Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // 27 // Geant4 Header : G4AntiNuclElastic 27 // Geant4 Header : G4AntiNuclElastic 28 // 28 // 29 // 29 // 30 30 31 #include "G4AntiNuclElastic.hh" 31 #include "G4AntiNuclElastic.hh" 32 32 33 #include "G4PhysicalConstants.hh" 33 #include "G4PhysicalConstants.hh" 34 #include "G4SystemOfUnits.hh" 34 #include "G4SystemOfUnits.hh" 35 #include "G4ParticleTable.hh" 35 #include "G4ParticleTable.hh" 36 #include "G4ParticleDefinition.hh" 36 #include "G4ParticleDefinition.hh" 37 #include "G4IonTable.hh" 37 #include "G4IonTable.hh" 38 #include "Randomize.hh" 38 #include "Randomize.hh" 39 #include "G4AntiProton.hh" 39 #include "G4AntiProton.hh" 40 #include "G4AntiNeutron.hh" 40 #include "G4AntiNeutron.hh" 41 #include "G4AntiDeuteron.hh" 41 #include "G4AntiDeuteron.hh" 42 #include "G4AntiAlpha.hh" 42 #include "G4AntiAlpha.hh" 43 #include "G4AntiTriton.hh" 43 #include "G4AntiTriton.hh" 44 #include "G4AntiHe3.hh" 44 #include "G4AntiHe3.hh" 45 #include "G4Proton.hh" 45 #include "G4Proton.hh" 46 #include "G4Neutron.hh" 46 #include "G4Neutron.hh" 47 #include "G4Deuteron.hh" 47 #include "G4Deuteron.hh" 48 #include "G4Alpha.hh" 48 #include "G4Alpha.hh" 49 #include "G4Pow.hh" 49 #include "G4Pow.hh" 50 #include "G4Exp.hh" 50 #include "G4Exp.hh" 51 #include "G4Log.hh" 51 #include "G4Log.hh" 52 52 53 #include "G4NucleiProperties.hh" 53 #include "G4NucleiProperties.hh" 54 #include "G4CrossSectionDataSetRegistry.hh" 54 #include "G4CrossSectionDataSetRegistry.hh" 55 55 56 G4AntiNuclElastic::G4AntiNuclElastic() 56 G4AntiNuclElastic::G4AntiNuclElastic() 57 : G4HadronElastic("AntiAElastic") 57 : G4HadronElastic("AntiAElastic") 58 { 58 { 59 //V.Ivanchenko commented out 59 //V.Ivanchenko commented out 60 //SetMinEnergy( 0.1*GeV ); 60 //SetMinEnergy( 0.1*GeV ); 61 //SetMaxEnergy( 10.*TeV ); 61 //SetMaxEnergy( 10.*TeV ); 62 62 63 theAProton = G4AntiProton::AntiProton( 63 theAProton = G4AntiProton::AntiProton(); 64 theANeutron = G4AntiNeutron::AntiNeutro 64 theANeutron = G4AntiNeutron::AntiNeutron(); 65 theADeuteron = G4AntiDeuteron::AntiDeute 65 theADeuteron = G4AntiDeuteron::AntiDeuteron(); 66 theATriton = G4AntiTriton::AntiTriton( 66 theATriton = G4AntiTriton::AntiTriton(); 67 theAAlpha = G4AntiAlpha::AntiAlpha(); 67 theAAlpha = G4AntiAlpha::AntiAlpha(); 68 theAHe3 = G4AntiHe3::AntiHe3(); 68 theAHe3 = G4AntiHe3::AntiHe3(); 69 69 70 theProton = G4Proton::Proton(); 70 theProton = G4Proton::Proton(); 71 theNeutron = G4Neutron::Neutron(); 71 theNeutron = G4Neutron::Neutron(); 72 