Geant4 Cross Reference |
1 // 1 2 // ******************************************* 3 // * License and Disclaimer 4 // * 5 // * The Geant4 software is copyright of th 6 // * the Geant4 Collaboration. It is provided 7 // * conditions of the Geant4 Software License 8 // * LICENSE and available at http://cern.ch/ 9 // * include a list of copyright holders. 10 // * 11 // * Neither the authors of this software syst 12 // * institutes,nor the agencies providing fin 13 // * work make any representation or warran 14 // * regarding this software system or assum 15 // * use. Please see the license in the file 16 // * for the full disclaimer and the limitatio 17 // * 18 // * This code implementation is the result 19 // * technical work of the GEANT4 collaboratio 20 // * By using, copying, modifying or distri 21 // * any work based on the software) you ag 22 // * use in resulting scientific publicati 23 // * acceptance of all terms of the Geant4 Sof 24 // ******************************************* 25 // 26 // 27 // Geant4 Header : G4HadronElastic 28 // 29 // Author : V.Ivanchenko 29 June 2009 (redesig 30 // 31 32 #include "G4HadronElastic.hh" 33 #include "G4SystemOfUnits.hh" 34 #include "G4ParticleTable.hh" 35 #include "G4ParticleDefinition.hh" 36 #include "G4IonTable.hh" 37 #include "Randomize.hh" 38 #include "G4Proton.hh" 39 #include "G4Neutron.hh" 40 #include "G4Deuteron.hh" 41 #include "G4Alpha.hh" 42 #include "G4Pow.hh" 43 #include "G4Exp.hh" 44 #include "G4Log.hh" 45 #include "G4HadronicParameters.hh" 46 #include "G4PhysicsModelCatalog.hh" 47 48 49 G4HadronElastic::G4HadronElastic(const G4Strin 50 : G4HadronicInteraction(name), secID(-1) 51 { 52 SetMinEnergy( 0.0*GeV ); 53 SetMaxEnergy( G4HadronicParameters::Instance 54 lowestEnergyLimit= 1.e-6*eV; 55 pLocalTmax = 0.0; 56 nwarn = 0; 57 58 theProton = G4Proton::Proton(); 59 theNeutron = G4Neutron::Neutron(); 60 theDeuteron = G4Deuteron::Deuteron(); 61 theAlpha = G4Alpha::Alpha(); 62 63 secID = G4PhysicsModelCatalog::GetModelID( " 64 } 65 66 G4HadronElastic::~G4HadronElastic() 67 {} 68 69 70 void G4HadronElastic::ModelDescription(std::os 71 { 72 outFile << "G4HadronElastic is the base clas 73 << "elastic scattering models except 74 << "By default it uses the Gheisha t 75 << "transfer parameterization. The model 76 << "as opposed to the original Gheisha mod 77 << "This model may be used for all long-li 78 << "incident energies but fit the data onl 79 } 80 81 G4HadFinalState* G4HadronElastic::ApplyYoursel 82 const G4HadProjectile& aTrack, G4Nucleus& 83 { 84 theParticleChange.Clear(); 85 86 const G4HadProjectile* aParticle = &aTrack; 87 G4double ekin = aParticle->GetKineticEnergy( 88 89 // no scattering below the limit 90 if(ekin <= lowestEnergyLimit) { 91 theParticleChange.SetEnergyChange(ekin); 92 theParticleChange.SetMomentumChange(0.,0., 93 return &theParticleChange; 94 } 95 96 G4int A = targetNucleus.GetA_asInt(); 97 G4int Z = targetNucleus.GetZ_asInt(); 98 99 // Scattered particle referred to axis of in 100 const G4ParticleDefinition* theParticle = aP 101 G4double m1 = theParticle->GetPDGMass(); 102 G4double plab = std::sqrt(ekin*(ekin + 2.0*m 103 104 if (verboseLevel>1) { 105 G4cout << "G4HadronElastic: " 106 << aParticle->GetDefinition()->GetParticl 107 << " Plab(GeV/c)= " << plab/GeV 108 << " Ekin(MeV) = " << ekin/MeV 109 << " scattered off Z= " << Z 110 << " A= " << A 111 << G4endl; 112 } 113 114 G4double mass2 = G4NucleiProperties::GetNucl 115 G4double e1 = m1 + ekin; 116 G4LorentzVector lv(0.0,0.0,plab,e1+mass2); 117 G4ThreeVector bst = lv.boostVector(); 118 G4double momentumCMS = plab*mass2/std::sqrt( 