Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/inclxx/incl_physics/src/G4INCLCoulombNonRelativistic.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/hadronic/models/inclxx/incl_physics/src/G4INCLCoulombNonRelativistic.cc (Version 11.3.0) and /processes/hadronic/models/inclxx/incl_physics/src/G4INCLCoulombNonRelativistic.cc (Version 9.3.p2)


  1 //                                                  1 
  2 // *******************************************    
  3 // * License and Disclaimer                       
  4 // *                                              
  5 // * The  Geant4 software  is  copyright of th    
  6 // * the Geant4 Collaboration.  It is provided    
  7 // * conditions of the Geant4 Software License    
  8 // * LICENSE and available at  http://cern.ch/    
  9 // * include a list of copyright holders.         
 10 // *                                              
 11 // * Neither the authors of this software syst    
 12 // * institutes,nor the agencies providing fin    
 13 // * work  make  any representation or  warran    
 14 // * regarding  this  software system or assum    
 15 // * use.  Please see the license in the file     
 16 // * for the full disclaimer and the limitatio    
 17 // *                                              
 18 // * This  code  implementation is the result     
 19 // * technical work of the GEANT4 collaboratio    
 20 // * By using,  copying,  modifying or  distri    
 21 // * any work based  on the software)  you  ag    
 22 // * use  in  resulting  scientific  publicati    
 23 // * acceptance of all terms of the Geant4 Sof    
 24 // *******************************************    
 25 //                                                
 26 // INCL++ intra-nuclear cascade model             
 27 // Alain Boudard, CEA-Saclay, France              
 28 // Joseph Cugnon, University of Liege, Belgium    
 29 // Jean-Christophe David, CEA-Saclay, France      
 30 // Pekka Kaitaniemi, CEA-Saclay, France, and H    
 31 // Sylvie Leray, CEA-Saclay, France               
 32 // Davide Mancusi, CEA-Saclay, France             
 33 //                                                
 34 #define INCLXX_IN_GEANT4_MODE 1                   
 35                                                   
 36 #include "globals.hh"                             
 37                                                   
 38 /** \file G4INCLCoulombNonRelativistic.cc         
 39  * \brief Class for non-relativistic Coulomb d    
 40  *                                                
 41  * \date 14 February 2011                         
 42  * \author Davide Mancusi                         
 43  */                                               
 44                                                   
 45 #include "G4INCLCoulombNonRelativistic.hh"        
 46 #include "G4INCLGlobals.hh"                       
 47                                                   
 48 namespace G4INCL {                                
 49                                                   
 50   ParticleEntryAvatar *CoulombNonRelativistic:    
 51     // No distortion for neutral particles        
 52     if(p->getZ()!=0) {                            
 53       const G4bool success = coulombDeviation(    
 54       if(!success) // transparent                 
 55         return NULL;                              
 56     }                                             
 57                                                   
 58     // Rely on the CoulombNone slave to comput    
 59     // and actually bring the particle to the     
 60     return theCoulombNoneSlave.bringToSurface(    
 61   }                                               
 62                                                   
 63   IAvatarList CoulombNonRelativistic::bringToS    
 64     // Neutral clusters?!                         
 65 // assert(c->getZ()>0);                           
 66                                                   
 67     // Perform the actual Coulomb deviation       
 68     const G4bool success = coulombDeviation(c,    
 69     if(!success) {                                
 70       return IAvatarList();                       
 71     }                                             
 72                                                   
 73     // Rely on the CoulombNone slave to comput    
 74     // and actually bring the particle to the     
 75     return theCoulombNoneSlave.bringToSurface(    
 76   }                                               
 77                                                   
 78   void CoulombNonRelativistic::distortOut(Part    
 79       Nucleus const * const nucleus) const {      
 80                                                   
 81     for(ParticleIter particle=pL.begin(), e=pL    
 82                                                   
 83       const G4int Z = (*particle)->getZ();        
 84       if(Z == 0) continue;                        
 85                                                   
 86       const G4double tcos=1.-0.000001;            
 87                                                   
 88       const G4double et1 = PhysicalConstants::    
 89       const G4double transmissionRadius =         
 90         nucleus->getDensity()->getTransmission    
 91                                                   
 92       const ThreeVector position = (*particle)    
 93       ThreeVector momentum = (*particle)->getM    
 94       const G4double r = position.mag();          
 95       const G4double p = momentum.mag();          
 96       const G4double cosTheta = position.dot(m    
 97       if(cosTheta < 0.999999) {                   
 98         const G4double sinTheta = std::sqrt(1.    
