Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // >> 23 // 26 // Hadronic Process: Nuclear De-excitations 24 // Hadronic Process: Nuclear De-excitations 27 // by V. Lara (May 1998) 25 // by V. Lara (May 1998) 28 // << 26 // Modif (30 June 1998) by V. Lara: 29 // << 30 // Modified: << 31 // 30 June 1998 by V. Lara: << 32 // -Modified the Transform method for use 27 // -Modified the Transform method for use G4ParticleTable and 33 // therefore G4IonTable. It makes possib 28 // therefore G4IonTable. It makes possible to convert all kind 34 // of fragments (G4Fragment) produced in 29 // of fragments (G4Fragment) produced in deexcitation to 35 // G4DynamicParticle 30 // G4DynamicParticle 36 // -It uses default algorithms for: 31 // -It uses default algorithms for: 37 // Evaporation: G4Evaporation << 32 // Evaporation: G4StatEvaporation 38 // MultiFragmentation: G4StatMF << 33 // MultiFragmentation: G4DummyMF (a dummy one) 39 // Fermi Breakup model: G4FermiBr << 34 // Fermi Breakup model: G4StatFermiBreakUp 40 // 24 Jul 2008 by M. A. Cortes Giraldo: << 35 41 // -Max Z,A for Fermi Break-Up turns to 9 << 42 // -BreakItUp() reorganised and bug in Ev << 43 // -Transform() optimised << 44 // (September 2008) by J. M. Quesada. External << 45 // -inverse cross section option (default << 46 // -superimposed Coulomb barrier (if useS << 47 // September 2009 by J. M. Quesada: << 48 // -according to Igor Pshenichnov, SMM wi << 49 // 27 Nov 2009 by V.Ivanchenko: << 50 // -cleanup the logic, reduce number inte << 51 // 11 May 2010 by V.Ivanchenko: << 52 // -FermiBreakUp activated, used integer << 53 // final photon deexcitation; used check << 54 // unstable fragments with A <5 << 55 // 22 March 2011 by V.Ivanchenko: general clea << 56 // products of Fermi Break Up cannot be << 57 // 30 March 2011 by V.Ivanchenko removed priva << 58 // to the source << 59 // 23 January 2012 by V.Ivanchenko general cle << 60 // objects, propagate G4PhotonEvaporation p << 61 // not delete it here << 62 36 63 #include "G4ExcitationHandler.hh" 37 #include "G4ExcitationHandler.hh" 64 #include "G4SystemOfUnits.hh" << 38 #include <list> 65 #include "G4LorentzVector.hh" << 66 #include "G4ThreeVector.hh" << 67 #include "G4ParticleTable.hh" << 68 #include "G4ParticleTypes.hh" << 69 #include "G4Ions.hh" << 70 #include "G4Electron.hh" << 71 #include "G4Lambda.hh" << 72 << 73 #include "G4VMultiFragmentation.hh" << 74 #include "G4VFermiBreakUp.hh" << 75 #include "G4Element.hh" << 76 #include "G4ElementTable.hh" << 77 << 78 #include "G4VEvaporation.hh" << 79 #include "G4VEvaporationChannel.hh" << 80 #include "G4Evaporation.hh" << 81 #include "G4PhotonEvaporation.hh" << 82 #include "G4StatMF.hh" << 83 #include "G4FermiBreakUpVI.hh" << 84 #include "G4NuclearLevelData.hh" << 85 #include "G4PhysicsModelCatalog.hh" << 86 << 87 G4ExcitationHandler::G4ExcitationHandler() << 88 : minEForMultiFrag(1.*CLHEP::TeV), minExcita << 89 maxExcitation(100.*CLHEP::MeV) << 90 { << 91 thePartTable = G4ParticleTable::GetParticleT << 92 theTableOfIons = thePartTable->GetIonTable() << 93 nist = G4NistManager::Instance(); << 94 << 95 theMultiFragmentation = new G4StatMF(); << 96 theFermiModel = new G4FermiBreakUpVI(); << 97 thePhotonEvaporation = new G4PhotonEvaporati << 98 SetEvaporation(new G4Evaporation(thePhotonEv << 99 theResults.reserve(60); << 100 results.reserve(30); << 101 theEvapList.reserve(30); << 102 << 103 theElectron = G4Electron::Electron(); << 104 theNeutron = G4Neutron::NeutronDefinition(); << 105 theProton = G4Proton::ProtonDefinition(); << 106 theDeuteron = G4Deuteron::DeuteronDefinition << 107 theTriton = G4Triton::TritonDefinition(); << 108 theHe3 = G4He3::He3Definition(); << 109 theAlpha = G4Alpha::AlphaDefinition(); << 110 theLambda = G4Lambda::Lambda(); << 111 39 112 fLambdaMass = theLambda->GetPDGMass(); << 40 //#define debugphoton 113 41 114 if(fVerbose > 1) { G4cout << "### New handle << 115 } << 116 42 117 G4ExcitationHandler::~G4ExcitationHandler() << 43 G4ExcitationHandler::G4ExcitationHandler(): 118 { << 44 maxZForFermiBreakUp(1),maxAForFermiBreakUp(1),minEForMultiFrag(4.0*GeV), 119 delete theMultiFragmentation; << 45 MyOwnEvaporationClass(true), MyOwnMultiFragmentationClass(true),MyOwnFermiBreakUpClass(true), 120 delete theFermiModel; << 46 MyOwnPhotonEvaporationClass(true) 121 if(isEvapLocal) { delete theEvaporation; } << 47 { >> 48 theTableOfParticles = G4ParticleTable::GetParticleTable(); >> 49 >> 50 theEvaporation = new G4Evaporation; >> 51 theMultiFragmentation = new G4StatMF; >> 52 