Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // 27 // Geant4 Header : G4HadronElastic 27 // Geant4 Header : G4HadronElastic 28 // 28 // 29 // Author : V.Ivanchenko 29 June 2009 (redesig 29 // Author : V.Ivanchenko 29 June 2009 (redesign old elastic model) 30 // 30 // 31 31 32 #include "G4HadronElastic.hh" 32 #include "G4HadronElastic.hh" 33 #include "G4SystemOfUnits.hh" 33 #include "G4SystemOfUnits.hh" 34 #include "G4ParticleTable.hh" 34 #include "G4ParticleTable.hh" 35 #include "G4ParticleDefinition.hh" 35 #include "G4ParticleDefinition.hh" 36 #include "G4IonTable.hh" 36 #include "G4IonTable.hh" 37 #include "Randomize.hh" 37 #include "Randomize.hh" 38 #include "G4Proton.hh" 38 #include "G4Proton.hh" 39 #include "G4Neutron.hh" 39 #include "G4Neutron.hh" 40 #include "G4Deuteron.hh" 40 #include "G4Deuteron.hh" 41 #include "G4Alpha.hh" 41 #include "G4Alpha.hh" 42 #include "G4Pow.hh" 42 #include "G4Pow.hh" 43 #include "G4Exp.hh" 43 #include "G4Exp.hh" 44 #include "G4Log.hh" 44 #include "G4Log.hh" 45 #include "G4HadronicParameters.hh" 45 #include "G4HadronicParameters.hh" 46 #include "G4PhysicsModelCatalog.hh" << 47 46 48 47 49 G4HadronElastic::G4HadronElastic(const G4Strin 48 G4HadronElastic::G4HadronElastic(const G4String& name) 50 : G4HadronicInteraction(name), secID(-1) << 49 : G4HadronicInteraction(name) 51 { 50 { 52 SetMinEnergy( 0.0*GeV ); 51 SetMinEnergy( 0.0*GeV ); 53 SetMaxEnergy( G4HadronicParameters::Instance 52 SetMaxEnergy( G4HadronicParameters::Instance()->GetMaxEnergy() ); 54 lowestEnergyLimit= 1.e-6*eV; 53 lowestEnergyLimit= 1.e-6*eV; 55 pLocalTmax = 0.0; 54 pLocalTmax = 0.0; 56 nwarn = 0; 55 nwarn = 0; 57 56 58 theProton = G4Proton::Proton(); 57 theProton = G4Proton::Proton(); 59 theNeutron = G4Neutron::Neutron(); 58 theNeutron = G4Neutron::Neutron(); 60 theDeuteron = G4Deuteron::Deuteron(); 59 theDeuteron = G4Deuteron::Deuteron(); 61 theAlpha = G4Alpha::Alpha(); 60 theAlpha = G4Alpha::Alpha(); 62 << 63 secID = G4PhysicsModelCatalog::GetModelID( " << 64 } 61 } 65 62 66 G4HadronElastic::~G4HadronElastic() 63 G4HadronElastic::~G4HadronElastic() 67 {} 64 {} 68 65 69 66 70 void G4HadronElastic::ModelDescription(std::os 67 void G4HadronElastic::ModelDescription(std::ostream& outFile) const 71 { 68 { 72 outFile << "G4HadronElastic is the base clas 69 outFile << "G4HadronElastic is the base class for all hadron-nucleus\n" 73 << "elastic scattering models except 70 << "elastic scattering models except HP.\n" 74 << "By default it uses the Gheisha t 71 << "By default it uses the Gheisha two-exponential momentum\n" 75 << "transfer parameterization. The model 72 << "transfer parameterization. The model is fully relativistic\n" 76 << "as opposed to the original Gheisha mod 73 << "as opposed to the original Gheisha model which was not.\n" 77 << "This model may be used for all long-li 74 << "This model may be used for all long-lived hadrons at all\n" 78 << "incident energies but fit the data onl 75 << "incident energies but fit the data only for relativistic scattering.