Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // 26 // Hadronic Process: Nuclear De-excitations 27 // Hadronic Process: Nuclear De-excitations 27 // by V. Lara (May 1998) 28 // by V. Lara (May 1998) 28 // << 29 // Modif (30 June 1998) by V. Lara: 29 // << 30 // Modified: << 31 // 30 June 1998 by V. Lara: << 32 // -Modified the Transform method for use 30 // -Modified the Transform method for use G4ParticleTable and 33 // therefore G4IonTable. It makes possib 31 // therefore G4IonTable. It makes possible to convert all kind 34 // of fragments (G4Fragment) produced in 32 // of fragments (G4Fragment) produced in deexcitation to 35 // G4DynamicParticle 33 // G4DynamicParticle 36 // -It uses default algorithms for: 34 // -It uses default algorithms for: 37 // Evaporation: G4Evaporation << 35 // Evaporation: G4StatEvaporation 38 // MultiFragmentation: G4StatMF << 36 // MultiFragmentation: G4DummyMF (a dummy one) 39 // Fermi Breakup model: G4FermiBr << 37 // Fermi Breakup model: G4StatFermiBreakUp 40 // 24 Jul 2008 by M. A. Cortes Giraldo: << 38 41 // -Max Z,A for Fermi Break-Up turns to 9 << 42 // -BreakItUp() reorganised and bug in Ev << 43 // -Transform() optimised << 44 // (September 2008) by J. M. Quesada. External << 45 // -inverse cross section option (default << 46 // -superimposed Coulomb barrier (if useS << 47 // September 2009 by J. M. Quesada: << 48 // -according to Igor Pshenichnov, SMM wi << 49 // 27 Nov 2009 by V.Ivanchenko: << 50 // -cleanup the logic, reduce number inte << 51 // 11 May 2010 by V.Ivanchenko: << 52 // -FermiBreakUp activated, used integer << 53 // final photon deexcitation; used check << 54 // unstable fragments with A <5 << 55 // 22 March 2011 by V.Ivanchenko: general clea << 56 // products of Fermi Break Up cannot be << 57 // 30 March 2011 by V.Ivanchenko removed priva << 58 // to the source << 59 // 23 January 2012 by V.Ivanchenko general cle << 60 // objects, propagate G4PhotonEvaporation p << 61 // not delete it here << 62 39 63 #include "G4ExcitationHandler.hh" 40 #include "G4ExcitationHandler.hh" 64 #include "G4SystemOfUnits.hh" << 41 #include <list> 65 #include "G4LorentzVector.hh" << 66 #include "G4ThreeVector.hh" << 67 #include "G4ParticleTable.hh" << 68 #include "G4ParticleTypes.hh" << 69 #include "G4Ions.hh" << 70 #include "G4Electron.hh" << 71 #include "G4Lambda.hh" << 72 << 73 #include "G4VMultiFragmentation.hh" << 74 #include "G4VFermiBreakUp.hh" << 75 #include "G4Element.hh" << 76 #include "G4ElementTable.hh" << 77 << 78 #include "G4VEvaporation.hh" << 79 #include "G4VEvaporationChannel.hh" << 80 #include "G4Evaporation.hh" << 81 #include "G4PhotonEvaporation.hh" << 82 #include "G4StatMF.hh" << 83 #include "G4FermiBreakUpVI.hh" << 84 #include "G4NuclearLevelData.hh" << 85 #include "G4PhysicsModelCatalog.hh" << 86 << 87 G4ExcitationHandler::G4ExcitationHandler() << 88 : minEForMultiFrag(1.*CLHEP::TeV), minExcita << 89 maxExcitation(100.*CLHEP::MeV) << 90 { << 91 thePartTable = G4ParticleTable::GetParticleT << 92 theTableOfIons = thePartTable->GetIonTable() << 93 nist = G4NistManager::Instance(); << 94 << 95 theMultiFragmentation = new G4StatMF(); << 96 theFermiModel = new G4FermiBreakUpVI(); << 97 thePhotonEvaporation = new G4PhotonEvaporati << 98 SetEvaporation(new G4Evaporation(thePhotonEv << 99 theResults.reserve(60); << 100 results.reserve(30); << 101 theEvapList.reserve(30); << 102 << 103 theElectron = G4Electron::Electron(); << 104 theNeutron = G4Neutron::NeutronDefinition(); << 105 theProton = G4Proton::ProtonDefinition(); << 106 theDeuteron = G4Deuteron::DeuteronDefinition << 107 theTriton = G4Triton::TritonDefinition(); << 108 theHe3 = G4He3::He3Definition(); << 109 theAlpha = G4Alpha::AlphaDefinition(); << 110 theLambda = G4Lambda::Lambda(); << 111 42 112 fLambdaMass = theLambda->GetPDGMass(); << 43 //#define debugphoton 113 44 114 if(fVerbose > 1) { G4cout << "### New handle << 115 } << 116 45 117 G4ExcitationHandler::~G4ExcitationHandler() << 46 G4ExcitationHandler::G4ExcitationHandler(): 118 { << 47 maxZForFermiBreakUp(1),maxAForFermiBreakUp(1),minEForMultiFrag(4.0*GeV), 119 delete theMultiFragmentation; << 48 MyOwnEvaporationClass(true), MyOwnMultiFragmentationClass(true),MyOwnFermiBreakUpClass(true), 120 delete theFermiModel; << 49 MyOwnPhotonEvaporationClass(true) 121 if(isEvapLocal) { delete theEvaporation; } << 50 { >> 51 theTableOfParticles = G4ParticleTable::GetParticleTable(); >> 52 >> 53 theEvaporation = new G4Evaporation; >> 54 theMultiFragmentation = new G4StatMF; >> 55 theFermiModel = new