Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/coherent_elastic/src/G4NeutrinoElectronNcModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/hadronic/models/coherent_elastic/src/G4NeutrinoElectronNcModel.cc (Version 11.3.0) and /processes/hadronic/models/coherent_elastic/src/G4NeutrinoElectronNcModel.cc (Version 9.3)


  1 //                                                  1 
  2 // *******************************************    
  3 // * License and Disclaimer                       
  4 // *                                              
  5 // * The  Geant4 software  is  copyright of th    
  6 // * the Geant4 Collaboration.  It is provided    
  7 // * conditions of the Geant4 Software License    
  8 // * LICENSE and available at  http://cern.ch/    
  9 // * include a list of copyright holders.         
 10 // *                                              
 11 // * Neither the authors of this software syst    
 12 // * institutes,nor the agencies providing fin    
 13 // * work  make  any representation or  warran    
 14 // * regarding  this  software system or assum    
 15 // * use.  Please see the license in the file     
 16 // * for the full disclaimer and the limitatio    
 17 // *                                              
 18 // * This  code  implementation is the result     
 19 // * technical work of the GEANT4 collaboratio    
 20 // * By using,  copying,  modifying or  distri    
 21 // * any work based  on the software)  you  ag    
 22 // * use  in  resulting  scientific  publicati    
 23 // * acceptance of all terms of the Geant4 Sof    
 24 // *******************************************    
 25 //                                                
 26 //                                                
 27 // Geant4 Header : G4NeutrinoElectronNcModel      
 28 //                                                
 29 // Author : V.Grichine 6.4.17                     
 30 //                                                
 31                                                   
 32 #include "G4NeutrinoElectronNcModel.hh"           
 33 #include "G4SystemOfUnits.hh"                     
 34 #include "G4ParticleTable.hh"                     
 35 #include "G4ParticleDefinition.hh"                
 36 #include "G4IonTable.hh"                          
 37 #include "Randomize.hh"                           
 38 #include "G4Electron.hh"                          
 39 #include "G4HadronicParameters.hh"                
 40 #include "G4PhysicsModelCatalog.hh"               
 41                                                   
 42 using namespace std;                              
 43 using namespace CLHEP;                            
 44                                                   
 45 G4NeutrinoElectronNcModel::G4NeutrinoElectronN    
 46   : G4HadronElastic(name)                         
 47 {                                                 
 48   secID = G4PhysicsModelCatalog::GetModelID( "    
 49                                                   
 50   SetMinEnergy( 0.0*GeV );                        
 51   SetMaxEnergy( G4HadronicParameters::Instance    
 52   SetLowestEnergyLimit(1.e-6*eV);                 
 53                                                   
 54   theElectron = G4Electron::Electron();           
 55   // PDG2016: sin^2 theta Weinberg                
 56                                                   
 57   fSin2tW = 0.23129; // 0.2312;                   
 58                                                   
 59   fCutEnergy = 0.; // default value               
 60 }                                                 
 61                                                   
 62                                                   
 63 G4NeutrinoElectronNcModel::~G4NeutrinoElectron    
 64 {}                                                
 65                                                   
 66 void G4NeutrinoElectronNcModel::ModelDescripti    
 67 {                                                 
 68   outFile << "G4NeutrinoElectronNcModel is a n    
 69     << "model which uses the standard model \n    
 70     << "transfer parameterization.  The model     
 71 }                                                 
 72                                                   
 73 //////////////////////////////////////////////    
 74                                                   
 75 G4bool G4NeutrinoElectronNcModel::IsApplicable    
 76 {                                                 
 77   G4bool result  = false;                         
 78   G4String pName = aTrack.GetDefinition()->Get    
 79   G4double minEnergy = 0.;                        
 80   G4double energy = aTrack.GetTotalEnergy();      
 81                                                   
 82   if( fCutEnergy > 0. ) // min detected recoil    
 83   {                                               
 84     minEnergy = 0.5*(fCutEnergy+sqrt(fCutEnerg    
 85   }                                               
 86   if( ( pName == "nu_e"   || pName == "anti_nu    
 87         pName == "nu_mu"  || pName == "anti_nu    
 88         pName == "nu_tau" || pName == "anti_nu    
 89         energy > minEnergy                        
 90   {                                               