\n"; 79 } 76 } 80 77 81 G4HadFinalState* G4HadronElastic::ApplyYoursel 78 G4HadFinalState* G4HadronElastic::ApplyYourself( 82 const G4HadProjectile& aTrack, G4Nucleus& 79 const G4HadProjectile& aTrack, G4Nucleus& targetNucleus) 83 { 80 { 84 theParticleChange.Clear(); 81 theParticleChange.Clear(); 85 82 86 const G4HadProjectile* aParticle = &aTrack; 83 const G4HadProjectile* aParticle = &aTrack; 87 G4double ekin = aParticle->GetKineticEnergy( 84 G4double ekin = aParticle->GetKineticEnergy(); 88 85 89 // no scattering below the limit 86 // no scattering below the limit 90 if(ekin <= lowestEnergyLimit) { 87 if(ekin <= lowestEnergyLimit) { 91 theParticleChange.SetEnergyChange(ekin); 88 theParticleChange.SetEnergyChange(ekin); 92 theParticleChange.SetMomentumChange(0.,0., 89 theParticleChange.SetMomentumChange(0.,0.,1.); 93 return &theParticleChange; 90 return &theParticleChange; 94 } 91 } 95 92 96 G4int A = targetNucleus.GetA_asInt(); 93 G4int A = targetNucleus.GetA_asInt(); 97 G4int Z = targetNucleus.GetZ_asInt(); 94 G4int Z = targetNucleus.GetZ_asInt(); 98 95 99 // Scattered particle referred to axis of in 96 // Scattered particle referred to axis of incident particle 100 const G4ParticleDefinition* theParticle = aP 97 const G4ParticleDefinition* theParticle = aParticle->GetDefinition(); 101 G4double m1 = theParticle->GetPDGMass(); 98 G4double m1 = theParticle->GetPDGMass(); 102 G4double plab = std::sqrt(ekin*(ekin + 2.0*m 99 G4double plab = std::sqrt(ekin*(ekin + 2.0*m1)); 103 100 104 if (verboseLevel>1) { 101 if (verboseLevel>1) { 105 G4cout << "G4HadronElastic: " 102 G4cout << "G4HadronElastic: " 106 << aParticle->GetDefinition()->GetParticl 103 << aParticle->GetDefinition()->GetParticleName() 107 << " Plab(GeV/c)= " << plab/GeV 104 << " Plab(GeV/c)= " << plab/GeV 108 << " Ekin(MeV) = " << ekin/MeV 105 << " Ekin(MeV) = " << ekin/MeV 109 << " scattered off Z= " << Z 106 << " scattered off Z= " << Z 110 << " A= " << A 107 << " A= " << A 111 << G4endl; 108 << G4endl; 112 } 109 } 113 110 114 G4double mass2 = G4NucleiProperties::GetNucl 111 G4double mass2 = G4NucleiProperties::GetNuclearMass(A, Z); 115 G4double e1 = m1 + ekin; 112 G4double e1 = m1 + ekin; 116 G4LorentzVector lv(0.0,0.0,plab,e1+mass2); 113 G4LorentzVector lv(0.0,0.0,plab,e1+mass2); 117 G4ThreeVector bst = lv.boostVector(); 114 G4ThreeVector bst = lv.boostVector(); 118 G4double momentumCMS = plab*mass2/std::sqrt( 115 G4double momentumCMS = plab*mass2/std::sqrt(m1*m1 + mass2*mass2 + 2.