theDeuteron = G4Deuteron::Deuteron(); 72 theDeuteron = G4Deuteron::Deuteron(); 73 theAlpha = G4Alpha::Alpha(); 73 theAlpha = G4Alpha::Alpha(); 74 74 75 G4CrossSectionDataSetRegistry* reg = G4Cross 75 G4CrossSectionDataSetRegistry* reg = G4CrossSectionDataSetRegistry::Instance(); 76 cs = static_cast<G4ComponentAntiNuclNuclearX 76 cs = static_cast<G4ComponentAntiNuclNuclearXS*>(reg->GetComponentCrossSection("AntiAGlauber")); 77 if(!cs) { cs = new G4ComponentAntiNuclNuclea 77 if(!cs) { cs = new G4ComponentAntiNuclNuclearXS(); } 78 78 79 fParticle = 0; 79 fParticle = 0; 80 fWaveVector = 0.; 80 fWaveVector = 0.; 81 fBeta = 0.; 81 fBeta = 0.; 82 fZommerfeld = 0.; 82 fZommerfeld = 0.; 83 fAm = 0.; 83 fAm = 0.; 84 fTetaCMS = 0.; 84 fTetaCMS = 0.; 85 fRa = 0.; 85 fRa = 0.; 86 fRef = 0.; 86 fRef = 0.; 87 fceff = 0.; 87 fceff = 0.; 88 fptot = 0.; 88 fptot = 0.; 89 fTmax = 0.; 89 fTmax = 0.; 90 fThetaLab = 0.; 90 fThetaLab = 0.; 91 } 91 } 92 92 93 ////////////////////////////////////////////// 93 ///////////////////////////////////////////////////////////////////////// 94 G4AntiNuclElastic::~G4AntiNuclElastic() 94 G4AntiNuclElastic::~G4AntiNuclElastic() 95 {} 95 {} 96 96 97 ////////////////////////////////////////////// 97 //////////////////////////////////////////////////////////////////////// 98 // sample momentum transfer in the CMS system 98 // sample momentum transfer in the CMS system 99 G4double G4AntiNuclElastic::SampleInvariantT(c 99 G4double G4AntiNuclElastic::SampleInvariantT(const G4ParticleDefinition* particle, 100 G4double Plab, G4int Z, G4int 100 G4double Plab, G4int Z, G4int A) 101 { 101 { 102 G4double T; 102 G4double T; 103 G4double Mproj = particle->GetPDGMass(); 103 G4double Mproj = particle->GetPDGMass(); 104 G4LorentzVector Pproj(0.,0.,Plab,std::sqrt(P 104 G4LorentzVector Pproj(0.,0.,Plab,std::sqrt(Plab*Plab+Mproj*Mproj)); 105 G4double ctet1 = GetcosTeta1(Plab, A); 105 G4double ctet1 = GetcosTeta1(Plab, A); 106 106 107 G4double energy=Pproj.e()-Mproj; 107 G4double energy=Pproj.e()-Mproj; 108 108 109 const G4ParticleDefinition* theParticle = pa 109 const G4ParticleDefinition* theParticle = particle; 110 110 111 G4ParticleDefinition * theTargetDef = 0; 111 G4ParticleDefinition * theTargetDef = 0; 112 112 113 if (Z == 1 && A == 1) theTargetDef = th 113 if (Z == 1 && A == 1) theTargetDef = theProton; 114 else if (Z == 1 && A == 2) theTargetDef = th 114 else if (Z == 1 && A == 2) theTargetDef = theDeuteron; 115 else if (Z == 1 && A == 3) theTargetDef = G4 115 else if (Z == 1 && A == 