 91     result = true;                                
 92   }                                               
 93   return result;                                  
 94 }                                                 
 95                                                   
 96 //////////////////////////////////////////////    
 97 //                                                
 98 //                                                
 99                                                   
100 G4HadFinalState* G4NeutrinoElectronNcModel::Ap    
101      const G4HadProjectile& aTrack, G4Nucleus&    
102 {                                                 
103   theParticleChange.Clear();                      
104                                                   
105   const G4HadProjectile* aParticle = &aTrack;     
106   G4double nuTkin = aParticle->GetKineticEnerg    
107                                                   
108   if( nuTkin <= LowestEnergyLimit() )             
109   {                                               
110     theParticleChange.SetEnergyChange(nuTkin);    
111     theParticleChange.SetMomentumChange(aTrack    
112     return &theParticleChange;                    
113   }                                               
114   // sample and make final state in lab frame     
115                                                   
116   G4double eTkin = SampleElectronTkin( aPartic    
117                                                   
118   if( eTkin > fCutEnergy )                        
119   {                                               
120     G4double ePlab = sqrt( eTkin*(eTkin + 2.*e    
121                                                   
122     G4double cost2  = eTkin*(nuTkin + electron    
123              cost2 /= nuTkin*nuTkin*(eTkin + 2    
124                                                   
125     if( cost2 > 1. ) cost2 = 1.;                  
126     if( cost2 < 0. ) cost2 = 0.;                  
127                                                   
128     G4double cost = sqrt(cost2);                  
129     G4double sint = std::sqrt( (1.0 - cost)*(1    
130     G4double phi  = G4UniformRand()*CLHEP::two    
131                                                   
132     G4ThreeVector eP( sint*std::cos(phi), sint    
133     eP *= ePlab;                                  
134     G4LorentzVector lvt2( eP, eTkin + electron    
135     G4DynamicParticle * aSec = new G4DynamicPa    
136     theParticleChange.AddSecondary( aSec, secI    
137                                                   
138     G4LorentzVector lvp1 = aParticle->Get4Mome    
139     G4LorentzVector lvt1(0.,0.,0.,electron_mas    
140     G4LorentzVector lvsum = lvp1+lvt1;            
141                                                   
142     G4LorentzVector lvp2 = lvsum-lvt2;            
143     G4double nuTkin2 = lvp2.e()-aParticle->Get    
144     theParticleChange.SetEnergyChange(nuTkin2)    
145     theParticleChange.SetMomentumChange(lvp2.v    
146   }                                               
147   else if( eTkin > 0.0 )                          
148   {                                               
149     theParticleChange.SetLocalEnergyDeposit( e    
150     nuTkin -= eTkin;                              
151                                                   
152     if( nuTkin > 0. )                             
153     {                                             
154       theParticleChange.SetEnergyChange( nuTki    
155       theParticleChange.SetMomentumChange( aTr    
156     }                                             
157   }                                               
158   else                                            
159   {                                               
160     theParticleChange.SetEnergyChange( nuTkin     
161     theParticleChange.SetMomentumChange( aTrac    
162   }                                               
163   return &theParticleChange;                      
164 }                                                 
165                                                   
166 //////////////////////////////////////////////    
167 //                                                
168 // sample recoil electron energy in lab frame     
169                                                   
170 G4double G4NeutrinoElectronNcModel::SampleElec    
171 {                                                 
172   G4double result = 0., xi, cofL, cofR, cofL2,    
173                                                   
174   G4double energy = aParticle->GetTotalEnergy(    
175   if( energy == 0.) return result; // vmg: < t    
176                                                   
177   G4String pName  = aParticle->GetDefinition()    
178                                                   
179   if( pName == "nu_e")                            
180   {                                               
181     cofL = 0.5 + fSin2tW;                         
182     cofR = fSin2tW;                               
183   }                                               
184   else if( pName == "anti_nu_e")                  
185   {                                               
186     cofL = fSin2tW;                               
187     cofR = 0.5 + fSin2tW;                         