G4FermiBreakUp; >> 56 thePhotonEvaporation = new G4PhotonEvaporation; 122 } 57 } 123 58 124 void G4ExcitationHandler::SetParameters() << 59 G4ExcitationHandler::G4ExcitationHandler(const G4ExcitationHandler &) 125 { 60 { 126 G4NuclearLevelData* ndata = G4NuclearLevelDa << 61 throw G4HadronicException(__FILE__, __LINE__, "G4ExcitationHandler::copy_constructor: is meant to not be accessable! "); 127 auto param = ndata->GetParameters(); << 128 isActive = true; << 129 // check if de-excitation is needed << 130 if (fDummy == param->GetDeexChannelsType()) << 131 isActive = false; << 132 } else { << 133 // upload data for elements used in geomet << 134 G4int Zmax = 20; << 135 const G4ElementTable* table = G4Element::G << 136 for (auto const & elm : *table) { Zmax = s << 137 ndata->UploadNuclearLevelData(Zmax+1); << 138 } << 139 minEForMultiFrag = param->GetMinExPerNucleou << 140 minExcitation = param->GetMinExcitation(); << 141 maxExcitation = param->GetPrecoHighEnergy(); << 142 << 143 // allowing local debug printout << 144 fVerbose = std::max(fVerbose, param->GetVerb << 145 if (isActive) { << 146 if (nullptr == thePhotonEvaporation) { << 147 SetPhotonEvaporation(new G4PhotonEvapora << 148 } << 149 if (nullptr == theFermiModel) { << 150 SetFermiModel(new G4FermiBreakUpVI()); << 151 } << 152 if (nullptr == theMultiFragmentation) { << 153 SetMultiFragmentation(new G4StatMF()); << 154 } << 155 if (nullptr == theEvaporation) { << 156 SetEvaporation(new G4Evaporation(thePhot << 157 } << 158 } << 159 theFermiModel->SetVerbose(fVerbose); << 160 if(fVerbose > 1) { << 161 G4cout << "G4ExcitationHandler::SetParamet << 162 } << 163 } 62 } 164 63 165 void G4ExcitationHandler::Initialise() << 166 { << 167 if(isInitialised) { return; } << 168 if(fVerbose > 1) { << 169 G4cout << "G4ExcitationHandler::Initialise << 170 } << 171 G4DeexPrecoParameters* param = << 172 G4NuclearLevelData::GetInstance()->GetPara << 173 isInitialised = true; << 174 SetParameters(); << 175 if(isActive) { << 176 theFermiModel->Initialise(); << 177 theEvaporation->InitialiseChannels(); << 178 } << 179 // dump level is controlled by parameter cla << 180 param->Dump(); << 181 } << 182 64 183 void G4ExcitationHandler::SetEvaporation(G4VEv << 65 G4ExcitationHandler::~G4ExcitationHandler() 184 { 66 { 185 if(nullptr != ptr && ptr != theEvaporation) << 67 if (MyOwnEvaporationClass) delete theEvaporation; 186 theEvaporation = ptr; << 68 if (MyOwnMultiFragmentationClass) delete theMultiFragmentation; 187 theEvaporation->SetPhotonEvaporation(thePh << 69 if (MyOwnFermiBreakUpClass) delete theFermiModel; 188 theEvaporation->SetFermiBreakUp(theFermiMo << 70 if (MyOwnPhotonEvaporationClass) delete thePhotonEvaporation; 189 isEvapLocal = flag; << 190 if(fVerbose > 1) { << 191 G4cout << "G4ExcitationHandler::SetEvapo << 192 } << 193 } << 194 } 71 } 195 72 196 void << 197 G4ExcitationHandler::SetMultiFragmentation(G4V << 198 { << 199 if(nullptr != ptr && ptr != theMultiFragment << 200 delete theMultiFragmentation; << 201 theMultiFragmentation = ptr; << 202 } << 203 } << 204 73 205 void G4ExcitationHandler::SetFermiModel(G4VFer << 74 const G4ExcitationHandler & G4ExcitationHandler::operator=(const G4ExcitationHandler &) 206 { 75 { 207 if(nullptr != ptr && ptr != theFermiModel) { << 76 throw G4HadronicException(__FILE__, __LINE__, "G4ExcitationHandler::operator=: is meant to not be accessable! "); 208 delete theFermiModel; << 209 theFermiModel = ptr; << 210 if(nullptr != theEvaporation) { << 211 theEvaporation->SetFermiBreakUp(theFermi << 212 } << 213 } << 214 } << 215 77 216 void << 78 return *this; 217 G4ExcitationHandler::SetPhotonEvaporation(G4VE << 218 { << 219 if(nullptr != ptr && ptr != thePhotonEvapora << 220 delete thePhotonEvaporation; << 221 thePhotonEvaporation = ptr; << 222 if(nullptr != theEvaporation) { << 223 theEvaporation->SetPhotonEvaporation(ptr << 224 } << 225 if(fVerbose > 1) { << 226 G4cout << "G4ExcitationHandler::SetPhoto << 227 << " for handler " << this << G4e << 228 } << 229 } << 230 } << 231 << 232 void G4ExcitationHandler::SetDeexChannelsType( << 233 { << 234 G4Evaporation* evap = static_cast<G4Evaporat << 235 if(fVerbose > 1) { << 236 G4cout << "G4ExcitationHandler::SetDeexCha << 237 << " for " << this << G4endl; << 238 } << 239 if(val == fDummy) { << 240 isActive = false; << 241 return; << 242 } << 243 if (nullptr == evap) { return; } << 244 if (val == fEvaporation) { << 245 evap->SetDefaultChannel(); << 246 } else if (val == fCombined) { << 247 evap->SetCombinedChannel(); << 248 } else if (val == fGEM) { << 249 evap->SetGEMChannel(); << 250 } else if (val == fGEMVI) { << 251 evap->SetGEMVIChannel(); << 252 } << 253 evap->InitialiseChannels(); << 254 if (fVerbose > 1) { << 255 if (G4Threading::IsMasterThread()) { << 256 G4cout << "Number of de-excitation chann << 257 << theEvaporation->GetNumberOfChannels( << 258 G4cout << " " << this; << 259 } << 260 G4cout << G4endl; << 261 } << 262 } 79 } 263 80 264 G4VEvaporation* G4ExcitationHandler::GetEvapor << 265 { << 266 if (nullptr != theEvaporation) { SetParamete << 267 return theEvaporation; << 268 } << 269 81 270 G4VMultiFragmentation* G4ExcitationHandler::Ge << 82 G4bool G4ExcitationHandler::operator==(const G4ExcitationHandler &) const 271 { 83 { 272 if (nullptr != theMultiFragmentation) { SetP << 84 throw G4HadronicException(__FILE__, __LINE__, "G4ExcitationHandler::operator==: is meant to not be accessable! "); 273 return theMultiFragmentation; << 85 return false; 274 } << 86 } 275 87 276 G4VFermiBreakUp* G4ExcitationHandler::GetFermi << 88 G4bool G4ExcitationHandler::operator!=(const G4ExcitationHandler &) const 277 { 89 { 278 if (nullptr != theFermiModel) { SetParameter << 90 throw G4HadronicException(__FILE__, __LINE__, "G4ExcitationHandler::operator!=: is meant to not be accessable! "); 279 return theFermiModel; << 91 return true; 280 } 92 } 281 93 282 G4VEvaporationChannel* G4ExcitationHandler::Ge << 283 { << 284 if(nullptr != thePhotonEvaporation) { SetPar << 285 return thePhotonEvaporation; << 286 } << 287 94 288 G4ReactionProductVector * << 95 G4ReactionProductVector * G4ExcitationHandler::BreakItUp(const G4Fragment &theInitialState) const 289 G4ExcitationHandler::BreakItUp(const G4Fragmen << 290 { 96 { 291 // Variables existing until end of method << 292 G4Fragment * theInitialStatePtr = new G4Frag << 293 if (fVerbose > 1) { << 294 G4cout << "@@@@@@@@@@ Start G4Excitation H << 295 G4cout << theInitialState << G4endl; << 296 } << 297 if (!isInitialised) { Initialise(); } << 298 << 299 // pointer to fragment vector which receives << 300 G4FragmentVector * theTempResult = nullptr; << 301 97 302 theResults.clear(); << 98 G4FragmentVector * theResult = 0; 303 theEvapList.clear(); << 304 << 305 // Variables to describe the excited configu << 306 G4double exEnergy = theInitialState.GetExcit 99 G4double exEnergy = theInitialState.GetExcitationEnergy(); 307 G4int A = theInitialState.GetA_asInt(); << 100 G4double A = theInitialState.GetA(); 308 G4int Z = theInitialState.GetZ_asInt(); << 101 G4int Z = static_cast<G4int>(theInitialState.GetZ()); 309 G4int nL = theInitialState.GetNumberOfLambda << 102 G4FragmentVector* theTempResult = 0; 310 << 103 G4Fragment theExcitedNucleus; 311 // too much excitation << 104 312 if (exEnergy > A*maxExcitation && A > 0) { << 105 // Test applicability 313 ++fWarnings; << 106 if (A > 4) 314 if(fWarnings < 0) { << 107 { 315 G4ExceptionDescription ed; << 108 // Initial State De-Excitation 316 ed << "High excitation Fragment Z= " << << 109 if(A<GetMaxA()&&Z<GetMaxZ()) 317 << " Eex/A(MeV)= " << exEnergy/A; << 110 // && exEnergy>G4NucleiPropertiesTable::GetBindingEnergy(Z,A)) { 318 G4Exception("G4ExcitationHandler::BreakI << 111 { 319 } << 112 theResult = theFermiModel->BreakItUp(theInitialState); 320 } << 113 } 321 << 114 else if (exEnergy>GetMinE()*A) 322 // for hyper-nuclei subtract lambdas from th << 115 { 323 G4double lambdaF = 0.0; << 116 theResult = theMultiFragmentation->BreakItUp(theInitialState); 324 G4LorentzVector lambdaLV = theInitialStatePt << 117 } 325 if (0 < nL) { << 118 else 326 << 119 { 327 // is it a stable hyper-nuclei? << 120 theResult = theEvaporation->BreakItUp(theInitialState); 328 if(A >= 3 && A <= 5 && nL <= 2) { << 121 } 329 G4int pdg = 0; << 122 330 if(3 == A && 1 == nL) { << 123 331 pdg = 1010010030; << 124 332 } else if(5 == A && 2 == Z && 1 == nL) { << 125 333 pdg = 1010020050; << 126 // De-Excitation loop 334 } else if(4 == A) { << 127 // ------------------ 335 if(1 == Z && 1 == nL) { << 128 // Check if there are excited fragments 336 pdg = 1010010040; << 129 std::list<G4Fragment*> theResultList; 337 } else if(2 == Z && 1 == nL) { << 130 G4FragmentVector::iterator j; 338 pdg = 1010020040; << 131 std::list<G4Fragment*>::iterator i; 339 } else if(0 == Z && 2 == nL) { << 132 for (j = theResult->begin(); j != theResult->end();j++) 340 pdg = 1020000040; << 133 { 341 } else if(1 == Z && 2 == nL) { << 134 theResultList.push_back(*j); 342 pdg = 1020010040; << 135 } 343 } << 136 theResult->clear(); 344 } << 137 for (i = theResultList.begin(); i != theResultList.end(); i++) 