3) theTargetDef = G4Triton::Triton(); 116 else if (Z == 2 && A == 3) theTargetDef = G4 116 else if (Z == 2 && A == 3) theTargetDef = G4He3::He3(); 117 else if (Z == 2 && A == 4) theTargetDef = th 117 else if (Z == 2 && A == 4) theTargetDef = theAlpha; 118 118 119 119 120 G4double TargMass =G4NucleiProperties::GetNu 120 G4double TargMass =G4NucleiProperties::GetNuclearMass(A,Z); 121 121 122 //transform to CMS 122 //transform to CMS 123 123 124 G4LorentzVector lv(0.0,0.0,0.0,TargMass); 124 G4LorentzVector lv(0.0,0.0,0.0,TargMass); 125 lv += Pproj; 125 lv += Pproj; 126 G4double S = lv.mag2()/(GeV*GeV); 126 G4double S = lv.mag2()/(GeV*GeV); 127 127 128 G4ThreeVector bst = lv.boostVector(); 128 G4ThreeVector bst = lv.boostVector(); 129 Pproj.boost(-bst); 129 Pproj.boost(-bst); 130 130 131 G4ThreeVector p1 = Pproj.vect(); 131 G4ThreeVector p1 = Pproj.vect(); 132 G4double ptot = p1.mag(); 132 G4double ptot = p1.mag(); 133 133 134 fbst = bst; 134 fbst = bst; 135 fptot= ptot; 135 fptot= ptot; 136 fTmax = 4.0*ptot*ptot; // In (MeV/c)^2 136 fTmax = 4.0*ptot*ptot; // In (MeV/c)^2 137 137 138 if(Plab < (std::abs(particle->GetBaryonNumbe 138 if(Plab < (std::abs(particle->GetBaryonNumber())*100)*MeV) 139 {return fTmax*G4UniformRand();} 139 {return fTmax*G4UniformRand();} 140 140 141 // Calculation of NN collision properties 141 // Calculation of NN collision properties 142 G4double PlabPerN = Plab/std::abs(theParticl 142 G4double PlabPerN = Plab/std::abs(theParticle->GetBaryonNumber()); 143 G4double NucleonMass = 0.5*( theProton->GetP 143 G4double NucleonMass = 0.5*( theProton->GetPDGMass() + theNeutron->GetPDGMass() ); 144 G4double PrNucleonMass(0.); // Projectile a 144 G4double PrNucleonMass(0.); // Projectile average nucleon mass 145 if( std::abs(theParticle->GetBaryonNumber()) 145 if( std::abs(theParticle->GetBaryonNumber()) == 1 ) { PrNucleonMass = theParticle->GetPDGMass(); } 146 else 146 else { PrNucleonMass = NucleonMass; } 147 G4double energyPerN = std::sqrt( sqr(PlabPer 147 G4double energyPerN = std::sqrt( sqr(PlabPerN) + sqr(PrNucleonMass)); 148 energyPerN -= PrNucleonMass; 148 energyPerN -= PrNucleonMass; 149 //--- 149 //--- 150 150 151 G4double Z1 = particle->GetPDGCharge(); 151 G4double Z1 = particle->GetPDGCharge(); 152 G4double Z2 = Z; 152 G4double Z2 = Z; 153 153 154 G4double beta = CalculateParticleBeta(partic 154 G4double beta = CalculateParticleBeta(particle, ptot); 155 G4double n = CalculateZommerfeld( beta, Z1 155 G4double n = CalculateZommerfeld( beta, Z1, Z2 ); 156 G4double Am = CalculateAm( ptot, n, Z2 ); 156 G4double Am = CalculateAm( ptot, n, Z2 ); 157 fWaveVector = ptot; // /hbarc; 157 fWaveVector = ptot; // /hbarc; 158 158 159 G4LorentzVector Fproj(0.,0.,0.,0.); 159 G4LorentzVector Fproj(0.,0.,0.,0.); 160 const G4double mevToBarn = 0.38938e+6; 160 const G4double mevToBarn = 0.38938e+6; 161 G4double XsCoulomb = mevToBarn*sqr(n/fWaveVe 161 G4double XsCoulomb = mevToBarn*sqr(n/fWaveVector)*pi*(1+ctet1)/(1.+Am)/(1.+2.*Am-ctet1); 162 162 163 G4double XsElastHadronic =cs->GetElasticElem 163 G4double XsElastHadronic =cs->GetElasticElementCrossSection(particle, energy, Z, (G4double)A); 164 G4double XsTotalHadronic =cs->GetTotalElemen 164 G4double XsTotalHadronic =cs->GetTotalElementCrossSection(particle, energy, Z, (G4double)A); 165 165 166 XsElastHadronic/=millibarn; XsTotalHadronic/ 166 XsElastHadronic/=millibarn; XsTotalHadronic/=millibarn; 167 167 168 G4double CoulombProb = XsCoulomb/(XsCoulomb 168 G4double CoulombProb = XsCoulomb/(XsCoulomb+XsElastHadronic); 169 169 170 if(G4UniformRand() < CoulombProb) 170 if(G4UniformRand() < CoulombProb) 171 { // Simulation of Coulomb scattering 171 { // Simulation of Coulomb scattering 172 172 173 G4double phi = twopi * G4UniformRand(); 173 G4double phi = twopi * G4UniformRand(); 174 G4double Ksi = G4UniformRand(); 174 G4double Ksi = G4UniformRand(); 175 175 176 G4double par1 = 2.*(1.+Am)/(1.+ctet1); 176 G4double par1 = 2.*(1.+Am)/(1.+ctet1); 177 177 178 // ////sample ThetaCMS in Coulomb part 178 // ////sample ThetaCMS in Coulomb part 179 179 180 G4double cosThetaCMS = (par1*ctet1- Ksi*(1 180 G4double cosThetaCMS = (par1*ctet1- Ksi*(1.+2.*Am))/(par1-Ksi); 181 181 182 G4double PtZ=ptot*cosThetaCMS; 182 G4double PtZ=ptot*cosThetaCMS; 183 Fproj.setPz(PtZ); 183 Fproj.setPz(PtZ); 184 G4double PtProjCMS = ptot*std::sqrt(1.0 - 184 G4double PtProjCMS = ptot*std::sqrt(1.0 - cosThetaCMS*cosThetaCMS); 185 G4double PtX= PtProjCMS * std::cos(phi); 185 G4double PtX= PtProjCMS * std::cos(phi); 186 G4double PtY= PtProjCMS * std::sin(phi); 186 G4double PtY= PtProjCMS * std::sin(phi); 187 Fproj.setPx(PtX); 187 Fproj.setPx(PtX); 188 Fproj.setPy(PtY); 188 Fproj.setPy(PtY); 189 Fproj.setE(std::sqrt(PtX*PtX+PtY*PtY+PtZ*P 189 Fproj.setE(std::sqrt(PtX*PtX+PtY*PtY+PtZ*PtZ+Mproj*Mproj)); 190 T = -(Pproj-Fproj).mag2(); 190 T = -(Pproj-Fproj).mag2(); 191 } 191 } 192 else 192 else 193 { 193 { 194 // Simulation of strong interaction scatte 194 // Simulation of strong interaction scattering 195 195 196 G4double Qmax = 2.*ptot/197.33; // in fm 196 G4double Qmax = 2.