119 120 pLocalTmax = 4.0*momentumCMS*momentumCMS; 121 122 // Sampling in CM system 123 G4double t = SampleInvariantT(theParticle, p 124 125 if(t < 0.0 || t > pLocalTmax) { 126 // For the very rare cases where cos(theta 127 // print some debugging information via a 128 // using the default algorithm 129 #ifdef G4VERBOSE 130 if(nwarn < 2) { 131 G4ExceptionDescription ed; 132 ed << GetModelName() << " wrong sampling 133 << " for " << aParticle->GetDefinition()->G 134 << " ekin=" << ekin << " MeV" 135 << " off (Z,A)=(" << Z << "," << A << ") - 136 G4Exception( "G4HadronElastic::ApplyYour 137 ++nwarn; 138 } 139 #endif 140 t = G4HadronElastic::SampleInvariantT(theP 141 } 142 143 G4double phi = G4UniformRand()*CLHEP::twopi 144 G4double cost = 1. - 2.0*t/pLocalTmax; 145 146 if (cost > 1.0) { cost = 1.0; } 147 else if(cost < -1.0) { cost = -1.0; } 148 149 G4double sint = std::sqrt((1.0-cost)*(1.0+co 150 151 if (verboseLevel>1) { 152 G4cout << " t= " << t << " tmax(GeV^2)= " 153 << " Pcms(GeV)= " << momentumCMS/GeV << " 154 << " sin(t)=" << sint << G4endl; 155 } 156 G4LorentzVector nlv1(momentumCMS*sint*std::c 157 momentumCMS*sint*std::sin(phi), 158 momentumCMS*cost, 159 std::sqrt(momentumCMS*momentumCMS + 160 161 nlv1.boost(bst); 162 163 G4double eFinal = nlv1.e() - m1; 164 if (verboseLevel > 1) { 165 G4cout <<"G4HadronElastic: m= " << m1 << " 166 << " 4-M Final: " << nlv1 167 << G4endl; 168 } 169 170 if(eFinal <= 0.0) { 171 theParticleChange.SetMomentumChange(0.0,0. 172 theParticleChange.SetEnergyChange(0.0); 173 } else { 174 theParticleChange.SetMomentumChange(nlv1.v 175 theParticleChange.SetEnergyChange(eFinal); 176 } 177 lv -= nlv1; 178 G4double erec = std::max(lv.e() - mass2, 0. 179 if (verboseLevel > 1) { 180 G4cout << "Recoil: " <<" m= " << mass2 << 181 << " 4-mom: " << lv 182 << G4endl; 183 } 184 185 // the recoil is created if kinetic energy a 186 if(erec > GetRecoilEnergyThreshold()) { 187 G4ParticleDefinition * theDef = nullptr; 188 if(Z == 1 && A == 1) { theDef = theP 189 else if (Z == 1 && A == 2) { theDef = theD 190 else if (Z == 1 && A == 3) { theDef = G4Tr 191 else if (Z == 2 && A == 3) { theDef = G4He 192 else if (Z == 2 && A == 4) { theDef = theA 193 else { 194 theDef = 195 G4ParticleTable::GetParticleTable()->GetIonT 196 } 197 G4DynamicParticle * aSec = new G4DynamicPa 198 theParticleChange.AddSecondary(aSec, secID 199 } else { 200 theParticleChange.SetLocalEnergyDeposit(er 201 } 202 203 return &theParticleChange; 204 } 205 206 // sample momentum transfer in the CMS system 207 G4double 208 G4HadronElastic::SampleInvariantT(const G4Part 209 G4double mom, G4int, G4int A) 210 { 211 const G4double plabLowLimit = 400.0*CLHEP::M 212 const G4double GeV2 = GeV*GeV; 213 const G4double z07in13 = std::pow(0.7, 0.333 214 const G4double numLimit = 18.; 215 216 G4int pdg = std::abs(part->GetPDGEncoding()) 217 G4double tmax = pLocalTmax/GeV2; 218 219 G4double aa, bb, cc, dd; 220 G4Pow* g4pow = G4Pow::GetInstance(); 221 if (A <= 62) { 222 if (pdg == 211){ //Pions 223 if(mom >= plabLowLimit){ //High ener 224 bb = 14.5*g4pow->Z23(A);/*14.5*/ 225 dd = 10.; 226 cc = 0.075*g4pow->Z13(A)/dd;//1.4 227 //aa = g4pow->powZ(A, 1.93)/bb;//1.63 228 aa = (A*A)/bb;//1.63 229 } else { //Low ene 230 bb = 29.*z07in13*z07in13*g4pow->Z23(A); 231 dd = 15.; 232 cc = 0.04*g4pow->Z13(A)/dd;//1.4 233 aa = g4pow->powZ(A, 1.63)/bb;//1.63 234 } 235 } else { //Other particles 236 bb = 14.5*g4pow->Z23(A); 237 dd = 20.; 238 aa = (A*A)/bb;//1.63 239 cc = 1.4*g4pow->Z13(A)/dd; 240 } 241 //=========================== 242 } else { //(A>62) 243 if (pdg == 211) { 244 if(mom >= plabLowLimit){ //high 245 bb = 60.