345 // initial state is one of hyper-nuclei << 138 { 346 if (0 < pdg) { << 139 exEnergy = (*i)->GetExcitationEnergy(); 347 const G4ParticleDefinition* part = thePartTa << 140 if (exEnergy > 0.0) 348 if(nullptr != part) { << 141 { 349 G4ReactionProduct* theNew = new G4Reaction << 142 A = (*i)->GetA(); 350 G4ThreeVector dir = G4ThreeVector( 0.0, 0. << 143 Z = static_cast<G4int>((*i)->GetZ()); 351 if ( lambdaLV.vect().mag() > CLHEP:: << 144 theExcitedNucleus = *(*i); 352 dir = lambdaLV.vect().unit(); << 145 // try to de-excite this fragment 353 } << 146 if( A < GetMaxA() && Z < GetMaxZ() ) 354 G4double mass = part->GetPDGMass(); << 147 // && exEnergy>G4NucleiPropertiesTable::GetBindingEnergy(Z,A)) 355 G4double etot = std::max(lambdaLV.e(), mas << 148 { 356 dir *= std::sqrt((etot - mass)*(etot << 149 // Fermi Breakup not now called for for exotic fragments for good reasons... 357 theNew->SetMomentum(dir); << 150 // theTempResult = theFermiModel->BreakItUp(theExcitedNucleus); 358 theNew->SetTotalEnergy(etot); << 151 //if (theTempResult->size() == 1) 359 theNew->SetFormationTime(theInitialState.G << 152 // { 360 theNew->SetCreatorModelID(theInitialState. << 153 // std::for_each(theTempResult->begin(),theTempResult->end(), G4Delete()); 361 G4ReactionProductVector* v = new G4Reactio << 154 // delete theTempResult; 362 v->push_back(theNew); << 155 // } 363 return v; << 156 theTempResult = theEvaporation->BreakItUp(theExcitedNucleus); 364 } << 157 } 365 } << 158 else >> 159 { >> 160 // Evaporation >> 161 theTempResult = theEvaporation->BreakItUp(theExcitedNucleus); >> 162 } >> 163 // The Nucleus has been fragmented? >> 164 if (theTempResult->size() > 1) >> 165 // If so : >> 166 { >> 167 // Remove excited fragment from the result >> 168 // delete theResult->removeAt(i--); >> 169 delete (*i); >> 170 i = theResultList.erase(i); >> 171 // and add theTempResult elements to theResult >> 172 for (G4FragmentVector::reverse_iterator ri = theTempResult->rbegin(); >> 173 ri != theTempResult->rend(); ++ri) >> 174 { >> 175 theResultList.push_back(*ri); >> 176 } >> 177 delete theTempResult; >> 178 } >> 179 else >> 180 // If not : >> 181 { >> 182 // it doesn't matter, we Follow with the next fragment but >> 183 // I have to clean up >> 184 std::for_each(theTempResult->begin(),theTempResult->end(), G4Delete()); >> 185 delete theTempResult; >> 186 } >> 187 } >> 188 } >> 189 for (i = theResultList.begin(); i != theResultList.end(); i++) >> 190 { >> 191 theResult->push_back(*i); >> 192 } >> 193 theResultList.clear(); >> 194 } >> 195 else // if A > 4 >> 196 { >> 197 theResult = new G4FragmentVector(); >> 198 theResult->push_back(new G4Fragment(theInitialState)); 366 } 199 } 367 G4double mass = theInitialStatePtr->GetGro << 368 lambdaF = nL*(fLambdaMass - CLHEP::neutron << 369 << 370 // de-excitation with neutrons instead of << 371 theInitialStatePtr->SetZAandMomentum(lambd << 372 << 373 // 4-momentum not used in de-excitation << 374 lambdaLV *= lambdaF; << 375 } else if (0 > nL) { << 376 ++fWarnings; << 377 if(fWarnings < 0) { << 378 G4ExceptionDescription ed; << 379 ed << "Fragment with negative L: Z=" << << 380 << " Eex/A(MeV)= " << exEnergy/A; << 381 G4Exception("G4ExcitationHandler::BreakI << 382 } << 383 } << 384 << 385 // In case A <= 1 the fragment will not perf << 386 if (A <= 1 || !isActive) { << 387 theResults.push_back( theInitialStatePtr ) << 388 << 389 // check if a fragment is stable << 390 } else if (exEnergy < minExcitation && nist- << 391 theResults.push_back( theInitialStatePtr ) << 392 << 393 // JMQ 150909: first step in de-excitation << 394 // Fragments after the first step are stor << 395 } else { << 396 if ((A<maxAForFermiBreakUp && Z<maxZForFer << 397 || exEnergy <= minEForMultiFrag*A) { << 398 theEvapList.push_back(theInitialStatePtr << 399 200 400 // Statistical Multifragmentation will tak << 201 // Now we try to deexcite by means of PhotonEvaporation those fragments 401 } else { << 202 // which are excited. 