*ptot/197.33; // in fm^-1 197 197 198 G4double Amag = 1.0; // A1 in Majora 198 G4double Amag = 1.0; // A1 in Majorant funct:A1*exp(-q*A2) 199 G4double SlopeMag = 0.5; // A2 in Majora 199 G4double SlopeMag = 0.5; // A2 in Majorant funct:A1*exp(-q*A2) 200 200 201 G4double sig_pbarp = cs->GetAntiHadronNucl 201 G4double sig_pbarp = cs->GetAntiHadronNucleonTotCrSc(theAProton,energyPerN); //mb 202 202 203 fRa = 1.113*G4Pow::GetInstance()->Z13(A) - 203 fRa = 1.113*G4Pow::GetInstance()->Z13(A) - 204 0.227/G4Pow::GetInstance()->Z13(A); 204 0.227/G4Pow::GetInstance()->Z13(A); 205 if(A == 3) fRa=1.81; 205 if(A == 3) fRa=1.81; 206 if(A == 4) fRa=1.37; 206 if(A == 4) fRa=1.37; 207 207 208 if((A>=12.) && (A<27) ) fRa=fRa*0.85; 208 if((A>=12.) && (A<27) ) fRa=fRa*0.85; 209 if((A>=27.) && (A<48) ) fRa=fRa*0.90; 209 if((A>=27.) && (A<48) ) fRa=fRa*0.90; 210 if((A>=48.) && (A<65) ) fRa=fRa*0.95; 210 if((A>=48.) && (A<65) ) fRa=fRa*0.95; 211 211 212 G4double Ref2 = XsTotalHadronic/10./2./pi; 212 G4double Ref2 = XsTotalHadronic/10./2./pi; // in fm^2 213 G4double ceff2 = 0.0; 213 G4double ceff2 = 0.0; 214 G4double rho = 0.0; 214 G4double rho = 0.0; 215 215 216 if ((theParticle == theAProton) || (thePa 216 if ((theParticle == theAProton) || (theParticle == theANeutron)) 217 { 217 { 218 if(theTargetDef == theProton) 218 if(theTargetDef == theProton) 219 { 219 { 220 // Determination of the real part of P 220 // Determination of the real part of Pbar+N amplitude 221 if(Plab < 610.) 221 if(Plab < 610.) 222 { rho = 1.3347-10.342*Plab/1000.+22.27 222 { rho = 1.3347-10.342*Plab/1000.+22.277*Plab/1000.*Plab/1000.- 223 13.634*Plab/1000.*Plab/1000.*P 223 13.634*Plab/1000.*Plab/1000.*Plab/1000. ;} 224 if((Plab < 5500.)&&(Plab >= 610.) ) 224 if((Plab < 5500.)&&(Plab >= 610.) ) 225 { rho = 0.22; } 225 { rho = 0.22; } 226 if((Plab >= 5500.)&&(Plab < 12300.) ) 226 if((Plab >= 5500.)&&(Plab < 12300.) ) 227 { rho = -0.32; } 227 { rho = -0.32; } 228 if( Plab >= 12300.) 228 if( Plab >= 12300.) 229 { rho = 0.135-2.26/(std::sqrt(S)) ;} 229 { rho = 0.135-2.26/(std::sqrt(S)) ;} 230 Ref2 = 0.35 + 0.9/std::sqrt(std::sqrt 230 Ref2 = 0.35 + 0.9/std::sqrt(std::sqrt(S-4.*0.88))+0.04*G4Log(S) ; 231 ceff2 = 0.375 - 2./S + 0.44/(sqr(S-4.) 231 ceff2 = 0.375 - 2./S + 0.44/(sqr(S-4.)