theFermiModel = new G4FermiBreakUp; >> 53 thePhotonEvaporation = new G4PhotonEvaporation; 122 } 54 } 123 55 124 void G4ExcitationHandler::SetParameters() << 56 G4ExcitationHandler::G4ExcitationHandler(const G4ExcitationHandler &) 125 { 57 { 126 G4NuclearLevelData* ndata = G4NuclearLevelDa << 58 throw G4HadronicException(__FILE__, __LINE__, "G4ExcitationHandler::copy_constructor: is meant to not be accessable! "); 127 auto param = ndata->GetParameters(); << 128 isActive = true; << 129 // check if de-excitation is needed << 130 if (fDummy == param->GetDeexChannelsType()) << 131 isActive = false; << 132 } else { << 133 // upload data for elements used in geomet << 134 G4int Zmax = 20; << 135 const G4ElementTable* table = G4Element::G << 136 for (auto const & elm : *table) { Zmax = s << 137 ndata->UploadNuclearLevelData(Zmax+1); << 138 } << 139 minEForMultiFrag = param->GetMinExPerNucleou << 140 minExcitation = param->GetMinExcitation(); << 141 maxExcitation = param->GetPrecoHighEnergy(); << 142 << 143 // allowing local debug printout << 144 fVerbose = std::max(fVerbose, param->GetVerb << 145 if (isActive) { << 146 if (nullptr == thePhotonEvaporation) { << 147 SetPhotonEvaporation(new G4PhotonEvapora << 148 } << 149 if (nullptr == theFermiModel) { << 150 SetFermiModel(new G4FermiBreakUpVI()); << 151 } << 152 if (nullptr == theMultiFragmentation) { << 153 SetMultiFragmentation(new G4StatMF()); << 154 } << 155 if (nullptr == theEvaporation) { << 156 SetEvaporation(new G4Evaporation(thePhot << 157 } << 158 } << 159 theFermiModel->SetVerbose(fVerbose); << 160 if(fVerbose > 1) { << 161 G4cout << "G4ExcitationHandler::SetParamet << 162 } << 163 } 59 } 164 60 165 void G4ExcitationHandler::Initialise() << 166 { << 167 if(isInitialised) { return; } << 168 if(fVerbose > 1) { << 169 G4cout << "G4ExcitationHandler::Initialise << 170 } << 171 G4DeexPrecoParameters* param = << 172 G4NuclearLevelData::GetInstance()->GetPara << 173 isInitialised = true; << 174 SetParameters(); << 175 if(isActive) { << 176 theFermiModel->Initialise(); << 177 theEvaporation->InitialiseChannels(); << 178 } << 179 // dump level is controlled by parameter cla << 180 param->Dump(); << 181 } << 182 61 183 void G4ExcitationHandler::SetEvaporation(G4VEv << 62 G4ExcitationHandler::~G4ExcitationHandler() 184 { 63 { 185 if(nullptr != ptr && ptr != theEvaporation) << 64 if (MyOwnEvaporationClass) delete theEvaporation; 186 theEvaporation = ptr; << 65 if (MyOwnMultiFragmentationClass) delete theMultiFragmentation; 187 theEvaporation->SetPhotonEvaporation(thePh << 66 if (MyOwnFermiBreakUpClass) delete theFermiModel; 188 theEvaporation->SetFermiBreakUp(theFermiMo << 67 if (MyOwnPhotonEvaporationClass) delete thePhotonEvaporation; 189 isEvapLocal = flag; << 190 if(fVerbose > 1) { << 191 G4cout << "G4ExcitationHandler::SetEvapo << 192 } << 193 } << 194 } 68 } 195 69 196 void << 197 G4ExcitationHandler::SetMultiFragmentation(G4V << 198 { << 199 if(nullptr != ptr && ptr != theMultiFragment << 200 delete theMultiFragmentation; << 201 theMultiFragmentation = ptr; << 202 } << 203 } << 204 70 205 void G4ExcitationHandler::SetFermiModel(G4VFer << 71 const G4ExcitationHandler & G4ExcitationHandler::operator=(const G4ExcitationHandler &) 206 { 72 { 207 if(nullptr != ptr && ptr != theFermiModel) { << 73 throw G4HadronicException(__FILE__, __LINE__, "G4ExcitationHandler::operator=: is meant to not be accessable! "); 208 delete theFermiModel; << 209 theFermiModel = ptr; << 210 if(nullptr != theEvaporation) { << 211 theEvaporation->SetFermiBreakUp(theFermi << 212 } << 213 } << 214 } << 215 74 216 void << 75 return *this; 217 G4ExcitationHandler::SetPhotonEvaporation(G4VE << 218 { << 219 if(nullptr != ptr && ptr != thePhotonEvapora << 220 delete thePhotonEvaporation; << 221 thePhotonEvaporation = ptr; << 222 if(nullptr != theEvaporation) { << 223 theEvaporation->SetPhotonEvaporation(ptr << 224 } << 225 if(fVerbose > 1) { << 226 G4cout << "G4ExcitationHandler::SetPhoto << 227 << " for handler " << this << G4e << 228 } << 229 } << 230 } << 231 << 232 void G4ExcitationHandler::SetDeexChannelsType( << 233 { << 234 G4Evaporation* evap = static_cast<G4Evaporat << 235 if(fVerbose > 1) { << 236 G4cout << "G4ExcitationHandler::SetDeexCha << 237 << " for " << this << G4endl; << 238 } << 239 if(val == fDummy) { << 240 isActive = false; << 241 return; << 242 } << 243 if (nullptr == evap) { return; } << 244 if (val == fEvaporation) { << 245 evap->SetDefaultChannel(); << 246 } else if (val == fCombined) { << 247 evap->SetCombinedChannel(); << 