402 theTempResult = theMultiFragmentation->B << 203 403 if (nullptr == theTempResult) { << 204 theTempResult = 0; 404 theEvapList.push_back(theInitialStatePtr); << 205 std::list<G4Fragment*> theResultList; 405 } else { << 206 std::list<G4Fragment*>::iterator j; 406 std::size_t nsec = theTempResult->size(); << 207 G4FragmentVector::iterator i; 407 << 208 for (i = theResult->begin(); i != theResult->end();i++) 408 // no fragmentation << 209 { 409 if (0 == nsec) { << 210 theResultList.push_back(*i); 410 theEvapList.push_back(theInitialStatePtr); << 411 << 412 // secondary are produced - sort out secon << 413 } else { << 414 G4bool deletePrimary = true; << 415 for (auto const & ptr : *theTempResult) { << 416 if (ptr == theInitialStatePtr) { deleteP << 417 SortSecondaryFragment(ptr); << 418 } << 419 if (deletePrimary) { delete theInitialStat << 420 } << 421 delete theTempResult; // end multifragmentat << 422 } << 423 } << 424 } << 425 if (fVerbose > 2) { << 426 G4cout << "## After first step of handler << 427 << " for evap; " << 428 << theResults.size() << " results. " << G << 429 } << 430 // ----------------------------------- << 431 // FermiBreakUp and De-excitation loop << 432 // ----------------------------------- << 433 << 434 static const G4int countmax = 1000; << 435 std::size_t kk; << 436 for (kk=0; kk<theEvapList.size(); ++kk) { << 437 G4Fragment* frag = theEvapList[kk]; << 438 if (fVerbose > 3) { << 439 G4cout << "Next evaporate: " << G4endl; << 440 G4cout << *frag << G4endl; << 441 } << 442 if (kk >= countmax) { << 443 G4ExceptionDescription ed; << 444 ed << "Infinite loop in the de-excitatio << 445 << " iterations \n" << 446 << " Initial fragment: \n" << theIniti << 447 << "\n Current fragment: \n" << *frag; << 448 G4Exception("G4ExcitationHandler::BreakI << 449 ed,"Stop execution"); << 450 << 451 } << 452 A = frag->GetA_asInt(); << 453 Z = frag->GetZ_asInt(); << 454 results.clear(); << 455 if (fVerbose > 2) { << 456 G4cout << "G4ExcitationHandler# " << kk << 457 << " Eex(MeV)= " << frag->GetExci << 458 } << 459 // Fermi Break-Up << 460 if (theFermiModel->IsApplicable(Z, A, frag << 461 theFermiModel->BreakFragment(&results, f << 462 std::size_t nsec = results.size(); << 463 if (fVerbose > 2) { G4cout << "FermiBrea << 464 << 465 // FBU takes care to delete input fragme << 466 // The secondary may be excited - photo- << 467 if (1 < nsec) { << 468 for (auto const & res : results) { << 469 SortSecondaryFragment(res); << 470 } << 471 continue; << 472 } << 473 // evaporation will be applied << 474 } << 475 // apply Evaporation, residual nucleus is << 476 // photon evaporation is possible << 477 theEvaporation->BreakFragment(&results, fr << 478 if (fVerbose > 3) { << 479 G4cout << "Evaporation Nsec= " << result << 480 } << 481 if (0 == results.size()) { << 482 theResults.push_back(frag); << 483 } else { << 484 SortSecondaryFragment(frag); << 485 } << 486 << 487 // Sort out secondary fragments << 488 for (auto const & res : results) { << 489 if(fVerbose > 4) { << 490 G4cout << "Evaporated product #" << *res << << 491 } << 492 SortSecondaryFragment(res); << 493 } // end of loop on secondary << 494 } // end of the loop over theEvapList << 495 if (fVerbose > 2) { << 496 G4cout << "## After 2nd step of handler " << 497 << " was evap; " << 498 << theResults.size() << " results. " << G << 499 } << 500 G4ReactionProductVector * theReactionProduct << 501 new G4ReactionProductVector(); << 502 << 503 // MAC (24/07/08) << 504 // To optimise the storing speed, we reserve << 505 // in memory for the vector << 506 theReactionProductVector->reserve( theResult << 507 << 508 if (fVerbose > 1) { << 509 G4cout << "### ExcitationHandler provides << 510 << " evaporated products:" << G4endl; << 511 } << 512 G4LorentzVector partOfLambdaLV; << 513 if ( nL > 0 ) partOfLambdaLV = lambdaLV/(G4d << 514 for (auto const & frag : theResults) { << 515 G4LorentzVector lv0 = frag->GetMomentum(); << 516 G4double etot = lv0.e(); << 517 << 518 // in the case of dummy de-excitation, exc << 519 // into kinetic energy of output ion << 520 if (!isActive) { << 521 G4double mass = frag->GetGroundStateMass << 522 G4double ptot = lv0.vect().mag(); << 523 G4double fac = (etot <= mass || 0.0 == << 524 : std::sqrt((etot - mass)*(etot + mass))/pto << 525 G4LorentzVector lv((frag->GetMomentum()) << 526 (frag->GetMomentum()).py()*fac, << 527 (frag->GetMomentum()).pz()*fac, etot); << 528 frag->SetMomentum(lv); << 529 } 211 } 530 if (fVerbose > 3) { << 212 theResult->clear(); 531 G4cout << *frag; << 213 532 if (frag->NuclearPolarization()) { << 214 for (j = theResultList.begin(); j != theResultList.end(); j++) 533 G4cout << " " << frag->NuclearPolarization( << 215 { 534 } << 216 if ((*j)->GetA() > 1 && (*j)->GetExcitationEnergy() > 0.1*eV) 535 G4cout << G4endl; << 217 { >> 218 theExcitedNucleus = *(*j); >> 219 theTempResult = thePhotonEvaporation->BreakItUp(theExcitedNucleus); >> 220 // If Gamma Evaporation has succeed then >> 221 if (theTempResult->size() > 1) >> 222 { >> 223 // Remove excited fragment from the result >> 224 delete (*j); >> 225 theResultList.erase(j--); >> 