 99         const G4double eta = et1 * Z / (*parti    
100         if(eta > transmissionRadius-0.0001) {     
101           // If below the Coulomb barrier, rad    
102           momentum = position * (p/r);            
103           (*particle)->setMomentum(momentum);     
104         } else {                                  
105           const G4double b0 = 0.5 * (eta + std    
106                 4. * std::pow(transmissionRadi    
107                 * (1.-eta/transmissionRadius))    
108           const G4double bInf = std::sqrt(b0*(    
109           const G4double thr = std::atan(eta/(    
110           G4double uTemp = (1.-b0/transmission    
111             b0/transmissionRadius;                
112           if(uTemp>tcos) uTemp=tcos;              
113           const G4double thd = Math::arcCos(co    
114             Math::arcCos(uTemp);                  
115           const G4double c1 = std::sin(thd)*co    
116           const G4double c2 = -p*std::sin(thd)    
117           const ThreeVector newMomentum = mome    
118           (*particle)->setMomentum(newMomentum    
119         }                                         
120       }                                           
121     }                                             
122   }                                               
123                                                   
124   G4double CoulombNonRelativistic::maxImpactPa    
125                                                   
126     const G4double theMinimumDistance = minimu    
127     G4double rMax = n->getUniverseRadius();       
128     if(p.theType == Composite)                    
129       rMax +=  2.*ParticleTable::getLargestNuc    
130     const G4double theMaxImpactParameterSquare    
131     if(theMaxImpactParameterSquared<=0.)          
132       return 0.;                                  
133     const G4double theMaxImpactParameter = std    
134     return theMaxImpactParameter;                 
135   }                                               
136                                                   
137   G4bool CoulombNonRelativistic::coulombDeviat    
138     // Determine the rotation angle and the ne    
139     ThreeVector positionTransverse = p->getTra    
140     const G4double impactParameterSquared = po    
141     const G4double impactParameter = std::sqrt    
142                                                   
143     // Some useful variables                      
144     const G4double theMinimumDistance = minimu    
145     // deltaTheta2 = (pi - Rutherford scatteri    
146     G4double deltaTheta2 = std::atan(2.*impact    
147     if(deltaTheta2<0.)                            
148       deltaTheta2 += Math::pi;                    
149     const G4double eccentricity = 1./std::cos(    
150                                                   
151     G4double newImpactParameter, alpha; // Par    
152                                                   
153     const G4double radius = getCoulombRadius(p    
154     const G4double impactParameterTangentSquar    
155     if(impactParameterSquared >= impactParamet    
156       // The particle trajectory misses the Co    
157       // In this case the new impact parameter    
158       // approach of the hyperbola                
159 // assert(std::abs(1. + 2.*impactParameter*imp    
160       newImpactParameter = 0.5 * theMinimumDis    
161       alpha = Math::piOverTwo - deltaTheta2; /    
162     } else {                                      
163       // The particle trajectory intersects th    
164                                                   
165       // Compute the entrance angle               
166       const G4double argument = -(1. + 2.*impa    
167         / eccentricity;                           
168       const G4double thetaIn = Math::twoPi - M    
169                                                   
170       // Velocity angle at the entrance point     
171       alpha = std::atan((1+std::cos(thetaIn))     
172         / (std::sqrt(eccentricity*eccentricity    
173         * Math::sign(theMinimumDistance);         
174       // New impact parameter                     
175       newImpactParameter = radius * std::sin(t    
176     }                                             
177                                                   
178     // Modify the impact parameter of the part    
179     positionTransverse *= newImpactParameter/p    
180     const ThreeVector theNewPosition = p->getL    
181     p->setPosition(theNewPosition);               
182                                                   
183     // Determine the rotation axis for the inc    
184     const ThreeVector &momentum = p->getMoment    
185     ThreeVector rotationAxis = momentum.vector    
186     const G4double axisLength = rotationAxis.m    
187     // Apply the rotation                         
188     if(axisLength>1E-20) {                        
189       rotationAxis /= axisLength;                 
190       p->rotatePositionAndMomentum(alpha, rota    
191     }                                             
192                                                   
193     return true;                                  
194   }                                               
195                                                   
196   G4double CoulombNonRelativistic::getCoulombR    
197     if(p.theType == Composite) {                  
198       const G4int Zp = p.theZ;                    
199       const G4int Ap = p.theA;                    
200       const G4int Zt = n->getZ();                 
201       const G4int At = n->getA();                 
202       G4double barr, radius = 0.;                 
203       if(Zp==1 && Ap==2) { // d                   
204         barr = 0.2565*Math::pow23((G4double)At    
205         radius = PhysicalConstants::eSquared*Z    
206       } else if(Zp==1 && Ap==3) { // t            
207         barr = 0.5*(0.5009*Math::pow23((G4doub    
208         radius = PhysicalConstants::eSquared*Z    
209       } else if(Zp==2) { // alpha, He3            
210         barr = 0.5939*Math::pow23((G4double)At    
211         radius = PhysicalConstants::eSquared*Z    
212       } else if(Zp>2) {                           
213         // Coulomb radius from the Shen model     
214         const G4double Ap13 = Math::pow13((G4d    
215         const G4double At13 = Math::pow13((G4d    
216         const G4double rp = 1.12*Ap13 - 0.94/A    
217         const G4double rt = 1.12*At13 - 0.94/A    
218         const G4double someRadius = rp+rt+3.2;    
219         const G4double theShenBarrier = Physic    
220         radius = PhysicalConstants::eSquared*Z    
221       }                                           
222       if(radius<=0.) {                            
223         radius = ParticleTable::getLargestNucl    
224         INCL_ERROR("Negative Coulomb radius! U    
225       }                                           
226       INCL_DEBUG("Coulomb radius for particle     
227             << ParticleTable::getShortName(p)     
228             ", Z=" << Zt << ": " << radius <<     
229       return radius;                              
230     } else                                        
231       return n->getUniverseRadius();              
232   }                                               
233                                                   
234 }                                                 
235