*mass2*e1); 119 116 120 pLocalTmax = 4.0*momentumCMS*momentumCMS; 117 pLocalTmax = 4.0*momentumCMS*momentumCMS; 121 118 122 // Sampling in CM system 119 // Sampling in CM system 123 G4double t = SampleInvariantT(theParticle, p 120 G4double t = SampleInvariantT(theParticle, plab, Z, A); 124 121 125 if(t < 0.0 || t > pLocalTmax) { 122 if(t < 0.0 || t > pLocalTmax) { 126 // For the very rare cases where cos(theta 123 // For the very rare cases where cos(theta) is greater than 1 or smaller than -1, 127 // print some debugging information via a 124 // print some debugging information via a "JustWarning" exception, and resample 128 // using the default algorithm 125 // using the default algorithm 129 #ifdef G4VERBOSE 126 #ifdef G4VERBOSE 130 if(nwarn < 2) { 127 if(nwarn < 2) { 131 G4ExceptionDescription ed; 128 G4ExceptionDescription ed; 132 ed << GetModelName() << " wrong sampling 129 ed << GetModelName() << " wrong sampling t= " << t << " tmax= " << pLocalTmax 133 << " for " << aParticle->GetDefinition()->G 130 << " for " << aParticle->GetDefinition()->GetParticleName() 134 << " ekin=" << ekin << " MeV" 131 << " ekin=" << ekin << " MeV" 135 << " off (Z,A)=(" << Z << "," << A << ") - 132 << " off (Z,A)=(" << Z << "," << A << ") - will be resampled" << G4endl; 136 G4Exception( "G4HadronElastic::ApplyYour 133 G4Exception( "G4HadronElastic::ApplyYourself", "hadEla001", JustWarning, ed); 137 ++nwarn; 134 ++nwarn; 138 } 135 } 139 #endif 136 #endif 140 t = G4HadronElastic::SampleInvariantT(theP 137 t = G4HadronElastic::SampleInvariantT(theParticle, plab, Z, A); 141 } 138 } 142 139 143 G4double phi = G4UniformRand()*CLHEP::twopi 140 G4double phi = G4UniformRand()*CLHEP::twopi; 144 G4double cost = 1. - 2.0*t/pLocalTmax; 141 G4double cost = 1. - 2.0*t/pLocalTmax; 145 142 146 if (cost > 1.0) { cost = 1.0; } 143 if (cost > 1.0) { cost = 1.0; } 147 else if(cost < -1.0) { cost = -1.0; } 144 else if(cost < -1.0) { cost = -1.0; } 148 145 149 G4double sint = std::sqrt((1.0-cost)*(1.0+co 146 G4double sint = std::sqrt((1.0-cost)*(1.0+cost)); 150 147 151 if (verboseLevel>1) { 148 if (verboseLevel>1) { 152 G4cout << " t= " << t << " tmax(GeV^2)= " 149 G4cout << " t= " << t << " tmax(GeV^2)= " << pLocalTmax/(GeV*GeV) 153 << " Pcms(GeV)= " << momentumCMS/GeV << " 150 << " Pcms(GeV)= " << momentumCMS/GeV << " cos(t)=" << cost 154 << " sin(t)=" << sint << G4endl; 151 << " sin(t)=" << sint << G4endl; 155 } 152 } 156 G4LorentzVector nlv1(momentumCMS*sint*std::c 153 G4LorentzVector nlv1(momentumCMS*sint*std::cos(phi), 157 momentumCMS*sint*std::sin(phi), 154 momentumCMS*sint*std::sin(phi), 158 momentumCMS*cost, 155 momentumCMS*cost, 159 std::sqrt(momentumCMS*momentumCMS + 156 std::sqrt(momentumCMS*momentumCMS + m1*m1)); 160 157 161 nlv1.boost(bst); 158 nlv1.boost(bst); 162 159 163 G4double eFinal = nlv1.e() - m1; 160 G4double eFinal = nlv1.e() - m1; 164 if (verboseLevel > 1) { 161 if (verboseLevel > 1) { 165 G4cout <<"G4HadronElastic: m= " << m1 << " 162 G4cout <<"G4HadronElastic: m= " << m1 << " Efin(MeV)= " << eFinal 166 << " 4-M Final: " << nlv1 163 << " 4-M Final: " << nlv1 167 << G4endl; 164 << G4endl; 168 } 165 } 169 166 170 if(eFinal <= 0.0) { 167 if(eFinal <= 0.0) { 171 theParticleChange.SetMomentumChange(0.0,0. 