Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4HadronElastic.cc,v 1.68 2010-11-19 18:50:03 vnivanch Exp $ >> 27 // GEANT4 tag $Name: not supported by cvs2svn $ 26 // 28 // 27 // Geant4 Header : G4HadronElastic << 28 // 29 // 29 // Author : V.Ivanchenko 29 June 2009 (redesig << 30 // Physics model class G4HadronElastic (derived from G4LElastic) 30 // << 31 // >> 32 // >> 33 // G4 Model: Low-energy Elastic scattering with 4-momentum balance >> 34 // F.W. Jones, TRIUMF, 04-JUN-96 >> 35 // Uses G4ElasticHadrNucleusHE and G4VQCrossSection >> 36 // >> 37 // >> 38 // 25-JUN-98 FWJ: replaced missing Initialize for ParticleChange. >> 39 // 09-Set-05 V.Ivanchenko HARP version of the model: fix scattering >> 40 // on hydrogen, use relativistic Lorentz transformation >> 41 // 24-Nov-05 V.Ivanchenko sample cost in center of mass reference system >> 42 // 03-Dec-05 V.Ivanchenko add protection to initial momentum 20 MeV/c in >> 43 // center of mass system (before it was in lab system) >> 44 // below model is not valid >> 45 // 14-Dec-05 V.Ivanchenko change protection to cos(theta) < -1 and >> 46 // rename the class >> 47 // 13-Apr-06 V.Ivanchenko move to coherent_elastic subdirectory; remove >> 48 // charge exchange; remove limitation on incident momentum; >> 49 // add s-wave regim below some momentum >> 50 // 24-Apr-06 V.Ivanchenko add neutron scattering on hydrogen from CHIPS >> 51 // 07-Jun-06 V.Ivanchenko fix problem of rotation >> 52 // 25-Jul-06 V.Ivanchenko add 19 MeV low energy, below which S-wave is sampled >> 53 // 02-Aug-06 V.Ivanchenko introduce energy cut on the aria of S-wave for pions >> 54 // 24-Aug-06 V.Ivanchenko switch on G4ElasticHadrNucleusHE >> 55 // 31-Aug-06 V.Ivanchenko do not sample sacttering for particles with kinetic >> 56 // energy below 10 keV >> 57 // 16-Nov-06 V.Ivanchenko Simplify logic of choosing of the model for sampling >> 58 // 30-Mar-07 V.Ivanchenko lowEnergyLimitQ=0, lowEnergyLimitHE = 1.0*GeV, >> 59 // lowestEnergyLimit= 0 >> 60 // 04-May-07 V.Ivanchenko do not use HE model for hydrogen target to avoid NaN; >> 61 // use QElastic for p, n incident for any energy for >> 62 // p and He targets only >> 63 // 11-May-07 V.Ivanchenko remove unused method Defs1 >> 64 // 13.01.10: M.Kosov: Use G4Q(Pr/Neut)ElasticCS instead of G4QElasticCS >> 65 // 31 66 32 #include "G4HadronElastic.hh" 67 #include "G4HadronElastic.hh" 33 #include "G4SystemOfUnits.hh" << 34 #include "G4ParticleTable.hh" 68 #include "G4ParticleTable.hh" 35 #include "G4ParticleDefinition.hh" 69 #include "G4ParticleDefinition.hh" 36 #include "G4IonTable.hh" 70 #include "G4IonTable.hh" >> 71 #include "G4QProtonElasticCrossSection.hh" >> 72 #include "G4QNeutronElasticCrossSection.hh" >> 73 #include "G4VQCrossSection.hh" >> 74 #include "G4ElasticHadrNucleusHE.hh" 37 #include "Randomize.hh" 75 #include "Randomize.hh" 38 #include "G4Proton.hh" 76 #include "G4Proton.hh" 39 #include "G4Neutron.hh" 77 #include "G4Neutron.hh" 40 #include "G4Deuteron.hh" 78 #include "G4Deuteron.hh" 41 #include "G4Alpha.hh" 79 #include "G4Alpha.hh" 42 #include "G4Pow.hh" << 80 #include "G4PionPlus.hh" 43 #include "G4Exp.hh" << 81 #include "G4PionMinus.hh" 44 #include "G4Log.hh" << 45 #include "G4HadronicParameters.hh" << 46 #include "G4PhysicsModelCatalog.hh" << 47 82 >> 83 G4VQCrossSection* G4HadronElastic::pCManager = 0; >> 84 G4VQCrossSection* G4HadronElastic::nCManager = 0; 48 85 49 G4HadronElastic::G4HadronElastic(const G4Strin << 86 G4HadronElastic::G4HadronElastic(G4ElasticHadrNucleusHE* HModel) 50 : G4HadronicInteraction(name), secID(-1) << 87 : G4HadronicInteraction("G4HadronElastic"), hElastic(HModel) 51 { 88 { 52 SetMinEnergy( 0.0*GeV ); 89 SetMinEnergy( 0.0*GeV ); 53 SetMaxEnergy( G4HadronicParameters::Instance << 90 SetMaxEnergy( 100.