188   }                                               
189   else if( pName == "nu_mu")                      
190   {                                               
191     cofL = -0.5 + fSin2tW;                        
192     cofR = fSin2tW;                               
193   }                                               
194   else if( pName == "anti_nu_mu")                 
195   {                                               
196     cofL = fSin2tW;                               
197     cofR = -0.5 + fSin2tW;                        
198   }                                               
199   else if( pName == "nu_tau") // vmg: nu_tau a    
200   {                                               
201     cofL = -0.5 + fSin2tW;                        
202     cofR = fSin2tW;                               
203   }                                               
204   else if( pName == "anti_nu_tau")                
205   {                                               
206     cofL = fSin2tW;                               
207     cofR = -0.5 + fSin2tW;                        
208   }                                               
209   else                                            
210   {                                               
211     return result;                                
212   }                                               
213   xi = 0.5*electron_mass_c2/energy;               
214                                                   
215   cofL2 = cofL*cofL;                              
216   cofR2 = cofR*cofR;                              
217   cofLR = cofL*cofR;                              
218                                                   
219   // cofs of Tkin/Enu 3rd equation                
220                                                   
221   G4double a = cofR2/3.;                          
222   G4double b = -(cofR2+cofLR*xi);                 
223   G4double c = cofL2+cofR2;                       
224                                                   
225   G4double xMax  = 1./(1. + xi);                  
226   G4double xMax2 = xMax*xMax;                     
227   G4double xMax3 = xMax*xMax2;                    
228                                                   
229   G4double d  = -( a*xMax3 + b*xMax2 + c*xMax     
230            d *= G4UniformRand();                  
231                                                   
232   // G4cout<<a<<"   "<<b<<"   "<<c<<"   "<<d<<    
233                                                   
234   // cofs of the incomplete 3rd equation          
235                                                   
236   G4double p  = c/a;                              
237            p -= b*b/a/a/3.;                       
238   G4double q  = d/a;                              
239            q -= b*c/a/a/3.;                       
240            q += 2*b*b*b/a/a/a/27.;                
241                                                   
242                                                   
243   // cofs for the incomplete colutions            
244                                                   
245   G4double D  = p*p*p/3./3./3.;                   
246            D += q*q/2./2.;                        
247                                                   
248      // G4cout<<"D = "<<D<<G4endl;                
249      // D = -D;                                   
250      // G4complex A1 = G4complex(- q/2., std::    
251      // G4complex A  = std::pow(A1,1./3.);        
252                                                   
253      // G4complex B1 = G4complex(- q/2., -std:    
254      // G4complex B  = std::pow(B1,1./3.);        
255                                                   
256   G4double A1 = - q/2. + std::sqrt(D);            
257   G4double A = std::pow(A1,1./3.);                
258                                                   
259   G4double B1 = - q/2. - std::sqrt(D);            
260   G4double B = std::pow(-B1,1./3.);               
261            B = -B;                                
262                                                   
263   // roots of the incomplete 3rd equation         
264                                                   
265   G4complex y1 =  A + B;                          
266   // G4complex y2 = -0.5*(A + B) + 0.5*std::sq    
267   // G4complex y3 = -0.5*(A + B) - 0.5*std::sq    
268                                                   
269   G4complex x1 = y1 - b/a/3.;                     
270   // G4complex x2 = y2 - b/a/3.;                  
271   // G4complex x3 = y3 - b/a/3.;                  
272                                                   
273   // G4cout<<"re_x1 = "<<real(x1)<<"; re_x2 =     
274   // G4cout<<"im_x1 = "<<imag(x1)<<"; im_x2 =     
275                                                   
276   result = real(x1)*energy;                       
277                                                   
278   return result;                                  
279 }                                                 
280                                                   
281 //                                                
282 //                                                
283 ///////////////////////////                       
284