168 theParticleChange.SetMomentumChange(0.0,0.0,1.0); 172 theParticleChange.SetEnergyChange(0.0); 169 theParticleChange.SetEnergyChange(0.0); 173 } else { 170 } else { 174 theParticleChange.SetMomentumChange(nlv1.v 171 theParticleChange.SetMomentumChange(nlv1.vect().unit()); 175 theParticleChange.SetEnergyChange(eFinal); 172 theParticleChange.SetEnergyChange(eFinal); 176 } 173 } 177 lv -= nlv1; 174 lv -= nlv1; 178 G4double erec = std::max(lv.e() - mass2, 0. 175 G4double erec = std::max(lv.e() - mass2, 0.0); 179 if (verboseLevel > 1) { 176 if (verboseLevel > 1) { 180 G4cout << "Recoil: " <<" m= " << mass2 << 177 G4cout << "Recoil: " <<" m= " << mass2 << " Erec(MeV)= " << erec 181 << " 4-mom: " << lv 178 << " 4-mom: " << lv 182 << G4endl; 179 << G4endl; 183 } 180 } 184 181 185 // the recoil is created if kinetic energy a 182 // the recoil is created if kinetic energy above the threshold 186 if(erec > GetRecoilEnergyThreshold()) { 183 if(erec > GetRecoilEnergyThreshold()) { 187 G4ParticleDefinition * theDef = nullptr; 184 G4ParticleDefinition * theDef = nullptr; 188 if(Z == 1 && A == 1) { theDef = theP 185 if(Z == 1 && A == 1) { theDef = theProton; } 189 else if (Z == 1 && A == 2) { theDef = theD 186 else if (Z == 1 && A == 2) { theDef = theDeuteron; } 190 else if (Z == 1 && A == 3) { theDef = G4Tr 187 else if (Z == 1 && A == 3) { theDef = G4Triton::Triton(); } 191 else if (Z == 2 && A == 3) { theDef = G4He 188 else if (Z == 2 && A == 3) { theDef = G4He3::He3(); } 192 else if (Z == 2 && A == 4) { theDef = theA 189 else if (Z == 2 && A == 4) { theDef = theAlpha; } 193 else { 190 else { 194 theDef = 191 theDef = 195 G4ParticleTable::GetParticleTable()->GetIonT 192 G4ParticleTable::GetParticleTable()->GetIonTable()->GetIon(Z,A,0.0); 196 } 193 } 197 G4DynamicParticle * aSec = new G4DynamicPa 194 G4DynamicParticle * aSec = new G4DynamicParticle(theDef, lv.vect().unit(), erec); 198 theParticleChange.AddSecondary(aSec, secID << 195 theParticleChange.AddSecondary(aSec); 199 } else { 196 } else { 200 theParticleChange.SetLocalEnergyDeposit(er 197 theParticleChange.SetLocalEnergyDeposit(erec); 201 } 198 } 202 199 203 return &theParticleChange; 200 return &theParticleChange; 204 } 201 } 205 202 206 // sample momentum transfer in the CMS system 203 // sample momentum transfer in the CMS system 207 G4double 204 G4double 208 G4HadronElastic::SampleInvariantT(const G4Part 205 G4HadronElastic::SampleInvariantT(const G4ParticleDefinition* part, 209 G4double mom, G4int, G4int A) 206 G4double mom, G4int, G4int A) 210 { 207 { 211 const G4double plabLowLimit = 400.0*CLHEP::M 208 const G4double plabLowLimit = 400.0*CLHEP::MeV; 212 const G4double GeV2 = GeV*GeV; 209 const G4double GeV2 = GeV*GeV; 213 const G4double z07in13 = std::pow(0.7, 0.333 210 const G4double z07in13 = std::pow(0.7, 0.3333333333); 214 const G4double numLimit = 18.; << 215 211 216 G4int pdg = std::abs(part->GetPDGEncoding()) 212 G4int pdg = std::abs(part->GetPDGEncoding()); 217 G4double tmax = pLocalTmax/GeV2; 213 G4double tmax = pLocalTmax/GeV2; 218 214 219 G4double aa, bb, cc, dd; 