*z07in13*g4pow->Z13(A);//60 246 dd = 30.; 247 aa = 0.5*(A*A)/bb;//1.33 248 cc = 4.*g4pow->powZ(A,0.4)/dd;//1:0.4 -- 249 } else { //low 250 bb = 120.*z07in13*g4pow->Z13(A);//60 251 dd = 30.; 252 aa = 2.*g4pow->powZ(A,1.33)/bb; 253 cc = 4.*g4pow->powZ(A,0.4)/dd;//1:0.4 -- 254 } 255 } else { 256 bb = 60.*g4pow->Z13(A); 257 dd = 25.; 258 aa = g4pow->powZ(A,1.33)/bb;//1.33 259 cc = 0.2*g4pow->powZ(A,0.4)/dd;//1:0.4 260 } 261 } 262 G4double q1 = 1.0 - G4Exp(-std::min(bb*tmax, 263 G4double q2 = 1.0 - G4Exp(-std::min(dd*tmax, 264 G4double s1 = q1*aa; 265 G4double s2 = q2*cc; 266 if((s1 + s2)*G4UniformRand() < s2) { 267 q1 = q2; 268 bb = dd; 269 } 270 return -GeV2*G4Log(1.0 - G4UniformRand()*q1) 271 } 272 273 ////////////////////////////////////////////// 274 // 275 // Cofs for s-,c-,b-particles ds/dt slopes 276 277 G4double G4HadronElastic::GetSlopeCof(const G4 278 { 279 // The input parameter "pdg" should be the a 280 // (i.e. the same value for a particle and i 281 282 G4double coeff = 1.0; 283 284 // heavy barions 285 286 static const G4double lBarCof1S = 0.88; 287 static const G4double lBarCof2S = 0.76; 288 static const G4double lBarCof3S = 0.64; 289 static const G4double lBarCof1C = 0.784378 290 static const G4double lBarCofSC = 0.664378 291 static const G4double lBarCof2SC = 0.544378 292 static const G4double lBarCof1B = 0.740659 293 static const G4double lBarCofSB = 0.620659 294 static const G4double lBarCof2SB = 0.500659 295 296 if( pdg == 3122 || pdg == 3222 || pdg == 31 297 { 298 coeff = lBarCof1S; // Lambda, Sigma+, Sigm 299 300 } else if( pdg == 3322 || pdg == 3312 ) 301 { 302 coeff = lBarCof2S; // Xi-, Xi0 303 } 304 else if( pdg == 3324) 305 { 306 coeff = lBarCof3S; // Omega 307 } 308 else if( pdg == 4122 || pdg == 4212 || pd 309 { 310 coeff = lBarCof1C; // LambdaC+, SigmaC+, S 311 } 312 else if( pdg == 4332 ) 313 { 314 coeff = lBarCof2SC; // OmegaC 315 } 316 else if( pdg == 4232 || pdg == 4132 ) 317 { 318 coeff = lBarCofSC; // XiC+, XiC0 319 } 320 else if( pdg == 5122 || pdg == 5222 || pdg = 321 { 322 coeff = lBarCof1B; // LambdaB, SigmaB+, Si 323 } 324 else if( pdg == 5332 ) 325 { 326 coeff = lBarCof2SB; // OmegaB- 327 } 328 else if( pdg == 5132 || pdg == 5232 ) // XiB 329 { 330 coeff = lBarCofSB; 331 } 332 // heavy mesons Kaons? 333 static const G4double lMesCof1S = 0.82; // K 334 static const G4double llMesCof1C = 0.676568; 335 static const G4double llMesCof1B = 0.610989; 336 static const G4double llMesCof2C = 0.353135; 337 static const G4double llMesCof2B = 0.221978; 338 static const G4double llMesCofSC = 0.496568; 339 static const G4double llMesCofSB = 0.430989; 340 static const G4double llMesCofCB = 0.287557; 341 static const G4double llMesCofEtaP = 0.88; 342 static const G4double llMesCofEta = 0.76; 343 344 if( pdg == 321 || pdg == 311 || pdg == 310 ) 345 { 346 coeff = lMesCof1S; //K+-0 347 } 348 else if( pdg == 511 || pdg == 521 ) 349 { 350 coeff = llMesCof1B; // BMeson0, BMeson+ 351 } 352 else if(pdg == 421 || pdg == 411 ) 353 { 354 coeff = llMesCof1C; // DMeson+, DMeson0 355 } 356 else if( pdg == 531 ) 357 { 358 coeff = llMesCofSB; // BSMeson0 359 } 360 else if( pdg == 541 ) 361 { 362 coeff = llMesCofCB; // BCMeson+- 363 } 364 else if(pdg == 431 ) 365 { 366 coeff = llMesCofSC; // DSMeson+- 367 } 368 else if(pdg == 441 || pdg == 443 ) 369 { 370 coeff = llMesCof2C; // Etac, JPsi 371 } 372 else if(pdg == 553 ) 373 { 374 coeff = llMesCof2B; // Upsilon 375 } 376 else if(pdg == 221 ) 377 { 378 coeff = llMesCofEta; // Eta 379 } 380 else if(pdg == 331 ) 381 { 382 coeff = llMesCofEtaP; // Eta' 383 } 384 return coeff; 385 } 386 387 388