Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4HadronElastic.cc 91806 2015-08-06 12:20:45Z gcosmo $ 26 // 27 // 27 // Geant4 Header : G4HadronElastic 28 // Geant4 Header : G4HadronElastic 28 // 29 // 29 // Author : V.Ivanchenko 29 June 2009 (redesig 30 // Author : V.Ivanchenko 29 June 2009 (redesign old elastic model) 30 // 31 // 31 32 32 #include "G4HadronElastic.hh" 33 #include "G4HadronElastic.hh" 33 #include "G4SystemOfUnits.hh" 34 #include "G4SystemOfUnits.hh" 34 #include "G4ParticleTable.hh" 35 #include "G4ParticleTable.hh" 35 #include "G4ParticleDefinition.hh" 36 #include "G4ParticleDefinition.hh" 36 #include "G4IonTable.hh" 37 #include "G4IonTable.hh" 37 #include "Randomize.hh" 38 #include "Randomize.hh" 38 #include "G4Proton.hh" 39 #include "G4Proton.hh" 39 #include "G4Neutron.hh" 40 #include "G4Neutron.hh" 40 #include "G4Deuteron.hh" 41 #include "G4Deuteron.hh" 41 #include "G4Alpha.hh" 42 #include "G4Alpha.hh" 42 #include "G4Pow.hh" 43 #include "G4Pow.hh" 43 #include "G4Exp.hh" 44 #include "G4Exp.hh" 44 #include "G4Log.hh" 45 #include "G4Log.hh" 45 #include "G4HadronicParameters.hh" << 46 #include "G4PhysicsModelCatalog.hh" << 47 46 48 47 49 G4HadronElastic::G4HadronElastic(const G4Strin 48 G4HadronElastic::G4HadronElastic(const G4String& name) 50 : G4HadronicInteraction(name), secID(-1) << 49 : G4HadronicInteraction(name) 51 { 50 { 52 SetMinEnergy( 0.0*GeV ); 51 SetMinEnergy( 0.0*GeV ); 53 SetMaxEnergy( G4HadronicParameters::Instance << 52 SetMaxEnergy( 100.*TeV ); 54 lowestEnergyLimit= 1.e-6*eV; << 53 lowestEnergyLimit= 1.e-6*eV; 55 pLocalTmax = 0.0; << 56 nwarn = 0; << 57 54 58 theProton = G4Proton::Proton(); 55 theProton = G4Proton::Proton(); 59 theNeutron = G4Neutron::Neutron(); 56 theNeutron = G4Neutron::Neutron(); 60 theDeuteron = G4Deuteron::Deuteron(); 57 theDeuteron = G4Deuteron::Deuteron(); 61 theAlpha = G4Alpha::Alpha(); 58 theAlpha = G4Alpha::Alpha(); 62 << 59 //Description(); 63 secID = G4PhysicsModelCatalog::GetModelID( " << 64 } 60 } 65 61 >> 62 66 G4HadronElastic::~G4HadronElastic() 63 G4HadronElastic::~G4HadronElastic() 67 {} 64 {} 68 65 69 66 70 void G4HadronElastic::ModelDescription(std::os 67 void G4HadronElastic::ModelDescription(std::ostream& outFile) const 71 { 68 { 72 outFile << "G4HadronElastic is the base clas << 69 73 << "elastic scattering models except << 70 outFile << "G4HadronElastic is a hadron-nucleus elastic scattering\n" 74 << "By default it uses the Gheisha t << 71 << "model which uses the Gheisha two-exponential momentum\n" 75 << "transfer parameterization. The model << 72 << "transfer parameterization. The model is fully relativistic\n" 76 << "as opposed to the original Gheisha mod << 73 << "as opposed to the original Gheisha model which was not.\n" 77 << "This model may be used for all long-li << 74 << "This model may be used for all long-lived hadrons at all\n" 78 << "incident energies but fit the data onl << 75 << "incident energies.