248 } else if (val == fGEM) { << 249 evap->SetGEMChannel(); << 250 } else if (val == fGEMVI) { << 251 evap->SetGEMVIChannel(); << 252 } << 253 evap->InitialiseChannels(); << 254 if (fVerbose > 1) { << 255 if (G4Threading::IsMasterThread()) { << 256 G4cout << "Number of de-excitation chann << 257 << theEvaporation->GetNumberOfChannels( << 258 G4cout << " " << this; << 259 } << 260 G4cout << G4endl; << 261 } << 262 } 76 } 263 77 264 G4VEvaporation* G4ExcitationHandler::GetEvapor << 265 { << 266 if (nullptr != theEvaporation) { SetParamete << 267 return theEvaporation; << 268 } << 269 78 270 G4VMultiFragmentation* G4ExcitationHandler::Ge << 79 G4bool G4ExcitationHandler::operator==(const G4ExcitationHandler &) const 271 { 80 { 272 if (nullptr != theMultiFragmentation) { SetP << 81 throw G4HadronicException(__FILE__, __LINE__, "G4ExcitationHandler::operator==: is meant to not be accessable! "); 273 return theMultiFragmentation; << 82 return false; 274 } << 83 } 275 84 276 G4VFermiBreakUp* G4ExcitationHandler::GetFermi << 85 G4bool G4ExcitationHandler::operator!=(const G4ExcitationHandler &) const 277 { 86 { 278 if (nullptr != theFermiModel) { SetParameter << 87 throw G4HadronicException(__FILE__, __LINE__, "G4ExcitationHandler::operator!=: is meant to not be accessable! "); 279 return theFermiModel; << 88 return true; 280 } 89 } 281 90 282 G4VEvaporationChannel* G4ExcitationHandler::Ge << 283 { << 284 if(nullptr != thePhotonEvaporation) { SetPar << 285 return thePhotonEvaporation; << 286 } << 287 91 288 G4ReactionProductVector * << 92 G4ReactionProductVector * G4ExcitationHandler::BreakItUp(const G4Fragment &theInitialState) const 289 G4ExcitationHandler::BreakItUp(const G4Fragmen << 290 { 93 { 291 // Variables existing until end of method << 292 G4Fragment * theInitialStatePtr = new G4Frag << 293 if (fVerbose > 1) { << 294 G4cout << "@@@@@@@@@@ Start G4Excitation H << 295 G4cout << theInitialState << G4endl; << 296 } << 297 if (!isInitialised) { Initialise(); } << 298 << 299 // pointer to fragment vector which receives << 300 G4FragmentVector * theTempResult = nullptr; << 301 94 302 theResults.clear(); << 95 G4FragmentVector * theResult = 0; 303 theEvapList.clear(); << 304 << 305 // Variables to describe the excited configu << 306 G4double exEnergy = theInitialState.GetExcit 96 G4double exEnergy = theInitialState.GetExcitationEnergy(); 307 G4int A = theInitialState.GetA_asInt(); << 97 G4double A = theInitialState.GetA(); 308 G4int Z = theInitialState.GetZ_asInt(); << 98 G4int Z = static_cast<G4int>(theInitialState.GetZ()); 309 G4int nL = theInitialState.GetNumberOfLambda << 99 G4FragmentVector* theTempResult = 0; 310 << 100 G4Fragment theExcitedNucleus; 311 // too much excitation << 101 312 if (exEnergy > A*maxExcitation && A > 0) { << 102 // Test applicability 313 ++fWarnings; << 103 if (A > 4) 314 if(fWarnings < 0) { << 104 { 315 G4ExceptionDescription ed; << 105 // Initial State De-Excitation 316 ed << "High excitation Fragment Z= " << << 106 if(A<GetMaxA()&&Z<GetMaxZ()) 317 << " Eex/A(MeV)= " << exEnergy/A; << 107 // && exEnergy>G4NucleiPropertiesTable::GetBindingEnergy(Z,A)) { 318 G4Exception("G4ExcitationHandler::BreakI << 108 { 319 } << 109 theResult = theFermiModel->BreakItUp(theInitialState); 320 } << 110 } 321 << 111 else if (exEnergy>GetMinE()*A) 322 // for hyper-nuclei subtract lambdas from th << 112 { 323 G4double lambdaF = 0.0; << 113 theResult = theMultiFragmentation->BreakItUp(theInitialState); 324 G4LorentzVector lambdaLV = theInitialStatePt << 114 } 325 if (0 < nL) { << 115 else 326 << 116 { 327 // is it a stable hyper-nuclei? << 117 theResult = theEvaporation->BreakItUp(theInitialState); 328 if(A >= 3 && A <= 5 && nL <= 2) { << 118 } 329 G4int pdg = 0; << 119 330 if(3 == A && 1 == nL) { << 120 331 pdg = 1010010030; << 121 332 } else if(5 == A && 2 == Z && 1 == nL) { << 122 333 pdg = 1010020050; << 123 // De-Excitation loop 334 } else if(4 == A) { << 124 // ------------------ 335 if(1 == Z && 1 == nL) { << 125 // Check if there are excited fragments 336 pdg = 1010010040; << 126 std::list<G4Fragment*> theResultList; 337 } else if(2 == Z && 1 == nL) { << 127 G4FragmentVector::iterator j; 338 pdg = 1010020040; << 128 std::list<G4Fragment*>::iterator i; 339 } else if(0 == Z && 2 == nL) { << 129 for (j = theResult->begin(); j != theResult->end();j++) 340 pdg = 1020000040; << 130 { 341 } else if(1 == Z && 2 == nL) { << 131 theResultList.push_back(*j); 342 pdg = 1020010040; << 132 } 343 } << 133 theResult->clear(); 344 } << 134 for (i = theResultList.begin(); i != theResultList.end(); i++) 345 // initial state is one of hyper-nuclei << 135 { 346 if (0 < pdg) { << 136 exEnergy = (*i)->GetExcitationEnergy(); 347 const G4ParticleDefinition* part = thePartTa << 137 if (exEnergy > 0.0) 348 if(nullptr != part) { << 138 { 349 G4ReactionProduct* theNew = new G4Reaction << 139 A = (*i)->GetA(); 350 G4ThreeVector dir = G4ThreeVector( 0.0, 0. << 140 Z = static_cast<G4int>((*i)->GetZ()); 351 if ( lambdaLV.vect().mag() > CLHEP:: << 141 theExcitedNucleus = *(*i); 352 dir = lambdaLV.vect().unit(); << 142 // try to de-excite this fragment 353 } << 143 if( A < GetMaxA() && Z < GetMaxZ() ) 354 G4double mass = part->GetPDGMass(); << 144 // && exEnergy>G4NucleiPropertiesTable::GetBindingEnergy(Z,A)) 355 G4double etot = std::max(lambdaLV.e(), mas << 145 { 356 dir *= std::sqrt((etot - mass)*(etot << 146 // Fermi Breakup 357 theNew->SetMomentum(dir); << 147 theTempResult = theFermiModel->BreakItUp(theExcitedNucleus); 358 theNew->SetTotalEnergy(etot); << 148 if (theTempResult->size() == 1) 359 theNew->SetFormationTime(theInitialState.G << 149 { 360 theNew->SetCreatorModelID(theInitialState. << 150 std::for_each(theTempResult->begin(),theTempResult->end(),DeleteFragment()); 361 G4ReactionProductVector* v = new G4Reactio << 151 delete theTempResult; 362 v->push_back(theNew); << 152 } 363 return v; << 153 theTempResult = theEvaporation->BreakItUp(theExcitedNucleus); 364 } << 154 } 365 } << 155 else >> 156 { >> 157 // Evaporation >> 158 theTempResult = theEvaporation->BreakItUp(theExcitedNucleus); >> 159 } >> 160 // The Nucleus has been fragmented? >> 161 if (theTempResult->size() > 1) >> 162 // If so : >> 163 { >> 164 // Remove excited fragment from the result >> 165 // delete theResult->removeAt(i--); >> 166 delete (*i); >> 167 i = theResultList.erase(i); >> 168 // and add theTempResult elements to theResult >> 169 for (G4FragmentVector::reverse_iterator ri = theTempResult->rbegin(); >> 170 ri != theTempResult->rend(); ++ri) >> 171 { >> 172 theResultList.push_back(*ri); >> 173 } >> 174 delete theTempResult; >> 175 } >> 176 else >> 177 // If not : >> 178 { >> 179 // it doesn't matter, we Follow with the next fragment but >> 180 // I have to clean up >> 181 std::for_each(theTempResult->begin(),theTempResult->end(),DeleteFragment()); >> 182 delete theTempResult; >> 183 } >> 184 } >> 185 } >> 186 for (i = theResultList.begin(); i != theResultList.end(); i++) >> 187 { >> 188 theResult->push_back(*i); >> 189 } >> 190 theResultList.clear(); >> 191 } >> 192 else // if A > 4 >> 193 { >> 194 theResult = new G4FragmentVector(); >> 195 theResult->push_back(new G4Fragment(theInitialState)); 366 } 196 } 367 G4double mass = theInitialStatePtr->GetGro << 368 lambdaF = nL*(fLambdaMass - CLHEP::neutron << 369 << 370 // de-excitation with neutrons instead of << 371 theInitialStatePtr->SetZAandMomentum(lambd << 372 << 373 // 4-momentum not used in de-excitation << 374 lambdaLV *= lambdaF; << 375 } else if (0 > nL) { << 376 ++fWarnings; << 377 if(fWarnings < 0) { << 378 G4ExceptionDescription ed; << 379 ed << "Fragment with negative L: Z=" << << 380 << " Eex/A(MeV)= " << exEnergy/A; << 381 G4Exception("G4ExcitationHandler::BreakI << 382 } << 383 } << 384 << 385 // In case A <= 1 the fragment will not perf << 386 if (A <= 1 || !isActive) { << 387 theResults.push_back( theInitialStatePtr ) << 388 << 389 // check if a fragment is stable << 390 } else if (exEnergy < minExcitation && nist- << 391 theResults.push_back( theInitialStatePtr ) << 392 << 393 // JMQ 150909: first step in de-excitation << 394 // Fragments after the first step are stor << 395 } else { << 396 if ((A<maxAForFermiBreakUp && Z<maxZForFer << 397 || exEnergy <= minEForMultiFrag*A) { << 398 theEvapList.push_back(theInitialStatePtr << 399 197 400 // Statistical Multifragmentation will tak << 198 // Now we try to deexcite by means of PhotonEvaporation those fragments 401 } else { << 199 // which are excited. 