+1.5) ; 232 Ref2 =Ref2*Ref2; 232 Ref2 =Ref2*Ref2; 233 ceff2 = ceff2*ceff2; 233 ceff2 = ceff2*ceff2; 234 } 234 } 235 235 236 if( (Z==1)&&(A==2) ) 236 if( (Z==1)&&(A==2) ) 237 { 237 { 238 Ref2 = fRa*fRa - 0.28 + 0.019 * sig_pb 238 Ref2 = fRa*fRa - 0.28 + 0.019 * sig_pbarp + 2.06e-6 * sig_pbarp*sig_pbarp; 239 ceff2 = 0.297 + 7.853e-04*sig_pbarp + 239 ceff2 = 0.297 + 7.853e-04*sig_pbarp + 0.2899*G4Exp(-0.03*sig_pbarp); 240 } 240 } 241 if( (Z==1)&&(A==3) ) 241 if( (Z==1)&&(A==3) ) 242 { 242 { 243 Ref2 = fRa*fRa - 1.36 + 0.025 * sig_pb 243 Ref2 = fRa*fRa - 1.36 + 0.025 * sig_pbarp - 3.69e-7 * sig_pbarp*sig_pbarp; 244 ceff2 = 0.149 + 7.091e-04*sig_pbarp + 244 ceff2 = 0.149 + 7.091e-04*sig_pbarp + 0.3743*G4Exp(-0.03*sig_pbarp); 245 } 245 } 246 if( (Z==2)&&(A==3) ) 246 if( (Z==2)&&(A==3) ) 247 { 247 { 248 Ref2 = fRa*fRa - 1.36 + 0.025 * sig_pb 248 Ref2 = fRa*fRa - 1.36 + 0.025 * sig_pbarp - 3.69e-7 * sig_pbarp*sig_pbarp; 249 ceff2 = 0.149 + 7.091e-04*sig_pbarp + 249 ceff2 = 0.149 + 7.091e-04*sig_pbarp + 0.3743*G4Exp(-0.03*sig_pbarp); 250 } 250 } 251 if( (Z==2)&&(A==4) ) 251 if( (Z==2)&&(A==4) ) 252 { 252 { 253 Ref2 = fRa*fRa -0.46 +0.03*sig_pbarp - 253 Ref2 = fRa*fRa -0.46 +0.03*sig_pbarp - 2.98e-6*sig_pbarp*sig_pbarp; 254 ceff2= 0.078 + 6.657e-4*sig_pbarp + 0. 254 ceff2= 0.078 + 6.657e-4*sig_pbarp + 0.3359*G4Exp(-0.03*sig_pbarp); 255 } 255 } 256 if(Z>2) 256 if(Z>2) 257 { 257 { 258 Ref2 = fRa*fRa +2.48*0.01*sig_pbarp*fR 258 Ref2 = fRa*fRa +2.48*0.01*sig_pbarp*fRa - 2.23e-6*sig_pbarp*sig_pbarp*fRa*fRa; 259 ceff2 = 0.16+3.3e-4*sig_pbarp+0.35*G4E 259 ceff2 = 0.16+3.3e-4*sig_pbarp+0.35*G4Exp(-0.03*sig_pbarp); 260 } 260 } 261 } // End of if ((theParticle == theAProto 261 } // End of if ((theParticle == theAProton) || (theParticle == theANeutron)) 262 262 263 if (theParticle == theADeuteron) 263 if (theParticle == theADeuteron) 264 { 264 { 265 if(theTargetDef == theProton) 265 if(theTargetDef == theProton) 266 { 266 { 267 ceff2 = 0.297 + 7.853e-04*sig_pbarp + 267 ceff2 = 0.297 + 7.853e-04*sig_pbarp + 0.2899*G4Exp(-0.03*sig_pbarp); 268 } 268 } 269 if(theTargetDef == theDeuteron) 269 if(theTargetDef == theDeuteron) 270 { 270 { 271 ceff2 = 0.65 + 3.0e-4*sig_pbarp + 0.55 271 ceff2 = 0.65 + 3.0e-4*sig_pbarp + 0.55 * G4Exp(-0.03*sig_pbarp); 272 } 272 } 273 if( (theTargetDef == G4Triton::Triton()) 273 if( (theTargetDef == G4Triton::Triton()) || (theTargetDef == G4He3::He3() ) ) 274 { 274 { 275 ceff2 = 0.57 + 2.5e-4*sig_pbarp + 0.65 275 ceff2 = 0.57 + 2.5e-4*sig_pbarp + 0.65 * G4Exp(-0.02*sig_pbarp); 276 } 276 } 277 if(theTargetDef == theAlpha) 277 if(theTargetDef == theAlpha) 278 { 278 { 279 ceff2 = 0.40 + 3.5e-4 *sig_pbarp + 0.4 279 ceff2 = 0.40 + 3.5e-4 *sig_pbarp + 0.45 * G4Exp(-0.02*sig_pbarp); 280 } 280 } 281 if(Z>2) 281 if(Z>2) 282 { 282 { 283 ceff2 = 0.38 + 2.0e-4 *sig_pbarp + 0.5 283 