*TeV ); 54 lowestEnergyLimit= 1.e-6*eV; << 91 verboseLevel= 0; 55 pLocalTmax = 0.0; << 92 lowEnergyRecoilLimit = 100.*keV; 56 nwarn = 0; << 93 lowEnergyLimitQ = 0.0*GeV; >> 94 lowEnergyLimitHE = 1.0*GeV; >> 95 lowestEnergyLimit= 1.e-6*eV; >> 96 plabLowLimit = 20.0*MeV; >> 97 >> 98 if(!pCManager) >> 99 { >> 100 pCManager = G4QProtonElasticCrossSection::GetPointer(); >> 101 nCManager = G4QNeutronElasticCrossSection::GetPointer(); >> 102 } >> 103 if(!hElastic) hElastic = new G4ElasticHadrNucleusHE(); 57 104 58 theProton = G4Proton::Proton(); 105 theProton = G4Proton::Proton(); 59 theNeutron = G4Neutron::Neutron(); 106 theNeutron = G4Neutron::Neutron(); 60 theDeuteron = G4Deuteron::Deuteron(); 107 theDeuteron = G4Deuteron::Deuteron(); 61 theAlpha = G4Alpha::Alpha(); 108 theAlpha = G4Alpha::Alpha(); >> 109 thePionPlus = G4PionPlus::PionPlus(); >> 110 thePionMinus= G4PionMinus::PionMinus(); 62 111 63 secID = G4PhysicsModelCatalog::GetModelID( " << 64 } 112 } 65 113 66 G4HadronElastic::~G4HadronElastic() 114 G4HadronElastic::~G4HadronElastic() 67 {} << 115 { >> 116 delete hElastic; >> 117 } 68 118 >> 119 G4VQCrossSection* G4HadronElastic::GetCS() >> 120 { >> 121 return pCManager; >> 122 //if (PDG==2212) return pCManager; >> 123 //else if(PDG==2112) return nCManager; >> 124 //return 0; >> 125 } 69 126 70 void G4HadronElastic::ModelDescription(std::os << 127 G4ElasticHadrNucleusHE* G4HadronElastic::GetHElastic() 71 { 128 { 72 outFile << "G4HadronElastic is the base clas << 129 return hElastic; 73 << "elastic scattering models except << 74 << "By default it uses the Gheisha t << 75 << "transfer parameterization. The model << 76 << "as opposed to the original Gheisha mod << 77 << "This model may be used for all long-li << 78 << "incident energies but fit the data onl << 79 } 130 } 80 131 81 G4HadFinalState* G4HadronElastic::ApplyYoursel 132 G4HadFinalState* G4HadronElastic::ApplyYourself( 82 const G4HadProjectile& aTrack, G4Nucleus& 133 const G4HadProjectile& aTrack, G4Nucleus& targetNucleus) 83 { 134 { 84 theParticleChange.Clear(); 135 theParticleChange.Clear(); 85 136 86 const G4HadProjectile* aParticle = &aTrack; 137 const G4HadProjectile* aParticle = &aTrack; 87 G4double ekin = aParticle->GetKineticEnergy( 138 G4double ekin = aParticle->GetKineticEnergy(); 88 << 89 // no scattering below the limit << 90 if(ekin <= lowestEnergyLimit) { 139 if(ekin <= lowestEnergyLimit) { 91 theParticleChange.SetEnergyChange(ekin); 140 theParticleChange.SetEnergyChange(ekin); 92 theParticleChange.SetMomentumChange(0.,0., << 141 theParticleChange.SetMomentumChange(aTrack.Get4Momentum().vect().unit()); 93 return &theParticleChange; 142 return &theParticleChange; 94 } 143 } 95 144 96 G4int A = targetNucleus.GetA_asInt(); 145 G4int A = targetNucleus.GetA_asInt(); 97 G4int Z = targetNucleus.GetZ_asInt(); 146 G4int Z = targetNucleus.GetZ_asInt(); 98 147 >> 148 G4double plab = aParticle->GetTotalMomentum(); >> 149 if (verboseLevel >1) { >> 150 G4cout << "G4HadronElastic::DoIt: Incident particle plab=" >> 151 << plab/GeV << " GeV/c " >> 152 << " ekin(MeV) = " << ekin/MeV << " " >> 153 << aParticle->GetDefinition()->GetParticleName() << G4endl; >> 154 } 99 // Scattered particle referred to axis of in 155 // Scattered particle referred to axis of incident particle 100 const G4ParticleDefinition* theParticle = aP 156 const G4ParticleDefinition* theParticle = aParticle->GetDefinition(); 101 G4double m1 = theParticle->GetPDGMass(); 157 G4double m1 = theParticle->GetPDGMass(); 102 G4double plab = std::sqrt(ekin*(ekin + 2.0*m << 103 158 >> 159 G4int N = A - Z; >> 160 G4int projPDG = theParticle->GetPDGEncoding(); 104 if (verboseLevel>1) { 161 if (verboseLevel>1) { 105 G4cout << "G4HadronElastic: " << 162 G4cout << "G4HadronElastic for " << theParticle->GetParticleName() 106 << aParticle->GetDefinition()->GetParticl << 163 << " PDGcode= " << projPDG << " on nucleus Z= " << Z 107 << " Plab(GeV/c)= " << plab/GeV << 164 << " A= " << A << " N= " << N 108 << " Ekin(MeV) = " << ekin/MeV << 109 << " scattered off Z= " << Z << 110 << " A= " << A << 111 << G4endl; 165 << G4endl; 112 } 166 } >> 167 G4ParticleDefinition * theDef = 0; >> 168 >> 169 if(Z == 1 && A == 1) theDef = theProton; >> 170 else if (Z == 1 && A == 2) theDef = theDeuteron; >> 171 else if (Z == 1 && A == 3) theDef = G4Triton::Triton(); >> 172 else if (Z == 2 && A == 3) theDef = G4He3::He3(); >> 173 else if (Z == 2 && A == 4) theDef = theAlpha; >> 174 else theDef = G4ParticleTable::GetParticleTable()->GetIon(Z,A,0.0); >> 175 >> 176 G4double m2 = theDef->GetPDGMass(); >> 177 G4LorentzVector lv1 = aParticle->Get4Momentum(); >> 178 G4LorentzVector lv(0.0,0.0,0.0,m2); >> 179 lv += lv1; 113 180 114 G4double mass2 = G4NucleiProperties::GetNucl << 115 G4double e1 = m1 + ekin; << 116 G4LorentzVector lv(0.0,0.0,plab,e1+mass2); << 117 G4ThreeVector bst = lv.boostVector(); 181 G4ThreeVector bst = lv.boostVector(); 118 G4double momentumCMS = plab*mass2/std::sqrt( << 182 lv1.boost(-bst); 119 183 120 pLocalTmax = 4.0*momentumCMS*momentumCMS; << 184 G4ThreeVector p1 = lv1.vect(); >> 185 G4double ptot = p1.mag(); >> 186 G4double tmax = 4.0*ptot*ptot; >> 187 G4double t = 0.0; >> 188 >> 189 // Choose generator >> 190 G4ElasticGenerator gtype = fLElastic; >> 191 >> 192 // Q-elastic for p,n scattering on H and He >> 193 if (theParticle == theProton || theParticle == theNeutron) { >> 194 // && Z <= 2 && ekin >= lowEnergyLimitQ) >> 195 gtype = fQElastic; 121 196 122 // Sampling in CM system << 197 } else { 123 G4double t = SampleInvariantT(theParticle, p << 198 // S-wave for very low energy >> 199 if(plab < plabLowLimit) gtype = fSWave; >> 200 // HE-elastic for energetic projectile mesons >> 201 else if(ekin >= lowEnergyLimitHE && theParticle->GetBaryonNumber() == 0) >> 202 { gtype = fHElastic; } >> 203 } 124 204 125 if(t < 0.0 || t > pLocalTmax) { << 205 // 126 // For the very rare cases where cos(theta << 206 // Sample t 127 // print some debugging information via a << 207 // 128 // using the default algorithm << 208 if(gtype == fQElastic) { 129 #ifdef G4VERBOSE << 209 if (verboseLevel >1) { 130 if(nwarn < 2) { << 210 G4cout << "G4HadronElastic: Z= " << Z << " N= " << N << " pdg= " << projPDG 131 G4ExceptionDescription ed; << 211 << " mom(GeV)= " << plab/GeV<<", pC="<<pCManager<<", nC="<<nCManager<<G4endl; 132 ed << GetModelName() << " wrong sampling << 212 } 133 << " for " << aParticle->GetDefinition()->G << 213 if(Z == 1 && N == 2) N = 1; 134 << " ekin=" << ekin << " MeV" << 214 else if(Z == 2 && N == 1) N = 2; 135 << " off (Z,A)=(" << Z << "," << A << ") - << 215 G4double cs = 0.; 136 G4Exception( "G4HadronElastic::ApplyYour << 216 if (projPDG==2212) cs = pCManager->GetCrossSection(false,plab,Z,N,projPDG); 137 ++nwarn; << 217 else if(projPDG==2112) cs = nCManager->GetCrossSection(false,plab,Z,N,projPDG); >> 218 >> 219 // check if cross section is reasonable >> 220 if(cs > 0.0) >> 221 { >> 222 if (projPDG==2212) t = pCManager->GetExchangeT(Z,N,projPDG); >> 223 else if(projPDG==2112) t = nCManager->GetExchangeT(Z,N,projPDG); 138 } 224 } 139 #endif << 225 else if(plab > plabLowLimit) gtype = fLElastic; 140 t = G4HadronElastic::SampleInvariantT(theP << 226 else gtype = fSWave; 141 } 227 } 142 228 143 G4double phi = G4UniformRand()*CLHEP::twopi << 229 if(gtype == fLElastic) { 144 G4double cost = 1. - 2.0*t/pLocalTmax; << 230 G4double g2 = GeV*GeV; >> 231 t = g2*SampleT(tmax/g2,m1,m2, A); >> 232 } >> 233 >> 234 // use mean atomic number >> 235 if(gtype == fHElastic) { >> 236 t = hElastic->SampleT(theParticle,plab, Z, A); >> 237 } 145 238 146 if (cost > 1.0) { cost = 1.0; } << 239 if(gtype == fSWave) t = G4UniformRand()*tmax; 147 else if(cost < -1.0) { cost = -1.0; } << 148 240 149 G4double sint = std::sqrt((1.0-cost)*(1.0+co << 241 if(verboseLevel>1) { >> 242 G4cout <<"type= " << gtype <<" t= " << t << " tmax= " << tmax >> 243 << " ptot= " << ptot << G4endl; >> 244 } >> 245 // Sampling in CM system >> 246 G4double phi = G4UniformRand()*twopi; >> 247 G4double cost = 1. - 2.0*t/tmax; >> 248 G4double sint; >> 249 >> 250 // problem in sampling >> 251 if(cost > 1.0 || cost < -1.0) { >> 252 if(verboseLevel > 0) { >> 253 G4cout << "G4HadronElastic:WARNING: Z= " << Z << " N= " >> 254 << N << " " << aParticle->GetDefinition()->GetParticleName() >> 255 << " mom(GeV)= " << plab/GeV >> 256 << " the model type " << gtype; >> 257 if(gtype == fQElastic) G4cout << " CHIPS "; >> 258 else if(gtype == fLElastic) G4cout << " LElastic "; >> 259 else if(gtype == fHElastic) G4cout << " HElastic "; >> 260 G4cout << " cost= " << cost >> 261 << G4endl; >> 262 } >> 263 cost = 1.0; >> 264 sint = 0.0; 150 265 >> 266 // normal situation >> 267 } else { >> 268 sint = std::sqrt((1.0-cost)*(1.0+cost)); >> 269 } 151 if (verboseLevel>1) { 270 if (verboseLevel>1) { 152 G4cout << " t= " << t << " tmax(GeV^2)= " << 271 G4cout << "cos(t)=" << cost << " std::sin(t)=" << sint << G4endl; 153 << " Pcms(GeV)= " << momentumCMS/GeV << " << 272 } 154 << " sin(t)=" << sint << G4endl; << 273 G4ThreeVector v1(sint*std::cos(phi),sint*std::sin(phi),cost); 155 } << 274 v1 *= ptot; 156 G4LorentzVector nlv1(momentumCMS*sint*std::c << 275 G4LorentzVector nlv1(v1.x(),v1.y(),v1.z(),std::sqrt(ptot*ptot + m1*m1)); 157 momentumCMS*sint*std::sin(phi), << 158 momentumCMS*cost, << 159 std::sqrt(momentumCMS*momentumCMS + << 160 276 161 nlv1.boost(bst); 277 nlv1.boost(bst); 162 278 163 G4double eFinal = nlv1.e() - m1; 279 G4double eFinal = nlv1.e() - m1; 164 if (verboseLevel > 1) { 280 if (verboseLevel > 1) { 165 G4cout <<"G4HadronElastic: m= " << m1 << " << 281 G4cout << "Scattered: " 166 << " 4-M Final: " << nlv1 << 282 << nlv1<<" m= " << m1 << " ekin(MeV)= " << eFinal 167 << G4endl; << 283 << " Proj: 4-mom " << lv1 168 } << 284 <<G4endl; 169 << 285 } 170 if(eFinal <= 0.0) { << 286 if(eFinal <= lowestEnergyLimit) { 171 theParticleChange.SetMomentumChange(0.0,0. << 287 if(eFinal < 0.0 && verboseLevel > 0) { >> 288 G4cout << "G4HadronElastic WARNING ekin= " << eFinal >> 289 << " after scattering of " >> 290 << aParticle->GetDefinition()->GetParticleName() >> 291 << " p(GeV/c)= " << plab >> 292 << " on " << theDef->GetParticleName() >> 293 << G4endl; >> 294 } 172 theParticleChange.SetEnergyChange(0.0); 295 theParticleChange.SetEnergyChange(0.0); >> 296 nlv1 = G4LorentzVector(0.0,0.0,0.0,m1); >> 297 173 } else { 298 } else { 174 theParticleChange.SetMomentumChange(nlv1.v 299 theParticleChange.SetMomentumChange(nlv1.vect().unit()); 175 theParticleChange.SetEnergyChange(eFinal); 300 theParticleChange.SetEnergyChange(eFinal); 176 } << 301 } 177 lv -= nlv1; << 302 178 G4double erec = std::max(lv.e() - mass2, 0. << 303 G4LorentzVector nlv0 = lv - nlv1; >> 304 G4double erec = nlv0.e() - m2; 179 if (verboseLevel > 1) { 305 if (verboseLevel > 1) { 180 G4cout << "Recoil: " <<" m= " << mass2 << << 306 G4cout << "Recoil: " 181 << " 4-mom: " << lv << 307 << nlv0<<" m= " << m2 << " ekin(MeV)= " << erec 182 << G4endl; << 308 <<G4endl; 183 } << 309 } 184 << 310 if(erec > lowEnergyRecoilLimit) { 185 // the recoil is created if kinetic energy a << 311 G4DynamicParticle * aSec = new G4DynamicParticle(theDef, nlv0); 186 if(erec > GetRecoilEnergyThreshold()) { << 312 theParticleChange.AddSecondary(aSec); 187 G4ParticleDefinition * theDef = nullptr; << 188 if(Z == 1 && A == 1) { theDef = theP << 189 else if (Z == 1 && A == 2) { theDef = theD << 190 else if (Z == 1 && A == 3) { theDef = G4Tr << 191 else if (Z == 2 && A == 3) { theDef = G4He << 192 else if (Z == 2 && A == 4) { theDef = theA << 193 else { << 194 theDef = << 195 G4ParticleTable::GetParticleTable()->GetIonT << 196 } << 197 G4DynamicParticle * aSec = new G4DynamicPa << 198 theParticleChange.AddSecondary(aSec, secID << 199 } else { 313 } else { >> 314 if(erec < 0.0) erec = 0.0; 200 theParticleChange.SetLocalEnergyDeposit(er 315 theParticleChange.SetLocalEnergyDeposit(erec); 201 } 316 } 202 317 203 return &theParticleChange; 318 return &theParticleChange; 204 } 319 } 205 320 206 // sample momentum transfer in the CMS system << 207 G4double 321 G4double 208 G4HadronElastic::SampleInvariantT(const G4Part << 322 G4HadronElastic::SampleT(G4double tmax, G4double, G4double, G4double atno2) 209 G4double mom, G4int, G4int A) << 210 { 323 { 211 const G4double plabLowLimit = 400.0*CLHEP::M << 324 // G4cout << "Entering elastic scattering 2"<<G4endl; 212 const G4double GeV2 = GeV*GeV; << 325 // Compute the direction of elastic scattering. 