402 theTempResult = theMultiFragmentation->B << 200 403 if (nullptr == theTempResult) { << 201 theTempResult = 0; 404 theEvapList.push_back(theInitialStatePtr); << 202 std::list<G4Fragment*> theResultList; 405 } else { << 203 std::list<G4Fragment*>::iterator j; 406 std::size_t nsec = theTempResult->size(); << 204 G4FragmentVector::iterator i; 407 << 205 for (i = theResult->begin(); i != theResult->end();i++) 408 // no fragmentation << 206 { 409 if (0 == nsec) { << 207 theResultList.push_back(*i); 410 theEvapList.push_back(theInitialStatePtr); << 411 << 412 // secondary are produced - sort out secon << 413 } else { << 414 G4bool deletePrimary = true; << 415 for (auto const & ptr : *theTempResult) { << 416 if (ptr == theInitialStatePtr) { deleteP << 417 SortSecondaryFragment(ptr); << 418 } << 419 if (deletePrimary) { delete theInitialStat << 420 } << 421 delete theTempResult; // end multifragmentat << 422 } << 423 } << 424 } << 425 if (fVerbose > 2) { << 426 G4cout << "## After first step of handler << 427 << " for evap; " << 428 << theResults.size() << " results. " << G << 429 } << 430 // ----------------------------------- << 431 // FermiBreakUp and De-excitation loop << 432 // ----------------------------------- << 433 << 434 static const G4int countmax = 1000; << 435 std::size_t kk; << 436 for (kk=0; kk<theEvapList.size(); ++kk) { << 437 G4Fragment* frag = theEvapList[kk]; << 438 if (fVerbose > 3) { << 439 G4cout << "Next evaporate: " << G4endl; << 440 G4cout << *frag << G4endl; << 441 } << 442 if (kk >= countmax) { << 443 G4ExceptionDescription ed; << 444 ed << "Infinite loop in the de-excitatio << 445 << " iterations \n" << 446 << " Initial fragment: \n" << theIniti << 447 << "\n Current fragment: \n" << *frag; << 448 G4Exception("G4ExcitationHandler::BreakI << 449 ed,"Stop execution"); << 450 << 451 } << 452 A = frag->GetA_asInt(); << 453 Z = frag->GetZ_asInt(); << 454 results.clear(); << 455 if (fVerbose > 2) { << 456 G4cout << "G4ExcitationHandler# " << kk << 457 << " Eex(MeV)= " << frag->GetExci << 458 } << 459 // Fermi Break-Up << 460 if (theFermiModel->IsApplicable(Z, A, frag << 461 theFermiModel->BreakFragment(&results, f << 462 std::size_t nsec = results.size(); << 463 if (fVerbose > 2) { G4cout << "FermiBrea << 464 << 465 // FBU takes care to delete input fragme << 466 // The secondary may be excited - photo- << 467 if (1 < nsec) { << 468 for (auto const & res : results) { << 469 SortSecondaryFragment(res); << 470 } << 471 continue; << 472 } << 473 // evaporation will be applied << 474 } << 475 // apply Evaporation, residual nucleus is << 476 // photon evaporation is possible << 477 theEvaporation->BreakFragment(&results, fr << 478 if (fVerbose > 3) { << 479 G4cout << "Evaporation Nsec= " << result << 480 } << 481 if (0 == results.size()) { << 482 theResults.push_back(frag); << 483 } else { << 484 SortSecondaryFragment(frag); << 485 } << 486 << 487 // Sort out secondary fragments << 488 for (auto const & res : results) { << 489 if(fVerbose > 4) { << 490 G4cout << "Evaporated product #" << *res << << 491 } << 492 SortSecondaryFragment(res); << 493 } // end of loop on secondary << 494 } // end of the loop over theEvapList << 495 if (fVerbose > 2) { << 496 G4cout << "## After 2nd step of handler " << 497 << " was evap; " << 498 << theResults.size() << " results. " << G << 499 } << 500 G4ReactionProductVector * theReactionProduct << 501 new G4ReactionProductVector(); << 502 << 503 // MAC (24/07/08) << 504 // To optimise the storing speed, we reserve << 505 // in memory for the vector << 506 theReactionProductVector->reserve( theResult << 507 << 508 if (fVerbose > 1) { << 509 G4cout << "### ExcitationHandler provides << 510 << " evaporated products:" << G4endl; << 511 } << 512 G4LorentzVector partOfLambdaLV; << 513 if ( nL > 0 ) partOfLambdaLV = lambdaLV/(G4d << 514 for (auto const & frag : theResults) { << 515 G4LorentzVector lv0 = frag->GetMomentum(); << 516 G4double etot = lv0.e(); << 517 << 518 // in the case of dummy de-excitation, exc << 519 // into kinetic energy of output ion << 520 if (!isActive) { << 521 G4double mass = frag->GetGroundStateMass << 522 G4double ptot = lv0.vect().mag(); << 523 G4double fac = (etot <= mass || 0.0 == << 524 : std::sqrt((etot - mass)*(etot + mass))/pto << 525 G4LorentzVector lv((frag->GetMomentum()) << 526 (frag->GetMomentum()).py()*fac, << 527 (frag->GetMomentum()).pz()*fac, etot); << 528 frag->SetMomentum(lv); << 529 } 208 } 530 if (fVerbose > 3) { << 209 theResult->clear(); 531 G4cout << *frag; << 210 532 if (frag->NuclearPolarization()) { << 211 for (j = theResultList.begin(); j != theResultList.end(); j++) 533 G4cout << " " << frag->NuclearPolarization( << 212 { 534 } << 213 if ((*j)->GetA() > 1 && (*j)->GetExcitationEnergy() > 0.1*eV) 535 G4cout << G4endl; << 214 { >> 215 theExcitedNucleus = *(*j); >> 216 theTempResult = thePhotonEvaporation->BreakItUp(theExcitedNucleus); >> 217 // If Gamma Evaporation has succeed then >> 218 if (theTempResult->size() > 1) >> 219 { >> 220 // Remove excited fragment from the result >> 221 delete (*j); >> 222 theResultList.erase(j--); >> 