ceff2 = 0.38 + 2.0e-4 *sig_pbarp + 0.5 * G4Exp(-0.03*sig_pbarp); 284 } 284 } 285 } 285 } 286 286 287 if( (theParticle ==theAHe3) || (theParticl 287 if( (theParticle ==theAHe3) || (theParticle ==theATriton) ) 288 { 288 { 289 if(theTargetDef == theProton) 289 if(theTargetDef == theProton) 290 { 290 { 291 ceff2 = 0.149 + 7.091e-04*sig_pbarp + 291 ceff2 = 0.149 + 7.091e-04*sig_pbarp + 0.3743*G4Exp(-0.03*sig_pbarp); 292 } 292 } 293 if(theTargetDef == theDeuteron) 293 if(theTargetDef == theDeuteron) 294 { 294 { 295 ceff2 = 0.57 + 2.5e-4*sig_pbarp + 0.65 295 ceff2 = 0.57 + 2.5e-4*sig_pbarp + 0.65 * G4Exp(-0.02*sig_pbarp); 296 } 296 } 297 if( (theTargetDef == G4Triton::Triton()) 297 if( (theTargetDef == G4Triton::Triton()) || (theTargetDef == G4He3::He3() ) ) 298 { 298 { 299 ceff2 = 0.39 + 2.7e-4*sig_pbarp + 0.7 299 ceff2 = 0.39 + 2.7e-4*sig_pbarp + 0.7 * G4Exp(-0.02*sig_pbarp); 300 } 300 } 301 if(theTargetDef == theAlpha) 301 if(theTargetDef == theAlpha) 302 { 302 { 303 ceff2 = 0.24 + 3.5e-4*sig_pbarp + 0.75 303 ceff2 = 0.24 + 3.5e-4*sig_pbarp + 0.75 * G4Exp(-0.03*sig_pbarp); 304 } 304 } 305 if(Z>2) 305 if(Z>2) 306 { 306 { 307 ceff2 = 0.26 + 2.2e-4*sig_pbarp + 0.33 307 ceff2 = 0.26 + 2.2e-4*sig_pbarp + 0.33*G4Exp(-0.03*sig_pbarp); 308 } 308 } 309 } 309 } 310 310 311 if ( (theParticle == theAAlpha) || (ceff2 311 if ( (theParticle == theAAlpha) || (ceff2 == 0.0) ) 312 { 312 { 313 if(theTargetDef == theProton) 313 if(theTargetDef == theProton) 314 { 314 { 315 ceff2= 0.078 + 6.657e-4*sig_pbarp + 0. 315 ceff2= 0.078 + 6.657e-4*sig_pbarp + 0.3359*G4Exp(-0.03*sig_pbarp); 316 } 316 } 317 if(theTargetDef == theDeuteron) 317 if(theTargetDef == theDeuteron) 318 { 318 { 319 ceff2 = 0.40 + 3.5e-4 *sig_pbarp + 0.4 319 ceff2 = 0.40 + 3.5e-4 *sig_pbarp + 0.45 * G4Exp(-0.02*sig_pbarp); 320 } 320 } 321 if( (theTargetDef == G4Triton::Triton()) 321 if( (theTargetDef == G4Triton::Triton()) || (theTargetDef == G4He3::He3() ) ) 322 { 322 { 323 ceff2 = 0.24 + 3.5e-4*sig_pbarp + 0.75 323 ceff2 = 0.24 + 3.5e-4*sig_pbarp + 0.75 * G4Exp(-0.03*sig_pbarp); 324 } 324 } 325 if(theTargetDef == theAlpha) 325 if(theTargetDef == theAlpha) 326 { 326 { 327 ceff2 = 0.17 + 3.5e-4*sig_pbarp + 0.45 327 ceff2 = 0.17 + 3.5e-4*sig_pbarp + 0.45 * G4Exp(-0.03*sig_pbarp); 328 } 328 } 329 if(Z>2) 329 if(Z>2) 330 { 330 { 331 ceff2 = 0.22 + 2.0e-4*sig_pbarp + 0.2 331 ceff2 = 0.22 + 2.0e-4*sig_pbarp + 0.2 * G4Exp(-0.03*sig_pbarp); 332 } 332 } 333 } 333 } 334 334 335 fRef=std::sqrt(Ref2); 335 fRef=std::sqrt(Ref2); 336 fceff = std::sqrt(ceff2); 336 fceff = std::sqrt(ceff2); 337 337 338 G4double Q = 0.0 ; 338 G4double Q = 0.0 ; 339 G4double BracFunct; 339 G4double BracFunct; 340 340 341 const G4int maxNumberOfLoops = 10000; 341 const G4int maxNumberOfLoops = 10000; 342 G4int loopCounter = 0; 342 G4int loopCounter = 0; 343 do 343 do 344 { 344 { 345 Q = -G4Log(1.