215 G4double aa, bb, cc, dd; 220 G4Pow* g4pow = G4Pow::GetInstance(); 216 G4Pow* g4pow = G4Pow::GetInstance(); 221 if (A <= 62) { 217 if (A <= 62) { 222 if (pdg == 211){ //Pions 218 if (pdg == 211){ //Pions 223 if(mom >= plabLowLimit){ //High ener 219 if(mom >= plabLowLimit){ //High energy 224 bb = 14.5*g4pow->Z23(A);/*14.5*/ 220 bb = 14.5*g4pow->Z23(A);/*14.5*/ 225 dd = 10.; 221 dd = 10.; 226 cc = 0.075*g4pow->Z13(A)/dd;//1.4 222 cc = 0.075*g4pow->Z13(A)/dd;//1.4 227 //aa = g4pow->powZ(A, 1.93)/bb;//1.63 223 //aa = g4pow->powZ(A, 1.93)/bb;//1.63 228 aa = (A*A)/bb;//1.63 224 aa = (A*A)/bb;//1.63 229 } else { //Low ene 225 } else { //Low energy 230 bb = 29.*z07in13*z07in13*g4pow->Z23(A); 226 bb = 29.*z07in13*z07in13*g4pow->Z23(A); 231 dd = 15.; 227 dd = 15.; 232 cc = 0.04*g4pow->Z13(A)/dd;//1.4 228 cc = 0.04*g4pow->Z13(A)/dd;//1.4 233 aa = g4pow->powZ(A, 1.63)/bb;//1.63 229 aa = g4pow->powZ(A, 1.63)/bb;//1.63 234 } 230 } 235 } else { //Other particles 231 } else { //Other particles 236 bb = 14.5*g4pow->Z23(A); 232 bb = 14.5*g4pow->Z23(A); 237 dd = 20.; 233 dd = 20.; 238 aa = (A*A)/bb;//1.63 234 aa = (A*A)/bb;//1.63 239 cc = 1.4*g4pow->Z13(A)/dd; 235 cc = 1.4*g4pow->Z13(A)/dd; 240 } 236 } 241 //=========================== 237 //=========================== 242 } else { //(A>62) 238 } else { //(A>62) 243 if (pdg == 211) { 239 if (pdg == 211) { 244 if(mom >= plabLowLimit){ //high 240 if(mom >= plabLowLimit){ //high 245 bb = 60.*z07in13*g4pow->Z13(A);//60 241 bb = 60.*z07in13*g4pow->Z13(A);//60 246 dd = 30.; 242 dd = 30.; 247 aa = 0.5*(A*A)/bb;//1.33 243 aa = 0.5*(A*A)/bb;//1.33 248 cc = 4.*g4pow->powZ(A,0.4)/dd;//1:0.4 -- 244 cc = 4.*g4pow->powZ(A,0.4)/dd;//1:0.4 --- 2: 0.4 249 } else { //low 245 } else { //low 250 bb = 120.*z07in13*g4pow->Z13(A);//60 246 bb = 120.*z07in13*g4pow->Z13(A);//60 251 dd = 30.; 247 dd = 30.; 252 aa = 2.*g4pow->powZ(A,1.33)/bb; 248 aa = 2.*g4pow->powZ(A,1.33)/bb; 253 cc = 4.*g4pow->powZ(A,0.4)/dd;//1:0.4 -- 249 cc = 4.*g4pow->powZ(A,0.4)/dd;//1:0.4 --- 2: 0.4 254 } 250 } 255 } else { 251 } else { 256 bb = 60.*g4pow->Z13(A); 252 bb = 60.*g4pow->Z13(A); 257 dd = 25.; 253 dd = 25.; 258 aa = g4pow->powZ(A,1.33)/bb;//1.33 254 aa = g4pow->powZ(A,1.33)/bb;//1.33 259 cc = 0.2*g4pow->powZ(A,0.4)/dd;//1:0.4 255 cc = 0.2*g4pow->powZ(A,0.4)/dd;//1:0.4 --- 2: 0.4 260 } 256 } 261 } 257 } 262 G4double q1 = 1.0 - G4Exp(-std::min(bb*tmax, << 258 G4double q1 = 1.0 - G4Exp(-bb*tmax); 263 G4double q2 = 1.0 - G4Exp(-std::min(dd*tmax, << 259 G4double q2 = 1.0 - G4Exp(-dd*tmax); 264 G4double s1 = q1*aa; 260 G4double s1 = q1*aa; 265 G4double s2 = q2*cc; 261 G4double s2 = q2*cc; 266 if((s1 + s2)*G4UniformRand() < s2) { 262 if((s1 + s2)*G4UniformRand() < s2) { 267 q1 = q2; 263 q1 = q2; 268 bb = dd; 264 bb = dd; 269 } 265 } 270 return -GeV2*G4Log(1.0 - G4UniformRand()*q1) 266 return -GeV2*G4Log(1.0 - G4UniformRand()*q1)/bb; 271 } 267 } 272 268 273 ////////////////////////////////////////////// 269 ////////////////////////////////////////////// 274 // 270 // 275 // Cofs for s-,c-,b-particles ds/dt slopes 271 // Cofs for s-,c-,b-particles ds/dt slopes 276 272 277 G4double G4HadronElastic::GetSlopeCof(const G4 273 G4double G4HadronElastic::GetSlopeCof(const G4int pdg ) 278 { 274 { 279 // The input parameter "pdg" should be the a 275 // The input parameter "pdg" should be the absolute value of the PDG code 280 // (i.e. the same value for a particle and i 276 // (i.e. the same value for a particle and its antiparticle). 281 277 282 G4double coeff = 1.0; 278 G4double coeff = 1.0; 283 279 284 // heavy barions 280 // heavy barions 285 281 286 static const G4double lBarCof1S = 0.88; 282 static const G4double lBarCof1S = 0.88; 287 static const G4double lBarCof2S = 0.76; 283 static const G4double lBarCof2S = 0.76; 288 static const G4double lBarCof3S = 0.64; 284 static const G4double lBarCof3S = 0.64; 289 static const G4double lBarCof1C = 0.784378 285 static const G4double lBarCof1C = 0.784378; 290 static const G4double lBarCofSC = 0.664378 286 static const G4double lBarCofSC = 0.664378; 291 static const G4double lBarCof2SC = 0.544378 287 static const G4double lBarCof2SC = 0.544378; 292 static const G4double lBarCof1B = 0.740659 288 static const G4double lBarCof1B = 0.740659; 293 static const G4double lBarCofSB = 0.620659 289 static const G4double lBarCofSB = 0.620659; 294 static const G4double lBarCof2SB = 0.500659 290 static const G4double lBarCof2SB = 0.500659; 295 291 296 if( pdg == 3122 || pdg == 3222 || pdg == 31 292 if( pdg == 3122 || pdg == 3222 || pdg == 3112 || pdg == 3212 ) 297 { 293 { 298 coeff = lBarCof1S; // Lambda, Sigma+, Sigm 294 coeff = lBarCof1S; // Lambda, Sigma+, Sigma-, Sigma0 299 295 300 } else if( pdg == 3322 || pdg == 3312 ) 296 } else if( pdg == 3322 || pdg == 3312 ) 301 { 297 { 302 coeff = lBarCof2S; // Xi-, Xi0 298 coeff = lBarCof2S; // Xi-, Xi0 303 } 299 } 304 else if( pdg == 3324) 300 else if( pdg == 3324) 305 { 301 { 306 coeff = lBarCof3S; // Omega 302 coeff = lBarCof3S; // Omega 307 } 303 } 308 else if( pdg == 4122 || pdg == 4212 || pd 304 else if( pdg == 4122 || pdg == 4212 || pdg == 4222 || pdg == 4112 ) 309 { 305 { 310 coeff = lBarCof1C; // LambdaC+, SigmaC+, S 306 coeff = lBarCof1C; // LambdaC+, SigmaC+, SigmaC++, SigmaC0 311 } 307 } 312 else if( pdg == 4332 ) 308 else if( pdg == 4332 ) 313 { 309 { 314 coeff = lBarCof2SC; // OmegaC 310 coeff = lBarCof2SC; // OmegaC 315 } 311 } 316 else if( pdg == 4232 || pdg == 4132 ) 312 else if( pdg == 4232 || pdg == 4132 ) 317 { 313 { 318 coeff = lBarCofSC; // XiC+, XiC0 314 coeff = lBarCofSC; // XiC+, XiC0 319 } 315 } 320 else if( pdg == 5122 || pdg == 5222 || pdg = 316 else if( pdg == 5122 || pdg == 5222 || pdg == 5112 || pdg == 5212 ) 321 { 317 { 322 coeff = lBarCof1B; // LambdaB, SigmaB+, Si 318 coeff = lBarCof1B; // LambdaB, SigmaB+, SigmaB-, SigmaB0 323 } 319 } 324 else if( pdg == 5332 ) 320 else if( pdg == 5332 ) 325 { 321 { 326 coeff = lBarCof2SB; // OmegaB- 322 coeff = lBarCof2SB; // OmegaB- 327 } 323 } 328 else if( pdg == 5132 || pdg == 5232 ) // XiB 324 else if( pdg == 5132 || pdg == 5232 ) // XiB-, XiB0 329 { 325 { 330 coeff = lBarCofSB; 326 coeff = lBarCofSB; 331 } 327 } 332 // heavy mesons Kaons? 