223 // and add theTempResult elements to theResult >> 224 for (G4FragmentVector::reverse_iterator ri = theTempResult->rbegin(); >> 225 ri != theTempResult->rend(); ++ri) >> 226 { >> 227 #ifdef PRECOMPOUND_TEST >> 228 if ((*ri)->GetA() == 0) >> 229 (*ri)->SetCreatorModel(G4String("G4PhotonEvaporation")); >> 230 else >> 231 (*ri)->SetCreatorModel(G4String("ResidualNucleus")); >> 232 #endif >> 233 theResultList.push_back(*ri); >> 234 } >> 235 delete theTempResult; >> 236 } >> 237 // In other case, just clean theTempResult and continue >> 238 else >> 239 { >> 240 std::for_each(theTempResult->begin(), theTempResult->end(), DeleteFragment()); >> 241 delete theTempResult; >> 242 #ifdef debugphoton >> 243 G4cout << "G4ExcitationHandler: Gamma Evaporation could not deexcite the nucleus: \n" >> 244 << "-----------------------------------------------------------------------\n" >> 245 << theExcitedNucleus << '\n' >> 246 << "-----------------------------------------------------------------------\n"; >> 247 #endif >> 248 G4double GammaEnergy = (*j)->GetExcitationEnergy(); >> 249 G4double cosTheta = 1. - 2. * G4UniformRand(); >> 250 G4double sinTheta = sqrt(1. - cosTheta * cosTheta); >> 251 G4double phi = twopi * G4UniformRand(); >> 252 G4ThreeVector GammaP(GammaEnergy * sinTheta * cos(phi), >> 253 GammaEnergy * sinTheta * sin(phi), >> 254 GammaEnergy * cosTheta ); >> 255 G4LorentzVector Gamma4P(GammaP,GammaEnergy); >> 256 G4Fragment * theHandlerPhoton = new G4Fragment(Gamma4P,G4Gamma::GammaDefinition()); >> 257 >> 258 >> 259 >> 260 G4double Mass = (*j)->GetGroundStateMass(); >> 261 G4ThreeVector ResidualP((*j)->GetMomentum().vect() - GammaP); >> 262 G4double ResidualE = sqrt(ResidualP*ResidualP + Mass*Mass); >> 263 G4LorentzVector Residual4P(ResidualP,ResidualE); >> 264 (*j)->SetMomentum(Residual4P); >> 265 >> 266 >> 267 >> 268 #ifdef PRECOMPOUND_TEST >> 269 theHandlerPhoton->SetCreatorModel("G4ExcitationHandler"); >> 270 #endif >> 271 theResultList.push_back( theHandlerPhoton ); >> 272 #ifdef debugphoton >> 273 G4cout << "Emmited photon:\n" >> 274 << theResultList.back() << '\n' >> 275 << "Residual nucleus after photon emission:\n" >> 276 << *(*j) << '\n' >> 277 << "-----------------------------------------------------------------------\n"; >> 278 #endif >> 279 } >> 280 } >> 281 } >> 282 for (j = theResultList.begin(); j != theResultList.end(); j++) >> 283 { >> 284 theResult->push_back(*j); 536 } 285 } >> 286 theResultList.clear(); >> 287 >> 288 >> 289 #ifdef debug >> 290 CheckConservation(theInitialState,theResult); >> 291 #endif >> 292 // Change G4FragmentVector by G4DynamicParticle >> 293 return Transform(theResult); >> 294 } 537 295 538 G4int fragmentA = frag->GetA_asInt(); << 296 G4ReactionProductVector * 539 G4int fragmentZ = frag->GetZ_asInt(); << 297 G4ExcitationHandler::Transform(G4FragmentVector * theFragmentVector) const 540 G4double eexc = 0.0; << 298 { 541 const G4ParticleDefinition* theKindOfFragm << 299 if (theFragmentVector == 0) return 0; 542 G4bool isHyperN = false; << 300 543 if (fragmentA == 0) { // photon or e << 301 // Conversion from G4FragmentVector to G4ReactionProductVector 544 theKindOfFragment = frag->GetParticleDef << 302 G4ParticleDefinition *theGamma = G4Gamma::GammaDefinition(); 545 } else if (fragmentA == 1 && fragmentZ == << 303 G4ParticleDefinition *theNeutron = G4Neutron::NeutronDefinition(); >> 304 G4ParticleDefinition *theProton = G4Proton::ProtonDefinition(); >> 305 G4ParticleDefinition *theDeuteron = G4Deuteron::DeuteronDefinition(); >> 306 G4ParticleDefinition *theTriton = G4Triton::TritonDefinition(); >> 307 G4ParticleDefinition *theHelium3 = G4He3::He3Definition(); >> 308 G4ParticleDefinition *theAlpha = G4Alpha::AlphaDefinition(); >> 309 G4ParticleDefinition *theKindOfFragment = 0; >> 310 theNeutron->SetVerboseLevel(2); >> 311 G4ReactionProductVector * theReactionProductVector = new G4ReactionProductVector; >> 312 G4int theFragmentA, theFragmentZ; >> 313 G4LorentzVector theFragmentMomentum; >> 314 >> 315 G4FragmentVector::iterator i; >> 316 for (i = theFragmentVector->begin(); i != theFragmentVector->end(); i++) { >> 317 // std::cout << (*i) <<'\n'; >> 318 theFragmentA = static_cast<G4int>((*i)->GetA()); >> 319 theFragmentZ = static_cast<G4int>((*i)->GetZ()); >> 320 theFragmentMomentum = (*i)->GetMomentum(); >> 321 theKindOfFragment = 0; >> 322 if (theFragmentA == 0 && theFragmentZ == 0) { // photon >> 323 theKindOfFragment = theGamma; >> 324 } else if (theFragmentA == 1 && theFragmentZ == 0) { // neutron 546 