213 const G4double z07in13 = std::pow(0.7, 0.333 << 326 // It is planned to replace this code with a method based on 214 const G4double numLimit = 18.; << 327 // parameterized functions and a Monte Carlo method to invert the CDF. 215 << 328 216 G4int pdg = std::abs(part->GetPDGEncoding()) << 329 // G4double ran = G4UniformRand(); 217 G4double tmax = pLocalTmax/GeV2; << 330 G4double aa, bb, cc, dd, rr; 218 << 331 if (atno2 <= 62.) { 219 G4double aa, bb, cc, dd; << 332 aa = std::pow(atno2, 1.63); 220 G4Pow* g4pow = G4Pow::GetInstance(); << 333 bb = 14.5*std::pow(atno2, 0.66); 221 if (A <= 62) { << 334 cc = 1.4*std::pow(atno2, 0.33); 222 if (pdg == 211){ //Pions << 335 dd = 10.; 223 if(mom >= plabLowLimit){ //High ener << 336 } else { 224 bb = 14.5*g4pow->Z23(A);/*14.5*/ << 337 aa = std::pow(atno2, 1.33); 225 dd = 10.; << 338 bb = 60.*std::pow(atno2, 0.33); 226 cc = 0.075*g4pow->Z13(A)/dd;//1.4 << 339 cc = 0.4*std::pow(atno2, 0.40); 227 //aa = g4pow->powZ(A, 1.93)/bb;//1.63 << 340 dd = 10.; 228 aa = (A*A)/bb;//1.63 << 341 } 229 } else { //Low ene << 342 aa = aa/bb; 230 bb = 29.*z07in13*z07in13*g4pow->Z23(A); << 343 cc = cc/dd; 231 dd = 15.; << 344 G4double ran, t1, t2; 232 cc = 0.04*g4pow->Z13(A)/dd;//1.4 << 345 do { 233 aa = g4pow->powZ(A, 1.63)/bb;//1.63 << 346 ran = G4UniformRand(); 234 } << 347 t1 = -std::log(ran)/bb; 235 } else { //Other particles << 348 t2 = -std::log(ran)/dd; 236 bb = 14.5*g4pow->Z23(A); << 349 } while(t1 > tmax || t2 > tmax); 237 dd = 20.; << 350 238 aa = (A*A)/bb;//1.63 << 351 rr = (aa + cc)*ran; 239 cc = 1.4*g4pow->Z13(A)/dd; << 352 240 } << 353 if (verboseLevel > 1) { 241 //=========================== << 354 G4cout << "DoIt: aa,bb,cc,dd,rr" << G4endl; 242 } else { //(A>62) << 355 G4cout << aa << " " << bb << " " << cc << " " << dd << " " << rr << G4endl; 243 if (pdg == 211) { << 356 G4cout << "t1,Fctcos " << t1 << " " << Fctcos(t1, aa, bb, cc, dd, rr) << G4endl; 244 if(mom >= plabLowLimit){ //high << 357 G4cout << "t2,Fctcos " << t2 << " " << Fctcos(t2, aa, bb, cc, dd, rr) << G4endl; 245 bb = 60.*z07in13*g4pow->Z13(A);//60 << 358 } 246 dd = 30.; << 359 G4double eps = 0.001; 247 aa = 0.5*(A*A)/bb;//1.33 << 360 G4int ind1 = 10; 248 cc = 4.*g4pow->powZ(A,0.4)/dd;//1:0.4 -- << 361 G4double t = 0.0; 249 } else { //low << 362 G4int ier1; 250 bb = 120.*z07in13*g4pow->Z13(A);//60 << 363 ier1 = Rtmi(&t, t1, t2, eps, ind1, 251 dd = 30.; << 364 aa, bb, cc, dd, rr); 252 aa = 2.*g4pow->powZ(A,1.33)/bb; << 365 if (verboseLevel > 1) { 253 cc = 4.*g4pow->powZ(A,0.4)/dd;//1:0.4 -- << 366 G4cout << "From Rtmi, ier1=" << ier1 << " t= " << t << G4endl; 254 } << 367 G4cout << "t, Fctcos " << t << " " << Fctcos(t, aa, bb, cc, dd, rr) << G4endl; 255 } else { << 256 bb = 60.*g4pow->Z13(A); << 257 dd = 25.; << 258 aa = g4pow->powZ(A,1.33)/bb;//1.33 << 259 cc = 0.2*g4pow->powZ(A,0.4)/dd;//1:0.4 << 260 } << 261 } 368 } 262 G4double q1 = 1.0 - G4Exp(-std::min(bb*tmax, << 369 if (ier1 != 0) t = 0.25*(3.*t1 + t2); 263 G4double q2 = 1.0 - G4Exp(-std::min(dd*tmax, << 370 if (verboseLevel > 1) { 264 G4double s1 = q1*aa; << 371 G4cout << "t, Fctcos " << t << " " << Fctcos(t, aa, bb, cc, dd, rr) << 265 G4double s2 = q2*cc; << 372 G4endl; 266 if((s1 + s2)*G4UniformRand() < s2) { << 267 q1 = q2; << 268 bb = dd; << 269 } 373 } 270 return -GeV2*G4Log(1.0 - G4UniformRand()*q1) << 374 return t; 271 } 375 } 272 376 273 ////////////////////////////////////////////// << 377 // The following is a "translation" of a root-finding routine 274 // << 378 // from GEANT3.21/GHEISHA. Some of the labelled block structure has 275 // Cofs for s-,c-,b-particles ds/dt slopes << 379 // been retained for clarity. This routine will not be needed after 276 << 380 // the planned revisions to DoIt(). 