328 // heavy mesons Kaons? 333 static const G4double lMesCof1S = 0.82; // K 329 static const G4double lMesCof1S = 0.82; // Kp/piP kaons? 334 static const G4double llMesCof1C = 0.676568; 330 static const G4double llMesCof1C = 0.676568; 335 static const G4double llMesCof1B = 0.610989; 331 static const G4double llMesCof1B = 0.610989; 336 static const G4double llMesCof2C = 0.353135; 332 static const G4double llMesCof2C = 0.353135; 337 static const G4double llMesCof2B = 0.221978; 333 static const G4double llMesCof2B = 0.221978; 338 static const G4double llMesCofSC = 0.496568; 334 static const G4double llMesCofSC = 0.496568; 339 static const G4double llMesCofSB = 0.430989; 335 static const G4double llMesCofSB = 0.430989; 340 static const G4double llMesCofCB = 0.287557; 336 static const G4double llMesCofCB = 0.287557; 341 static const G4double llMesCofEtaP = 0.88; 337 static const G4double llMesCofEtaP = 0.88; 342 static const G4double llMesCofEta = 0.76; 338 static const G4double llMesCofEta = 0.76; 343 339 344 if( pdg == 321 || pdg == 311 || pdg == 310 ) 340 if( pdg == 321 || pdg == 311 || pdg == 310 ) 345 { 341 { 346 coeff = lMesCof1S; //K+-0 342 coeff = lMesCof1S; //K+-0 347 } 343 } 348 else if( pdg == 511 || pdg == 521 ) 344 else if( pdg == 511 || pdg == 521 ) 349 { 345 { 350 coeff = llMesCof1B; // BMeson0, BMeson+ 346 coeff = llMesCof1B; // BMeson0, BMeson+ 351 } 347 } 352 else if(pdg == 421 || pdg == 411 ) 348 else if(pdg == 421 || pdg == 411 ) 353 { 349 { 354 coeff = llMesCof1C; // DMeson+, DMeson0 350 coeff = llMesCof1C; // DMeson+, DMeson0 355 } 351 } 356 else if( pdg == 531 ) 352 else if( pdg == 531 ) 357 { 353 { 358 coeff = llMesCofSB; // BSMeson0 354 coeff = llMesCofSB; // BSMeson0 359 } 355 } 360 else if( pdg == 541 ) 356 else if( pdg == 541 ) 361 { 357 { 362 coeff = llMesCofCB; // BCMeson+- 358 coeff = llMesCofCB; // BCMeson+- 363 } 359 } 364 else if(pdg == 431 ) 360 else if(pdg == 431 ) 365 { 361 { 366 coeff = llMesCofSC; // DSMeson+- 362 coeff = llMesCofSC; // DSMeson+- 367 } 363 } 368 else if(pdg == 441 || pdg == 443 ) 364 else if(pdg == 441 || pdg == 443 ) 369 { 365 { 370 coeff = llMesCof2C; // Etac, JPsi 366 coeff = llMesCof2C; // Etac, JPsi 371 } 367 } 372 else if(pdg == 553 ) 368 else if(pdg == 553 ) 373 { 369 { 374 coeff = llMesCof2B; // Upsilon 370 coeff = llMesCof2B; // Upsilon 375 } 371 } 376 else if(pdg == 221 ) 372 else if(pdg == 221 ) 377 { 373 { 378 coeff = llMesCofEta; // Eta 374 coeff = llMesCofEta; // Eta 379 } 375 } 380 else if(pdg == 331 ) 376 else if(pdg == 331 ) 381 { 377 { 382 coeff = llMesCofEtaP; // Eta' 378 coeff = llMesCofEtaP; // Eta' 383 } 379 } 384 return coeff; 380 return coeff; 385 } 381 } 386 382 387 383 388 384