\n"; >> 76 79 } 77 } 80 78 >> 79 81 G4HadFinalState* G4HadronElastic::ApplyYoursel 80 G4HadFinalState* G4HadronElastic::ApplyYourself( 82 const G4HadProjectile& aTrack, G4Nucleus& 81 const G4HadProjectile& aTrack, G4Nucleus& targetNucleus) 83 { 82 { 84 theParticleChange.Clear(); 83 theParticleChange.Clear(); 85 84 86 const G4HadProjectile* aParticle = &aTrack; 85 const G4HadProjectile* aParticle = &aTrack; 87 G4double ekin = aParticle->GetKineticEnergy( 86 G4double ekin = aParticle->GetKineticEnergy(); 88 << 89 // no scattering below the limit << 90 if(ekin <= lowestEnergyLimit) { 87 if(ekin <= lowestEnergyLimit) { 91 theParticleChange.SetEnergyChange(ekin); 88 theParticleChange.SetEnergyChange(ekin); 92 theParticleChange.SetMomentumChange(0.,0., << 89 theParticleChange.SetMomentumChange(aTrack.Get4Momentum().vect().unit()); 93 return &theParticleChange; 90 return &theParticleChange; 94 } 91 } 95 92 96 G4int A = targetNucleus.GetA_asInt(); 93 G4int A = targetNucleus.GetA_asInt(); 97 G4int Z = targetNucleus.GetZ_asInt(); 94 G4int Z = targetNucleus.GetZ_asInt(); 98 95 >> 96 G4double plab = aParticle->GetTotalMomentum(); >> 97 99 // Scattered particle referred to axis of in 98 // Scattered particle referred to axis of incident particle 100 const G4ParticleDefinition* theParticle = aP 99 const G4ParticleDefinition* theParticle = aParticle->GetDefinition(); 101 G4double m1 = theParticle->GetPDGMass(); 100 G4double m1 = theParticle->GetPDGMass(); 102 G4double plab = std::sqrt(ekin*(ekin + 2.0*m << 103 101 104 if (verboseLevel>1) { 102 if (verboseLevel>1) { 105 G4cout << "G4HadronElastic: " 103 G4cout << "G4HadronElastic: " 106 << aParticle->GetDefinition()->GetParticl 104 << aParticle->GetDefinition()->GetParticleName() 107 << " Plab(GeV/c)= " << plab/GeV 105 << " Plab(GeV/c)= " << plab/GeV 108 << " Ekin(MeV) = " << ekin/MeV 106 << " Ekin(MeV) = " << ekin/MeV 109 << " scattered off Z= " << Z 107 << " scattered off Z= " << Z 110 << " A= " << A 108 << " A= " << A 111 << G4endl; 109 << G4endl; 112 } 110 } 113 111 114 G4double mass2 = G4NucleiProperties::GetNucl 112 G4double mass2 = G4NucleiProperties::GetNuclearMass(A, Z); 115 G4double e1 = m1 + ekin; << 113 G4LorentzVector lv1 = aParticle->Get4Momentum(); 116 G4LorentzVector lv(0.0,0.0,plab,e1+mass2); << 114 G4LorentzVector lv(0.0,0.0,0.0,mass2); >> 115 lv += lv1; >> 116 117 G4ThreeVector bst = lv.boostVector(); 117 G4ThreeVector bst = lv.boostVector(); 118 G4double momentumCMS = plab*mass2/std::sqrt( << 118 lv1.boost(-bst); 119 119 120 pLocalTmax = 4.0*momentumCMS*momentumCMS; << 120 G4ThreeVector p1 = lv1.vect(); >> 121 G4double momentumCMS = p1.mag(); >> 122 G4double tmax = 4.0*momentumCMS*momentumCMS; 121 123 122 // Sampling in CM system 124 // Sampling in CM system 123 G4double t = SampleInvariantT(theParticle, p << 125 G4double t = SampleInvariantT(theParticle, plab, Z, A); 124 << 125 if(t < 0.0 || t > pLocalTmax) { << 126 // For the very rare cases where cos(theta << 127 // print some debugging information via a << 128 // using the default algorithm << 129 #ifdef G4VERBOSE << 130 if(nwarn < 2) { << 131 G4ExceptionDescription ed; << 132 ed << GetModelName() << " wrong sampling << 133 << " for " << aParticle->GetDefinition()->G << 134 << " ekin=" << ekin << " MeV" << 135 << " off (Z,A)=(" << Z << "," << A << ") - << 136 G4Exception( "G4HadronElastic::ApplyYour << 137 ++nwarn; << 138 } << 139 #endif << 140 t = G4HadronElastic::SampleInvariantT(theP << 141 } << 142 << 143 G4double phi = G4UniformRand()*CLHEP::twopi 126 G4double phi = G4UniformRand()*CLHEP::twopi; 144 G4double cost = 1. - 2.0*t/pLocalTmax; << 127 G4double cost = 1. - 2.0*t/tmax; 145 << 128 G4double sint; 146 if (cost > 1.0) { cost = 1.0; } << 147 else if(cost < -1.0) { cost = -1.0; } << 148 << 149 G4double sint = std::sqrt((1.0-cost)*(1.0+co << 150 129 >> 130 // problem in sampling >> 131 if(cost > 1.0 || cost < -1.0) { >> 132 //if(verboseLevel > 0) { >> 133 G4cout << "G4HadronElastic WARNING (1 - cost)= " << 1 - cost >> 134 << " after scattering of " >> 135 << aParticle->GetDefinition()->GetParticleName() >> 136 << " p(GeV/c)= " << plab/GeV >> 137 << " on an ion Z= " << Z << " A= " << A >> 138 << G4endl; >> 139 //} >> 140 cost = 1.0; >> 141 sint = 0.0; >> 142 >> 143 // normal situation >> 144 } else { >> 145 sint = std::sqrt((1.0-cost)*(1.0+cost)); >> 146 } 151 if (verboseLevel>1) { 147 if (verboseLevel>1) { 152 G4cout << " t= " << t << " tmax(GeV^2)= " << 148 G4cout << " t= " << t << " tmax(GeV^2)= " << tmax/(GeV*GeV) 153 << " Pcms(GeV)= " << momentumCMS/GeV << " 149 << " Pcms(GeV)= " << momentumCMS/GeV << " cos(t)=" << cost 154 << " sin(t)=" << sint << G4endl; 150 << " sin(t)=" << sint << G4endl; 155 } 151 } 156 G4LorentzVector nlv1(momentumCMS*sint*std::c << 152 G4ThreeVector v1(sint*std::cos(phi),sint*std::sin(phi),cost); 157 momentumCMS*sint*std::sin(phi), << 153 v1 *= momentumCMS; 158 momentumCMS*cost, << 154 G4LorentzVector nlv1(v1.x(),v1.y(),v1.z(), 159 std::sqrt(momentumCMS*momentumCMS + 155 std::sqrt(momentumCMS*momentumCMS + m1*m1)); 160 156 161 nlv1.boost(bst); 157 nlv1.boost(bst); 162 158 163 G4double eFinal = nlv1.e() - m1; 159 G4double eFinal = nlv1.e() - m1; 164 if (verboseLevel > 1) { 160 if (verboseLevel > 1) { 165 G4cout <<"G4HadronElastic: m= " << m1 << " << 161 G4cout <<" m= " << m1 << " Efin(MeV)= " << eFinal 166 << " 4-M Final: " << nlv1 << 162 << " Proj: 4-mom " << lv1 << " Final: " << nlv1 167 << G4endl; 163 << G4endl; 168 } 164 } 169 << 165 if(eFinal <= lowestEnergyLimit) { 170 if(eFinal <= 0.0) { << 166 if(eFinal < 0.0 && verboseLevel > 0) { 171 theParticleChange.SetMomentumChange(0.0,0. << 167 G4cout << "G4HadronElastic WARNING Efinal= " << eFinal >> 168 << " after scattering of " >> 169 << aParticle->GetDefinition()->GetParticleName() >> 170 << " p(GeV/c)= " << plab/GeV >> 171 << " on an ion Z= " << Z << " A= " << A >> 172 << G4endl; >> 173 } 172 theParticleChange.SetEnergyChange(0.0); 174 theParticleChange.SetEnergyChange(0.0); >> 175 nlv1 = G4LorentzVector(0.0,0.0,0.0,m1); >> 176 173 } else { 177 } else { 174 theParticleChange.SetMomentumChange(nlv1.v 178 theParticleChange.SetMomentumChange(nlv1.vect().unit()); 175 theParticleChange.SetEnergyChange(eFinal); 179 theParticleChange.SetEnergyChange(eFinal); 176 } << 180 } >> 181 177 lv -= nlv1; 182 lv -= nlv1; 178 G4double erec = std::max(lv.e() - mass2, 0. << 183 G4double erec = lv.e() - mass2; 179 if (verboseLevel > 1) { 184 if (verboseLevel > 1) { 180 G4cout << "Recoil: " <<" m= " << mass2 << 185 G4cout << "Recoil: " <<" m= " << mass2 << " Erec(MeV)= " << erec 181 << " 4-mom: " << lv 186 << " 4-mom: " << lv 182 << G4endl; 187 << G4endl; 183 } 188 } 184 189 185 // the recoil is created if kinetic energy a << 186 if(erec > GetRecoilEnergyThreshold()) { 190 if(erec > GetRecoilEnergyThreshold()) { 187 G4ParticleDefinition * theDef = nullptr; << 191 G4ParticleDefinition * theDef = 0; 188 if(Z == 1 && A == 1) { theDef = theP 192 if(Z == 1 && A == 1) { theDef = theProton; } 189 else if (Z == 1 && A == 2) { theDef = theD 193 else if (Z == 1 && A == 2) { theDef = theDeuteron; } 190 else if (Z == 1 && A == 3) { theDef = G4Tr 194 else if (Z == 1 && A == 3) { theDef = G4Triton::Triton(); } 191 else if (Z == 2 && A == 3) { theDef = G4He 195 else if (Z == 2 && A == 3) { theDef = G4He3::He3(); } 192 else if (Z == 2 && A == 4) { theDef = theA 196 else if (Z == 2 && A == 4) { theDef = theAlpha; } 193 else { 197 else { 194 theDef = 198 theDef = 195 G4ParticleTable::GetParticleTable()->GetIonT 199 G4ParticleTable::GetParticleTable()->GetIonTable()->GetIon(Z,A,0.0); 196 } 200 } 197 G4DynamicParticle * aSec = new G4DynamicPa << 201 G4DynamicParticle * aSec = new G4DynamicParticle(theDef, lv); 198 theParticleChange.AddSecondary(aSec, secID << 202 theParticleChange.AddSecondary(aSec); 199 } else { << 203 } else if(erec > 0.0) { 200 theParticleChange.SetLocalEnergyDeposit(er 204 theParticleChange.SetLocalEnergyDeposit(erec); 201 } 205 } 202 206 203 return &theParticleChange; 207 return &theParticleChange; 204 } 208 } 205 209 206 // sample momentum transfer in the CMS system 210 // sample momentum transfer in the CMS system 207 G4double 211 G4double 208 G4HadronElastic::SampleInvariantT(const G4Part << 212 G4HadronElastic::SampleInvariantT(const G4ParticleDefinition* p, 209 G4double mom, G4int, G4int A) << 213 G4double plab, >> 214 G4int Z, G4int A) 210 { 215 { 211 const G4double plabLowLimit = 400.0*CLHEP::M << 216 static const G4double GeV2 = GeV*GeV; 212 const G4double GeV2 = GeV*GeV; << 217 G4double momentumCMS = ComputeMomentumCMS(p,plab,Z,A); 213 const G4double z07in13 = std::pow(0.7, 0.333 << 218 G4double tmax = 4.0*momentumCMS*momentumCMS/GeV2; 214 const G4double numLimit = 18.; << 219 G4double aa, bb, cc; 215 << 220 G4double dd = 10.; 216 G4int pdg = std::abs(part->GetPDGEncoding()) << 217 G4double tmax = pLocalTmax/GeV2; << 218 << 219 G4double aa, bb, cc, dd; << 220 G4Pow* g4pow = G4Pow::GetInstance(); 221 G4Pow* g4pow = G4Pow::GetInstance(); 221 if (A <= 62) { 222 if (A <= 62) { 222 if (pdg == 211){ //Pions << 223 bb = 14.5*g4pow->Z23(A); 223 if(mom >= plabLowLimit){ //High ener << 224 aa = g4pow->powZ(A, 1.63)/bb; 224 bb = 14.5*g4pow->Z23(A);/*14.5*/ << 225 cc = 1.4*g4pow->Z13(A)/dd; 225 dd = 10.; << 226 } else { 226 cc = 0.075*g4pow->Z13(A)/dd;//1.4 << 227 bb = 60.*g4pow->Z13(A); 227 //aa = g4pow->powZ(A, 1.93)/bb;//1.63 << 228 aa = g4pow->powZ(A, 1.33)/bb; 228 aa = (A*A)/bb;//1.63 << 229 cc = 0.4*g4pow->powZ(A, 0.4)/dd; 229 } else { //Low ene << 230 bb = 29.*z07in13*z07in13*g4pow->Z23(A); << 231 dd = 15.; << 232 cc = 0.04*g4pow->Z13(A)/dd;//1.4 << 233 aa = g4pow->powZ(A, 1.63)/bb;//1.63 << 234 } << 235 } else { //Other particles << 236 bb = 14.5*g4pow->Z23(A); << 237 dd = 20.; << 238 aa = (A*A)/bb;//1.63 << 239 cc = 1.4*g4pow->Z13(A)/dd; << 240 } << 241 //=========================== << 242 } else { //(A>62) << 243 if (pdg == 211) { << 244 if(mom >= plabLowLimit){ //high << 245 bb = 60.*z07in13*g4pow->Z13(A);//60 << 246 dd = 30.; << 247 aa = 0.5*(A*A)/bb;//1.33 << 248 cc = 4.*g4pow->powZ(A,0.4)/dd;//1:0.4 -- << 249 } else { //low << 250 bb = 120.*z07in13*g4pow->Z13(A);//60 << 251 dd = 30.; << 252 aa = 2.*g4pow->powZ(A,1.33)/bb; << 253 cc = 4.*g4pow->powZ(A,0.4)/dd;//1:0.4 -- << 254 } << 255 } else { << 256 bb = 60.*g4pow->Z13(A); << 257 dd = 25.; << 258 aa = g4pow->powZ(A,1.33)/bb;//1.33 << 259 cc = 0.2*g4pow->powZ(A,0.4)/dd;//1:0.4 << 260 } << 261 } 230 } 262 G4double q1 = 1.0 - G4Exp(-std::min(bb*tmax, << 231 G4double q1 = 1.0 - G4Exp(-bb*tmax); 263 G4double q2 = 1.0 - G4Exp(-std::min(dd*tmax, << 232 G4double q2 = 1.0 - G4Exp(-dd*tmax); 264 G4double s1 = q1*aa; 233 G4double s1 = q1*aa; 265 G4double s2 = q2*cc; 234 G4double s2 = q2*cc; 266 if((s1 + s2)*G4UniformRand() < s2) { 235 if((s1 + s2)*G4UniformRand() < s2) { 267 q1 = q2; 236 q1 = q2; 268 bb = dd; 237 bb = dd; 269 } 238 } 270 return -GeV2*G4Log(1.0 - G4UniformRand()*q1) 239 return -GeV2*G4Log(1.0 - G4UniformRand()*q1)/bb; 271 } 240 } 272 << 273 ////////////////////////////////////////////// << 274 // << 275 // Cofs for s-,c-,b-particles ds/dt slopes << 276 << 277 G4double G4HadronElastic::GetSlopeCof(const G4 << 278 { << 279 // The input parameter "pdg" should be the a << 280 // (i.e. the same value for a particle and i << 281 << 282 G4double coeff = 1.0; << 283 << 284 // heavy barions << 285 << 286 static const G4double