const p2); 68 G4double NNToNNOmegaExclu(Particle const * const p1, Particle const * const p2); 69 G4double NNToNNOmegaxPi(const G4int xpi, Particle const * const p1, Particle const * const p2); 70 G4double NNToNDeltaOmega(Particle const * const p1, Particle const * const p2); 71 72 /// \brief Strange cross sections 73 G4double NNToNLK(Particle const * const p1, Particle const * const p2); 74 G4double NNToNSK(Particle const * const p1, Particle const * const p2); 75 G4double NNToNLKpi(Particle const * const p1, Particle const * const p2); 76 G4double NNToNSKpi(Particle const * const p1, Particle const * const p2); 77 G4double NNToNLK2pi(Particle const * const p1, Particle const * const p2); 78 G4double NNToNSK2pi(Particle const * const p1, Particle const * const p2); 79 G4double NNToNNKKb(Particle const * const p1, Particle const * const p2); 80 G4double NNToMissingStrangeness(Particle const * const p1, Particle const * const p2); 81 G4double NDeltaToNLK(Particle const * const p1, Particle const * const p2); 82 G4double NDeltaToNSK(Particle const * const p1, Particle const * const p2); 83 G4double NDeltaToDeltaLK(Particle const * const p1, Particle const * const p2); 84 G4double NDeltaToDeltaSK(Particle const * const p1, Particle const * const p2); 85 G4double NDeltaToNNKKb(Particle const * const p1, Particle const * const p2); 86 G4double NpiToLK(Particle const * const p1, Particle const * const p2); 87 G4double NpiToSK(Particle const * const p1, Particle const * const p2); 88 G4double p_pimToSzKz(Particle const * const p1, Particle const * const p2); 89 G4double p_pimToSmKp(Particle const * const p1, Particle const * const p2); 90 G4double p_pizToSzKp(Particle const * const p1, Particle const * const p2); 91 G4double NpiToLKpi(Particle const * const p1, Particle const * const p2); 92 G4double NpiToSKpi(Particle const * const p1, Particle const * const p2); 93 G4double NpiToLK2pi(Particle const * const p1, Particle const * const p2); 94 G4double NpiToSK2pi(Particle const * const p1, Particle const * const p2); 95 G4double NpiToNKKb(Particle const * const p1, Particle const * const p2); 96 G4double NpiToMissingStrangeness(Particle const * const p1, Particle const * const p2); 97 G4double NLToNS(Particle const * const p1, Particle const * const p2); 98 G4double NSToNL(Particle const * const p1, Particle const * const p2); 99 G4double NSToNS(Particle const * const p1, Particle const * const p2); 100 G4double NKToNK(Particle const * const p1, Particle const * const p2); 101 G4double NKToNKpi(Particle const * const p1, Particle const * const p2); 102 G4double NKToNK2pi(Particle const * const p1, Particle const * const p2); 103 G4double NKbToNKb(Particle const * const p1, Particle const * const p2); 104 G4double NKbToSpi(Particle const * const p1, Particle const * const p2); 105 G4double NKbToLpi(Particle const * const p1, Particle const * const p2); 106 G4double NKbToS2pi(Particle const * const p1, Particle const * const p2); 107 G4double NKbToL2pi(Particle const * const p1, Particle const * const p2); 108 G4double NKbToNKbpi(Particle const * const p1, Particle const * const p2); 109 G4double NKbToNKb2pi(Particle const * const p1, Particle const * const p2); 110 G4double NYelastic(Particle const * const p1, Particle const * const p2); 111 G4double NKbelastic(Particle const * const p1, Particle const * const p2); 112 G4double NKelastic(Particle const * const p1, Particle const * const p2); 113 114 /// \brief antiparticle cross sections 115 /// \brief Nucleon-AntiNucleon to Baryon-AntiBaryon cross sections 116 G4double NNbarElastic(Particle const* const p1, Particle const* const p2); 117 G4double NNbarCEX(Particle const* const p1, Particle const* const p2); 118 119 G4double NNbarToLLbar(Particle const * const p1, Particle const * const p2); 120 121 /// \brief Nucleon-AntiNucleon to Nucleon-AntiNucleon + pions cross sections 122 G4double NNbarToNNbarpi(Particle const* const p1, Particle const* const p2); 123 G4double NNbarToNNbar2pi(Particle const* const p1, Particle const* const p2); 124 G4double NNbarToNNbar3pi(Particle const* const p1, Particle const* const p2); 125 126 /// \brief Nucleon-AntiNucleon total annihilation cross sections 127 G4double NNbarToAnnihilation(Particle const* const p1, Particle const* const p2); 128 129 /** \brief Calculate the slope of the NN DDXS. 130 * 131 * \param energyCM energy in the CM frame, in MeV 132 * \param iso total isospin of the system 133 * 134 * \return the slope of the angular distribution, in (GeV/c)^(-2) 135 */ 136 G4double calculateNNAngularSlope(G4double energyCM, G4int iso); 137 138 /** \brief Compute the "interaction distance". 139 * 140 * Defined on the basis of the average value of the N-N cross sections at 141 * the given kinetic energy. 142 * 143 * \return the interaction distance 144 */ 145 G4double interactionDistanceNN(const ParticleSpecies &aSpecies, const G4double kineticEnergy); 146 147 /** \brief Compute the "interaction distance". 148 * 149 * Defined on the basis of the average value of the pi-N cross sections at 150 * the given kinetic energy. 151 * 152 * \return the interaction distance 153 */ 154 G4double interactionDistancePiN(const G4double projectileKineticEnergy); 155 156 /** \brief Compute the "interaction distance". 157 * 158 * Defined on the basis of the average value of the K-N cross sections at 159 * the given kinetic energy. 160 * 161 * \return the interaction distance 162 */ 163 G4double interactionDistanceKN(const G4double projectileKineticEnergy); 164 165 /** \brief Compute the "interaction distance". 166 * 167 * Defined on the basis of the average value of the Kbar-N cross sections at 168 * the given kinetic energy. 169 * 170 * \return the interaction distance 171 */ 172 G4double interactionDistanceKbarN(const G4double projectileKineticEnergy); 173 174 /** \brief Compute the "interaction distance". 175 * 176 * Defined on the basis of the average value of the Y-N cross sections at 177 * the given kinetic energy. 178 * 179 * \return the interaction distance 180 */ 181 G4double interactionDistanceYN(const G4double projectileKineticEnergy); 182 183 void setCrossSections(ICrossSections *c); 184 185 void deleteCrossSections(); 186 187 void initialize(Config const * const theConfig); 188 189 } 190 } 191 192 #endif 193