theKindOfFragment = theNeutron; 325 theKindOfFragment = theNeutron; 547 } else if (fragmentA == 1 && fragmentZ == << 326 } else if (theFragmentA == 1 && theFragmentZ == 1) { // proton 548 theKindOfFragment = theProton; 327 theKindOfFragment = theProton; 549 } else if (fragmentA == 2 && fragmentZ == << 328 } else if (theFragmentA == 2 && theFragmentZ == 1) { // deuteron 550 theKindOfFragment = theDeuteron; 329 theKindOfFragment = theDeuteron; 551 } else if (fragmentA == 3 && fragmentZ == << 330 } else if (theFragmentA == 3 && theFragmentZ == 1) { // triton 552 theKindOfFragment = theTriton; 331 theKindOfFragment = theTriton; 553 if(0 < nL) { << 332 } else if (theFragmentA == 3 && theFragmentZ == 2) { // helium3 554 const G4ParticleDefinition* p = thePar << 333 theKindOfFragment = theHelium3; 555 if(nullptr != p) { << 334 } else if (theFragmentA == 4 && theFragmentZ == 2) { // alpha 556 theKindOfFragment = p; << 557 isHyperN = true; << 558 --nL; << 559 } << 560 } << 561 } else if (fragmentA == 3 && fragmentZ == << 562 theKindOfFragment = theHe3; << 563 } else if (fragmentA == 4 && fragmentZ == << 564 theKindOfFragment = theAlpha; 335 theKindOfFragment = theAlpha; 565 if (0 < nL) { << 566 const G4ParticleDefinition* p = thePar << 567 if(nullptr != p) { << 568 theKindOfFragment = p; << 569 isHyperN = true; << 570 --nL; << 571 } << 572 } << 573 } else { 336 } else { 574 << 337 theKindOfFragment = theTableOfParticles->FindIon(theFragmentZ,theFragmentA,0,theFragmentZ); 575 // fragment << 576 eexc = frag->GetExcitationEnergy(); << 577 G4int idxf = frag->GetFloatingLevelNumbe << 578 if (eexc < minExcitation) { << 579 eexc = 0.0; << 580 idxf = 0; << 581 } << 582 << 583 theKindOfFragment = theTableOfIons->GetI << 584 << 585 if (fVerbose > 3) { << 586 G4cout << "### EXCH: Find ion Z= " << fragme << 587 << " A= " << fragmentA << 588 << " Eexc(MeV)= " << eexc/MeV << " id << 589 << " " << theKindOfFragment->GetParti << 590 << G4endl; << 591 } << 592 } 338 } 593 // fragment identified << 339 if (theKindOfFragment != 0) 594 if (nullptr != theKindOfFragment) { << 340 { 595 G4ReactionProduct * theNew = new G4React << 596 if (isHyperN) { << 597 G4LorentzVector lv = lv0 + partOfLambd << 598 G4ThreeVector dir = lv.vect().unit(); << 599 G4double mass = theKindOfFragment->Get << 600 etot = std::max(lv.e(), mass); << 601 G4double ptot = std::sqrt((etot - mass << 602 dir *= ptot; << 603 theNew->SetMomentum(dir); << 604 // remaining not compensated 4-momentum << 605 lambdaLV += (lv0 - G4LorentzVector(dir << 606 } else { << 607 theNew->SetMomentum(lv0.vect()); << 608 } << 609 theNew->SetTotalEnergy(etot); << 610 theNew->SetFormationTime(frag->GetCreati << 611 theNew->SetCreatorModelID(frag->GetCreat << 612 theReactionProductVector->push_back(theN << 613 << 614 // fragment not found out ground state i << 615 } else { << 616 theKindOfFragment = << 617 theTableOfIons->GetIon(fragmentZ,fragmentA,0 << 618 if (theKindOfFragment) { << 619 G4ThreeVector mom(0.0,0.0,0.0); << 620 G4double ionmass = theKindOfFragment->GetPDG << 621 if (etot <= ionmass) { << 622 etot = ionmass; << 623 } else { << 624 G4double ptot = std::sqrt((etot - ionmass) << 625 mom = (frag->GetMomentum().vect().unit())* << 626 } << 627 G4ReactionProduct * theNew = new G4ReactionP 341 G4ReactionProduct * theNew = new G4ReactionProduct(theKindOfFragment); 628 theNew->SetMomentum(mom); << 342 theNew->SetMomentum(theFragmentMomentum.vect()); 629 theNew->SetTotalEnergy(etot); << 343 theNew->SetTotalEnergy(theFragmentMomentum.e()); 630 theNew->SetFormationTime(frag->GetCreationTi << 344 theNew->SetFormationTime((*i)->GetCreationTime()); 631 theNew->SetCreatorModelID(frag->GetCreatorMo << 345 #ifdef PRECOMPOUND_TEST >> 346 theNew->SetCreatorModel((*i)->GetCreatorModel()); >> 347 #endif 632 theReactionProductVector->push_back(theNew); 348 theReactionProductVector->push_back(theNew); 633 if (fVerbose > 3) { << 634 G4cout << " ground state, energy << 635 << etot << G4endl; << 636 } << 637 } 349 } 638 } << 639 delete frag; << 640 } 350 } 641 // remaining lambdas are free; conserve quan << 351 if (theFragmentVector != 0) 642 // not 4-momentum << 352 { 643 if (0 < nL) { << 353 std::for_each(theFragmentVector->begin(), theFragmentVector->end(), DeleteFragment()); 644 G4ThreeVector dir = G4ThreeVector(0.0, 0.0 << 354 delete theFragmentVector; 645 if (lambdaLV.vect().mag() > CLHEP::eV) { << 355 } 646 dir = lambdaLV.vect().unit(); << 356 G4ReactionProductVector::iterator debugit; 647 } << 357 for(debugit=theReactionProductVector->begin(); 648 G4double etot = std::max(lambdaLV.e()/(G4d << 358 debugit!