226 // and add theTempResult elements to theResult >> 227 for (G4FragmentVector::reverse_iterator ri = theTempResult->rbegin(); >> 228 ri != theTempResult->rend(); ++ri) >> 229 { >> 230 #ifdef PRECOMPOUND_TEST >> 231 if ((*ri)->GetA() == 0) >> 232 (*ri)->SetCreatorModel(G4String("G4PhotonEvaporation")); >> 233 else >> 234 (*ri)->SetCreatorModel(G4String("ResidualNucleus")); >> 235 #endif >> 236 theResultList.push_back(*ri); >> 237 } >> 238 delete theTempResult; >> 239 } >> 240 // In other case, just clean theTempResult and continue >> 241 else >> 242 { >> 243 std::for_each(theTempResult->begin(), theTempResult->end(), DeleteFragment()); >> 244 delete theTempResult; >> 245 #ifdef debugphoton >> 246 G4cout << "G4ExcitationHandler: Gamma Evaporation could not deexcite the nucleus: \n" >> 247 << "-----------------------------------------------------------------------\n" >> 248 << theExcitedNucleus << '\n' >> 249 << "-----------------------------------------------------------------------\n"; >> 250 #endif >> 251 G4double GammaEnergy = (*j)->GetExcitationEnergy(); >> 252 G4double cosTheta = 1. - 2. * G4UniformRand(); >> 253 G4double sinTheta = std::sqrt(1. - cosTheta * cosTheta); >> 254 G4double phi = twopi * G4UniformRand(); >> 255 G4ThreeVector GammaP(GammaEnergy * sinTheta * std::cos(phi), >> 256 GammaEnergy * sinTheta * std::sin(phi), >> 257 GammaEnergy * cosTheta ); >> 258 G4LorentzVector Gamma4P(GammaP,GammaEnergy); >> 259 G4Fragment * theHandlerPhoton = new G4Fragment(Gamma4P,G4Gamma::GammaDefinition()); >> 260 >> 261 >> 262 >> 263 G4double Mass = (*j)->GetGroundStateMass(); >> 264 G4ThreeVector ResidualP((*j)->GetMomentum().vect() - GammaP); >> 265 G4double ResidualE = std::sqrt(ResidualP*ResidualP + Mass*Mass); >> 266 G4LorentzVector Residual4P(ResidualP,ResidualE); >> 267 (*j)->SetMomentum(Residual4P); >> 268 >> 269 >> 270 >> 271 #ifdef PRECOMPOUND_TEST >> 272 theHandlerPhoton->SetCreatorModel("G4ExcitationHandler"); >> 273 #endif >> 274 theResultList.push_back( theHandlerPhoton ); >> 275 #ifdef debugphoton >> 276 G4cout << "Emmited photon:\n" >> 277 << theResultList.back() << '\n' >> 278 << "Residual nucleus after photon emission:\n" >> 279 << *(*j) << '\n' >> 280 << "-----------------------------------------------------------------------\n"; >> 281 #endif >> 282 } >> 283 } >> 284 } >> 285 for (j = theResultList.begin(); j != theResultList.end(); j++) >> 286 { >> 287 theResult->push_back(*j); 536 } 288 } >> 289 theResultList.clear(); >> 290 >> 291 >> 292 #ifdef debug >> 293 CheckConservation(theInitialState,theResult); >> 294 #endif >> 295 // Change G4FragmentVector by G4DynamicParticle >> 296 return Transform(theResult); >> 297 } 537 298 538 G4int fragmentA = frag->GetA_asInt(); << 299 G4ReactionProductVector * 539 G4int fragmentZ = frag->GetZ_asInt(); << 300 G4ExcitationHandler::Transform(G4FragmentVector * theFragmentVector) const 540 G4double eexc = 0.0; << 301 { 541 const G4ParticleDefinition* theKindOfFragm << 302 if (theFragmentVector == 0) return 0; 542 G4bool isHyperN = false; << 303 543 if (fragmentA == 0) { // photon or e << 304 // Conversion from G4FragmentVector to G4ReactionProductVector 544 theKindOfFragment = frag->GetParticleDef << 305 G4ParticleDefinition *theGamma = G4Gamma::GammaDefinition(); 545 } else if (fragmentA == 1 && fragmentZ == << 306 G4ParticleDefinition *theNeutron = G4Neutron::NeutronDefinition(); >> 307 G4ParticleDefinition *theProton = G4Proton::ProtonDefinition(); >> 308 G4ParticleDefinition *theDeuteron = G4Deuteron::DeuteronDefinition(); >> 309 G4ParticleDefinition *theTriton = G4Triton::TritonDefinition(); >> 310 G4ParticleDefinition *theHelium3 = G4He3::He3Definition(); >> 311 G4ParticleDefinition *theAlpha = G4Alpha::AlphaDefinition(); >> 312 G4ParticleDefinition *theKindOfFragment = 0; >> 313 theNeutron->SetVerboseLevel(2); >> 314 G4ReactionProductVector * theReactionProductVector = new G4ReactionProductVector; >> 315 G4int theFragmentA, theFragmentZ; >> 316 G4LorentzVector theFragmentMomentum; >> 317 >> 318 G4FragmentVector::iterator i; >> 319 for (i = theFragmentVector->begin(); i != theFragmentVector->end(); i++) { >> 320 // std::cout << (*i) <<'\n'; >> 321 theFragmentA = static_cast<G4int>((*i)->GetA()); >> 322 theFragmentZ = static_cast<G4int>((*i)->GetZ()); >> 323 theFragmentMomentum = (*i)->GetMomentum(); >> 324 theKindOfFragment = 0; >> 325 if (theFragmentA == 0 && theFragmentZ == 0) { // photon >> 326 theKindOfFragment = theGamma; >> 327 } else if (theFragmentA == 1 && theFragmentZ == 0) { // neutron 