277 G4double G4HadronElastic::GetSlopeCof(const G4 << 381 >> 382 G4int >> 383 G4HadronElastic::Rtmi(G4double* x, G4double xli, G4double xri, G4double eps, >> 384 G4int iend, >> 385 G4double aa, G4double bb, G4double cc, G4double dd, >> 386 G4double rr) 278 { 387 { 279 // The input parameter "pdg" should be the a << 388 G4int ier = 0; 280 // (i.e. the same value for a particle and i << 389 G4double xl = xli; 281 << 390 G4double xr = xri; 282 G4double coeff = 1.0; << 391 *x = xl; >> 392 G4double tol = *x; >> 393 G4double f = Fctcos(tol, aa, bb, cc, dd, rr); >> 394 if (f == 0.) return ier; >> 395 G4double fl, fr; >> 396 fl = f; >> 397 *x = xr; >> 398 tol = *x; >> 399 f = Fctcos(tol, aa, bb, cc, dd, rr); >> 400 if (f == 0.) return ier; >> 401 fr = f; >> 402 >> 403 // Error return in case of wrong input data >> 404 if (fl*fr >= 0.) { >> 405 ier = 2; >> 406 return ier; >> 407 } >> 408 >> 409 // Basic assumption fl*fr less than 0 is satisfied. >> 410 // Generate tolerance for function values. >> 411 G4int i = 0; >> 412 G4double tolf = 100.*eps; >> 413 >> 414 // Start iteration loop >> 415 label4: >> 416 i++; >> 417 >> 418 // Start bisection loop >> 419 for (G4int k = 1; k <= iend; k++) { >> 420 *x = 0.5*(xl + xr); >> 421 tol = *x; >> 422 f = Fctcos(tol, aa, bb, cc, dd, rr); >> 423 if (f == 0.) return 0; >> 424 if (f*fr < 0.) { // Interchange xl and xr in order to get the >> 425 tol = xl; // same Sign in f and fr >> 426 xl = xr; >> 427 xr = tol; >> 428 tol = fl; >> 429 fl = fr; >> 430 fr = tol; >> 431 } >> 432 tol = f - fl; >> 433 G4double a = f*tol; >> 434 a = a + a; >> 435 if (a < fr*(fr - fl) && i <= iend) goto label17; >> 436 xr = *x; >> 437 fr = f; >> 438 >> 439 // Test on satisfactory accuracy in bisection loop >> 440 tol = eps; >> 441 a = std::abs(xr); >> 442 if (a > 1.) tol = tol*a; >> 443 if (std::abs(xr - xl) <= tol && std::abs(fr - fl) <= tolf) goto label14; >> 444 } >> 445 // End of bisection loop >> 446 >> 447 // No convergence after iend iteration steps followed by iend >> 448 // successive steps of bisection or steadily increasing function >> 449 // values at right bounds. Error return. >> 450 ier = 1; >> 451 >> 452 label14: >> 453 if (std::abs(fr) > std::abs(fl)) { >> 454 *x = xl; >> 455 f = fl; >> 456 } >> 457 return ier; >> 458 >> 459 // Computation of iterated x-value by inverse parabolic interp >> 460 label17: >> 461 G4double a = fr - f; >> 462 G4double dx = (*x - xl)*fl*(1. + f*(a - tol)/(a*(fr - fl)))/tol; >> 463 G4double xm = *x; >> 464 G4double fm = f; >> 465 *x = xl - dx; >> 466 tol = *x; >> 467 f = Fctcos(tol, aa, bb, cc, dd, rr); >> 468 if (f == 0.) return ier; >> 469 >> 470 // Test on satisfactory accuracy in iteration loop >> 471 tol = eps; >> 472 a = std::abs(*x); >> 473 if (a > 1) tol = tol*a; >> 474 if (std::abs(dx) <= tol && std::abs(f) <= tolf) return ier; >> 475 >> 476 // Preparation of next bisection loop >> 477 if (f*fl < 0.) { >> 478 xr = *x; >> 479 fr = f; >> 480 } >> 481 else { >> 482 xl = *x; >> 483 fl = f; >> 484 xr = xm; >> 485 fr = fm; >> 486 } >> 487 goto label4; >> 488 } 283 489 284 // heavy barions << 490 // Test function for root-finder >> 491 G4double >> 492 G4HadronElastic::Fctcos(G4double t, >> 493 G4double