=theReactionProductVector->end(); debugit++) 649 dir *= std::sqrt((etot - fLambdaMass)*(eto << 359 { 650 for (G4int i=0; i<nL; ++i) { << 360 if((*debugit)->GetTotalEnergy()<1.*eV) 651 G4ReactionProduct* theNew = new G4Reacti << 361 { 652 theNew->SetMomentum(dir); << 362 if(getenv("G4DebugPhotonevaporationData")) 653 theNew->SetTotalEnergy(etot); << 363 { 654 theNew->SetFormationTime(theInitialState << 364 G4cerr << "G4ExcitationHandler: Warning: Photonevaporation data not exact."<<G4endl; 655 theNew->SetCreatorModelID(theInitialStat << 365 G4cerr << "G4ExcitationHandler: Warning: Found gamma with energy = " 656 theReactionProductVector->push_back(theN << 366 << (*debugit)->GetTotalEnergy()/MeV << "MeV" 657 } << 367 << G4endl; 658 } << 368 } 659 if (fVerbose > 3) { << 369 delete (*debugit); 660 G4cout << "@@@@@@@@@@ End G4Excitation Han << 370 *debugit = 0; >> 371 } 661 } 372 } >> 373 G4ReactionProduct* tmpPtr=0; >> 374 theReactionProductVector->erase(std::remove_if(theReactionProductVector->begin(), >> 375 theReactionProductVector->end(), >> 376 std::bind2nd(std::equal_to<G4ReactionProduct*>(), >> 377 tmpPtr)), >> 378 theReactionProductVector->end()); 662 return theReactionProductVector; 379 return theReactionProductVector; 663 } 380 } 664 381 665 void G4ExcitationHandler::ModelDescription(std << 382 666 { << 383 #ifdef debug 667 outFile << "G4ExcitationHandler description\ << 384 void G4ExcitationHandler::CheckConservation(const G4Fragment & theInitialState, 668 << "This class samples de-excitation of ex << 385 G4FragmentVector * Result) const 669 << "Fermi Break-up model for light fragmen << 386 { 670 << "evaporation, fission, and photo-evapor << 387 G4double ProductsEnergy =0; 671 << "particle may be proton, neutron, and o << 388 G4ThreeVector ProductsMomentum; 672 << "(Z < 13, A < 29). During photon evapor << 389 G4int ProductsA = 0; 673 << "or electrons due to internal conversio << 390 G4int ProductsZ = 0; >> 391 G4FragmentVector::iterator h; >> 392 for (h = Result->begin(); h != Result->end(); h++) { >> 393 G4LorentzVector tmp = (*h)->GetMomentum(); >> 394 ProductsEnergy += tmp.e(); >> 395 ProductsMomentum += tmp.vect(); >> 396 ProductsA += static_cast<G4int>((*h)->GetA()); >> 397 ProductsZ += static_cast<G4int>((*h)->GetZ()); >> 398 } >> 399 >> 400 if (ProductsA != theInitialState.GetA()) { >> 401 G4cout << "!!!!!!!!!! Baryonic Number Conservation Violation !!!!!!!!!!" << G4endl; >> 402 G4cout << "G4ExcitationHandler.cc: Barionic Number Conservation test for deexcitation fragments" >> 403 << G4endl; >> 404 G4cout << "Initial A = " << theInitialState.GetA() >> 405 << " Fragments A = " << ProductsA << " Diference --> " >> 406 << theInitialState.GetA() - ProductsA << G4endl; >> 407 } >> 408 if (ProductsZ != theInitialState.GetZ()) { >> 409 G4cout << "!!!!!!!!!! Charge Conservation Violation !!!!!!!!!!" << G4endl; >> 410 G4cout << "G4ExcitationHandler.cc: Charge Conservation test for deexcitation fragments" >> 411 << G4endl; >> 412 G4cout << "Initial Z = " << theInitialState.GetZ() >> 413 << " Fragments Z = " << ProductsZ << " Diference --> " >> 414 << theInitialState.GetZ() - ProductsZ << G4endl; >> 415 } >> 416 if (abs(ProductsEnergy-theInitialState.GetMomentum().e()) > 1.0*keV) { >> 417 G4cout << "!!!!!!!!!! Energy Conservation Violation !!!!!!!!!!" << G4endl; >> 418 G4cout << "G4ExcitationHandler.cc: Energy Conservation test for deexcitation fragments" >> 419 << G4endl; >> 420 G4cout << "Initial E = " << theInitialState.GetMomentum().e()/MeV << " MeV" >> 421 << " Fragments E = " << ProductsEnergy/MeV << " MeV Diference --> " >> 422 << (theInitialState.GetMomentum().e() - ProductsEnergy)/MeV << " MeV" << G4endl; >> 423 } >> 424 if (abs(ProductsMomentum.x()-theInitialState.GetMomentum().x()) > 1.0*keV || >> 425 abs(ProductsMomentum.y()-theInitialState.GetMomentum().y()) > 1.0*keV || >> 426 abs(ProductsMomentum.z()-theInitialState.GetMomentum().z()) > 1.0*keV) { >> 427 G4cout << "!!!!!!!!!! Momentum Conservation Violation !!!!!!!!!!" << G4endl; >> 428 G4cout << "G4ExcitationHandler.cc: Momentum Conservation test for deexcitation fragments" >> 429 << G4endl; >> 430 G4cout << "Initial P = " << theInitialState.GetMomentum().vect() << " MeV" >> 431 << " Fragments P = " << ProductsMomentum << " MeV Diference --> " >> 432 << theInitialState.GetMomentum().vect() - ProductsMomentum << " MeV" << G4endl; >> 433 } >> 434 return; 674 } 435 } >> 436 #endif >> 437 675 438 676 439 677 440 678 441