546 theKindOfFragment = theNeutron; 328 theKindOfFragment = theNeutron; 547 } else if (fragmentA == 1 && fragmentZ == << 329 } else if (theFragmentA == 1 && theFragmentZ == 1) { // proton 548 theKindOfFragment = theProton; 330 theKindOfFragment = theProton; 549 } else if (fragmentA == 2 && fragmentZ == << 331 } else if (theFragmentA == 2 && theFragmentZ == 1) { // deuteron 550 theKindOfFragment = theDeuteron; 332 theKindOfFragment = theDeuteron; 551 } else if (fragmentA == 3 && fragmentZ == << 333 } else if (theFragmentA == 3 && theFragmentZ == 1) { // triton 552 theKindOfFragment = theTriton; 334 theKindOfFragment = theTriton; 553 if(0 < nL) { << 335 } else if (theFragmentA == 3 && theFragmentZ == 2) { // helium3 554 const G4ParticleDefinition* p = thePar << 336 theKindOfFragment = theHelium3; 555 if(nullptr != p) { << 337 } else if (theFragmentA == 4 && theFragmentZ == 2) { // alpha 556 theKindOfFragment = p; << 557 isHyperN = true; << 558 --nL; << 559 } << 560 } << 561 } else if (fragmentA == 3 && fragmentZ == << 562 theKindOfFragment = theHe3; << 563 } else if (fragmentA == 4 && fragmentZ == << 564 theKindOfFragment = theAlpha; 338 theKindOfFragment = theAlpha; 565 if (0 < nL) { << 566 const G4ParticleDefinition* p = thePar << 567 if(nullptr != p) { << 568 theKindOfFragment = p; << 569 isHyperN = true; << 570 --nL; << 571 } << 572 } << 573 } else { 339 } else { 574 << 340 theKindOfFragment = theTableOfParticles->FindIon(theFragmentZ,theFragmentA,0,theFragmentZ); 575 // fragment << 576 eexc = frag->GetExcitationEnergy(); << 577 G4int idxf = frag->GetFloatingLevelNumbe << 578 if (eexc < minExcitation) { << 579 eexc = 0.0; << 580 idxf = 0; << 581 } << 582 << 583 theKindOfFragment = theTableOfIons->GetI << 584 << 585 if (fVerbose > 3) { << 586 G4cout << "### EXCH: Find ion Z= " << fragme << 587 << " A= " << fragmentA << 588 << " Eexc(MeV)= " << eexc/MeV << " id << 589 << " " << theKindOfFragment->GetParti << 590 << G4endl; << 591 } << 592 } 341 } 593 // fragment identified << 342 if (theKindOfFragment != 0) 594 if (nullptr != theKindOfFragment) { << 343 { 595 G4ReactionProduct * theNew = new G4React << 596 if (isHyperN) { << 597 G4LorentzVector lv = lv0 + partOfLambd << 598 G4ThreeVector dir = lv.vect().unit(); << 599 G4double mass = theKindOfFragment->Get << 600 etot = std::max(lv.e(), mass); << 601 G4double ptot = std::sqrt((etot - mass << 602 dir *= ptot; << 603 theNew->SetMomentum(dir); << 604 // remaining not compensated 4-momentum << 605 lambdaLV += (lv0 - G4LorentzVector(dir << 606 } else { << 607 theNew->SetMomentum(lv0.vect()); << 608 } << 609 theNew->SetTotalEnergy(etot); << 610 theNew->SetFormationTime(frag->GetCreati << 611 theNew->SetCreatorModelID(frag->GetCreat << 612 theReactionProductVector->push_back(theN << 613 << 614 // fragment not found out ground state i << 615 } else { << 616 theKindOfFragment = << 617 theTableOfIons->GetIon(fragmentZ,fragmentA,0 << 618 if (theKindOfFragment) { << 619 G4ThreeVector mom(0.0,0.0,0.0); << 620 G4double ionmass = theKindOfFragment->GetPDG << 621 if (etot <= ionmass) { << 622 etot = ionmass; << 623 } else { << 624 G4double ptot = std::sqrt((etot - ionmass) << 625 mom = (frag->GetMomentum().vect().unit())* << 626 } << 627 G4ReactionProduct * theNew = new G4ReactionP 344 G4ReactionProduct * theNew = new G4ReactionProduct(theKindOfFragment); 628 theNew->SetMomentum(mom); << 345 theNew->SetMomentum(theFragmentMomentum.vect()); 629 theNew->SetTotalEnergy(etot); << 346 theNew->SetTotalEnergy(theFragmentMomentum.e()); 630 theNew->SetFormationTime(frag->GetCreationTi << 347 theNew->SetFormationTime((*i)->GetCreationTime()); 631 theNew->SetCreatorModelID(frag->GetCreatorMo << 348 #ifdef PRECOMPOUND_TEST >> 349 theNew->SetCreatorModel((*i)->GetCreatorModel()); >> 350 #endif 632 theReactionProductVector->push_back(theNew); 351 theReactionProductVector->push_back(theNew); 633 if (fVerbose > 3) { << 634 G4cout << " ground state, energy << 635 << etot << G4endl; << 636 } << 637 } 352 } 638 } << 639 delete frag; << 640 } 353 } 641 // remaining lambdas are free; conserve quan << 354 if (theFragmentVector != 0) 642 // not 4-momentum << 355 { 643 if (0 < nL) { << 356 std::for_each(theFragmentVector->begin(), theFragmentVector->end(), DeleteFragment()); 644 G4ThreeVector dir = G4ThreeVector(0.0, 0.0 << 357 delete theFragmentVector; 645 if (lambdaLV.vect().mag() > CLHEP::eV) { << 358 } 646 dir = lambdaLV.vect().unit(); << 359 G4ReactionProductVector::iterator debugit; 647 } << 360 for(debugit=theReactionProductVector->begin(); 648 G4double etot = std::max(lambdaLV.e()/(G4d << 361 debugit!