aa, G4double bb, G4double cc, G4double dd, >> 494 G4double rr) >> 495 { >> 496 const G4double expxl = -82.; >> 497 const G4double expxu = 82.; 285 498 286 static const G4double lBarCof1S = 0.88; << 499 G4double test1 = -bb*t; 287 static const G4double lBarCof2S = 0.76; << 500 if (test1 > expxu) test1 = expxu; 288 static const G4double lBarCof3S = 0.64; << 501 if (test1 < expxl) test1 = expxl; 289 static const G4double lBarCof1C = 0.784378 << 502 290 static const G4double lBarCofSC = 0.664378 << 503 G4double test2 = -dd*t; 291 static const G4double lBarCof2SC = 0.544378 << 504 if (test2 > expxu) test2 = expxu; 292 static const G4double lBarCof1B = 0.740659 << 505 if (test2 < expxl) test2 = expxl; 293 static const G4double lBarCofSB = 0.620659 << 294 static const G4double lBarCof2SB = 0.500659 << 295 << 296 if( pdg == 3122 || pdg == 3222 || pdg == 31 << 297 { << 298 coeff = lBarCof1S; // Lambda, Sigma+, Sigm << 299 506 300 } else if( pdg == 3322 || pdg == 3312 ) << 507 return aa*std::exp(test1) + cc*std::exp(test2) - rr; 301 { << 302 coeff = lBarCof2S; // Xi-, Xi0 << 303 } << 304 else if( pdg == 3324) << 305 { << 306 coeff = lBarCof3S; // Omega << 307 } << 308 else if( pdg == 4122 || pdg == 4212 || pd << 309 { << 310 coeff = lBarCof1C; // LambdaC+, SigmaC+, S << 311 } << 312 else if( pdg == 4332 ) << 313 { << 314 coeff = lBarCof2SC; // OmegaC << 315 } << 316 else if( pdg == 4232 || pdg == 4132 ) << 317 { << 318 coeff = lBarCofSC; // XiC+, XiC0 << 319 } << 320 else if( pdg == 5122 || pdg == 5222 || pdg = << 321 { << 322 coeff = lBarCof1B; // LambdaB, SigmaB+, Si << 323 } << 324 else if( pdg == 5332 ) << 325 { << 326 coeff = lBarCof2SB; // OmegaB- << 327 } << 328 else if( pdg == 5132 || pdg == 5232 ) // XiB << 329 { << 330 coeff = lBarCofSB; << 331 } << 332 // heavy mesons Kaons? << 333 static const G4double lMesCof1S = 0.82; // K << 334 static const G4double llMesCof1C = 0.676568; << 335 static const G4double llMesCof1B = 0.610989; << 336 static const G4double llMesCof2C = 0.353135; << 337 static const G4double llMesCof2B = 0.221978; << 338 static const G4double llMesCofSC = 0.496568; << 339 static const G4double llMesCofSB = 0.430989; << 340 static const G4double llMesCofCB = 0.287557; << 341 static const G4double llMesCofEtaP = 0.88; << 342 static const G4double llMesCofEta = 0.76; << 343 << 344 if( pdg == 321 || pdg == 311 || pdg == 310 ) << 345 { << 346 coeff = lMesCof1S; //K+-0 << 347 } << 348 else if( pdg == 511 || pdg == 521 ) << 349 { << 350 coeff = llMesCof1B; // BMeson0, BMeson+ << 351 } << 352 else if(pdg == 421 || pdg == 411 ) << 353 { << 354 coeff = llMesCof1C; // DMeson+, DMeson0 << 355 } << 356 else if( pdg == 531 ) << 357 { << 358 coeff = llMesCofSB; // BSMeson0 << 359 } << 360 else if( pdg == 541 ) << 361 { << 362 coeff = llMesCofCB; // BCMeson+- << 363 } << 364 else if(pdg == 431 ) << 365 { << 366 coeff = llMesCofSC; // DSMeson+- << 367 } << 368 else if(pdg == 441 || pdg == 443 ) << 369 { << 370 coeff = llMesCof2C; // Etac, JPsi << 371 } << 372 else if(pdg == 553 ) << 373 { << 374 coeff = llMesCof2B; // Upsilon << 375 } << 376 else if(pdg == 221 ) << 377 { << 378 coeff = llMesCofEta; // Eta << 379 } << 380 else if(pdg == 331 ) << 381 { << 382 coeff = llMesCofEtaP; // Eta' << 383 } << 384 return coeff; << 385 } 508 } 386 509 387 510 388 511