lBarCof1S = 0.88; << 287 static const G4double lBarCof2S = 0.76; << 288 static const G4double lBarCof3S = 0.64; << 289 static const G4double lBarCof1C = 0.784378 << 290 static const G4double lBarCofSC = 0.664378 << 291 static const G4double lBarCof2SC = 0.544378 << 292 static const G4double lBarCof1B = 0.740659 << 293 static const G4double lBarCofSB = 0.620659 << 294 static const G4double lBarCof2SB = 0.500659 << 295 << 296 if( pdg == 3122 || pdg == 3222 || pdg == 31 << 297 { << 298 coeff = lBarCof1S; // Lambda, Sigma+, Sigm << 299 << 300 } else if( pdg == 3322 || pdg == 3312 ) << 301 { << 302 coeff = lBarCof2S; // Xi-, Xi0 << 303 } << 304 else if( pdg == 3324) << 305 { << 306 coeff = lBarCof3S; // Omega << 307 } << 308 else if( pdg == 4122 || pdg == 4212 || pd << 309 { << 310 coeff = lBarCof1C; // LambdaC+, SigmaC+, S << 311 } << 312 else if( pdg == 4332 ) << 313 { << 314 coeff = lBarCof2SC; // OmegaC << 315 } << 316 else if( pdg == 4232 || pdg == 4132 ) << 317 { << 318 coeff = lBarCofSC; // XiC+, XiC0 << 319 } << 320 else if( pdg == 5122 || pdg == 5222 || pdg = << 321 { << 322 coeff = lBarCof1B; // LambdaB, SigmaB+, Si << 323 } << 324 else if( pdg == 5332 ) << 325 { << 326 coeff = lBarCof2SB; // OmegaB- << 327 } << 328 else if( pdg == 5132 || pdg == 5232 ) // XiB << 329 { << 330 coeff = lBarCofSB; << 331 } << 332 // heavy mesons Kaons? << 333 static const G4double lMesCof1S = 0.82; // K << 334 static const G4double llMesCof1C = 0.676568; << 335 static const G4double llMesCof1B = 0.610989; << 336 static const G4double llMesCof2C = 0.353135; << 337 static const G4double llMesCof2B = 0.221978; << 338 static const G4double llMesCofSC = 0.496568; << 339 static const G4double llMesCofSB = 0.430989; << 340 static const G4double llMesCofCB = 0.287557; << 341 static const G4double llMesCofEtaP = 0.88; << 342 static const G4double llMesCofEta = 0.76; << 343 << 344 if( pdg == 321 || pdg == 311 || pdg == 310 ) << 345 { << 346 coeff = lMesCof1S; //K+-0 << 347 } << 348 else if( pdg == 511 || pdg == 521 ) << 349 { << 350 coeff = llMesCof1B; // BMeson0, BMeson+ << 351 } << 352 else if(pdg == 421 || pdg == 411 ) << 353 { << 354 coeff = llMesCof1C; // DMeson+, DMeson0 << 355 } << 356 else if( pdg == 531 ) << 357 { << 358 coeff = llMesCofSB; // BSMeson0 << 359 } << 360 else if( pdg == 541 ) << 361 { << 362 coeff = llMesCofCB; // BCMeson+- << 363 } << 364 else if(pdg == 431 ) << 365 { << 366 coeff = llMesCofSC; // DSMeson+- << 367 } << 368 else if(pdg == 441 || pdg == 443 ) << 369 { << 370 coeff = llMesCof2C; // Etac, JPsi << 371 } << 372 else if(pdg == 553 ) << 373 { << 374 coeff = llMesCof2B; // Upsilon << 375 } << 376 else if(pdg == 221 ) << 377 { << 378 coeff = llMesCofEta; // Eta << 379 } << 380 else if(pdg == 331 ) << 381 { << 382 coeff = llMesCofEtaP; // Eta' << 383 } << 384 return coeff; << 385 } << 386 << 387 241 388 242