=theReactionProductVector->end(); debugit++) 649 dir *= std::sqrt((etot - fLambdaMass)*(eto << 362 { 650 for (G4int i=0; i<nL; ++i) { << 363 if((*debugit)->GetTotalEnergy()<1.*eV) 651 G4ReactionProduct* theNew = new G4Reacti << 364 { 652 theNew->SetMomentum(dir); << 365 if(getenv("G4DebugPhotonevaporationData")) 653 theNew->SetTotalEnergy(etot); << 366 { 654 theNew->SetFormationTime(theInitialState << 367 G4cerr << "G4ExcitationHandler: Warning: Photonevaporation data not exact."<<G4endl; 655 theNew->SetCreatorModelID(theInitialStat << 368 G4cerr << "G4ExcitationHandler: Warning: Found gamma with energy = " 656 theReactionProductVector->push_back(theN << 369 << (*debugit)->GetTotalEnergy()/MeV << "MeV" 657 } << 370 << G4endl; 658 } << 371 } 659 if (fVerbose > 3) { << 372 delete (*debugit); 660 G4cout << "@@@@@@@@@@ End G4Excitation Han << 373 *debugit = 0; >> 374 } 661 } 375 } >> 376 G4ReactionProduct* tmpPtr=0; >> 377 theReactionProductVector->erase(std::remove_if(theReactionProductVector->begin(), >> 378 theReactionProductVector->end(), >> 379 std::bind2nd(std::equal_to<G4ReactionProduct*>(), >> 380 tmpPtr)), >> 381 theReactionProductVector->end()); 662 return theReactionProductVector; 382 return theReactionProductVector; 663 } 383 } 664 384 665 void G4ExcitationHandler::ModelDescription(std << 385 666 { << 386 #ifdef debug 667 outFile << "G4ExcitationHandler description\ << 387 void G4ExcitationHandler::CheckConservation(const G4Fragment & theInitialState, 668 << "This class samples de-excitation of ex << 388 G4FragmentVector * Result) const 669 << "Fermi Break-up model for light fragmen << 389 { 670 << "evaporation, fission, and photo-evapor << 390 G4double ProductsEnergy =0; 671 << "particle may be proton, neutron, and o << 391 G4ThreeVector ProductsMomentum; 672 << "(Z < 13, A < 29). During photon evapor << 392 G4int ProductsA = 0; 673 << "or electrons due to internal conversio << 393 G4int ProductsZ = 0; >> 394 G4FragmentVector::iterator h; >> 395 for (h = Result->begin(); h != Result->end(); h++) { >> 396 G4LorentzVector tmp = (*h)->GetMomentum(); >> 397 ProductsEnergy += tmp.e(); >> 398 ProductsMomentum += tmp.vect(); >> 399 ProductsA += static_cast<G4int>((*h)->GetA()); >> 400 ProductsZ += static_cast<G4int>((*h)->GetZ()); >> 401 } >> 402 >> 403 if (ProductsA != theInitialState.GetA()) { >> 404 G4cout << "!!!!!!!!!! Baryonic Number Conservation Violation !!!!!!!!!!" << G4endl; >> 405 G4cout << "G4ExcitationHandler.cc: Barionic Number Conservation test for deexcitation fragments" >> 406 << G4endl; >> 407 G4cout << "Initial A = " << theInitialState.GetA() >> 408 << " Fragments A = " << ProductsA << " Diference --> " >> 409 << theInitialState.GetA() - ProductsA << G4endl; >> 410 } >> 411 if (ProductsZ != theInitialState.GetZ()) { >> 412 G4cout << "!!!!!!!!!! Charge Conservation Violation !!!!!!!!!!" << G4endl; >> 413 G4cout << "G4ExcitationHandler.cc: Charge Conservation test for deexcitation fragments" >> 414 << G4endl; >> 415 G4cout << "Initial Z = " << theInitialState.GetZ() >> 416 << " Fragments Z = " << ProductsZ << " Diference --> " >> 417 << theInitialState.GetZ() - ProductsZ << G4endl; >> 418 } >> 419 if (std::abs(ProductsEnergy-theInitialState.GetMomentum().e()) > 1.0*keV) { >> 420 G4cout << "!!!!!!!!!! Energy Conservation Violation !!!!!!!!!!" << G4endl; >> 421 G4cout << "G4ExcitationHandler.cc: Energy Conservation test for deexcitation fragments" >> 422 << G4endl; >> 423 G4cout << "Initial E = " << theInitialState.GetMomentum().e()/MeV << " MeV" >> 424 << " Fragments E = " << ProductsEnergy/MeV << " MeV Diference --> " >> 425 << (theInitialState.GetMomentum().e() - ProductsEnergy)/MeV << " MeV" << G4endl; >> 426 } >> 427 if (std::abs(ProductsMomentum.x()-theInitialState.GetMomentum().x()) > 1.0*keV || >> 428 std::abs(ProductsMomentum.y()-theInitialState.GetMomentum().y()) > 1.0*keV || >> 429 std::abs(ProductsMomentum.z()-theInitialState.GetMomentum().z()) > 1.0*keV) { >> 430 G4cout << "!!!!!!!!!! Momentum Conservation Violation !!!!!!!!!!" << G4endl; >> 431 G4cout << "G4ExcitationHandler.cc: Momentum Conservation test for deexcitation fragments" >> 432 << G4endl; >> 433 G4cout << "Initial P = " << theInitialState.GetMomentum().vect() << " MeV" >> 434 << " Fragments P = " << ProductsMomentum << " MeV Diference --> " >> 435 << theInitialState.GetMomentum().vect() - ProductsMomentum << " MeV" << G4endl; >> 436 } >> 437 return; 674 } 438 } >> 439 #endif >> 440 675 441 676 442 677 443 678 444