-(1.- G4Exp(-SlopeMag * Qma 345 Q = -G4Log(1.-(1.- G4Exp(-SlopeMag * Qmax))* G4UniformRand() )/SlopeMag; 346 G4double x = fRef * Q; 346 G4double x = fRef * Q; 347 BracFunct = ( ( sqr(BesselOneByArg(x))+s 347 BracFunct = ( ( sqr(BesselOneByArg(x))+sqr(rho/2. * BesselJzero(x)) ) 348 * sqr(DampFactor(pi*fceff*Q))) /(Ama 348 * sqr(DampFactor(pi*fceff*Q))) /(Amag*G4Exp(-SlopeMag*Q)); 349 BracFunct = BracFunct * Q; 349 BracFunct = BracFunct * Q; 350 } 350 } 351 while ( (G4UniformRand()>BracFunct) && 351 while ( (G4UniformRand()>BracFunct) && 352 ++loopCounter < maxNumberOfLoops ) 352 ++loopCounter < maxNumberOfLoops ); /* Loop checking, 10.08.2015, A.Ribon */ 353 if ( loopCounter >= maxNumberOfLoops ) { 353 if ( loopCounter >= maxNumberOfLoops ) { 354 fTetaCMS = 0.0; 354 fTetaCMS = 0.0; 355 return 0.0; 355 return 0.0; 356 } 356 } 357 357 358 T= sqr(Q); 358 T= sqr(Q); 359 T*=3.893913e+4; // fm^(-2) -> MeV^2 359 T*=3.893913e+4; // fm^(-2) -> MeV^2 360 360 361 } // End of simulation of strong interactio 361 } // End of simulation of strong interaction scattering 362 362 363 return T; 363 return T; 364 } 364 } 365 365 366 ////////////////////////////////////////////// 366 ///////////////////////////////////////////////////////////////////// 367 // Sample of Theta in CMS 367 // Sample of Theta in CMS 368 G4double G4AntiNuclElastic::SampleThetaCMS(co 368 G4double G4AntiNuclElastic::SampleThetaCMS(const G4ParticleDefinition* p, G4double plab, 369 369 G4int Z, G4int A) 370 { 370 { 371 G4double T; 371 G4double T; 372 T = SampleInvariantT( p, plab, Z, A); 372 T = SampleInvariantT( p, plab, Z, A); 373 373 374 // NaN finder 374 // NaN finder 375 if(!(T < 0.0 || T >= 0.0)) 375 if(!(T < 0.0 || T >= 0.0)) 376 { 376 { 377 if (verboseLevel > 0) 377 if (verboseLevel > 0) 378 { 378 { 379 G4cout << "G4DiffuseElastic:WARNING: A = 379 G4cout << "G4DiffuseElastic:WARNING: A = " << A 380 << " mom(GeV)= " << plab/GeV 380 << " mom(GeV)= " << plab/GeV 381 << " S-wave will be sampled" 381 << " S-wave will be sampled" 382 << G4endl; 382 << G4endl; 383 } 383 } 384 T = G4UniformRand()*fTmax; 384 T = G4UniformRand()*fTmax; 385 385 386 } 386 } 387 387 388 if(fptot > 0.) 388 if(fptot > 0.) 389 { 389 { 390 G4double cosTet=1.0-T/(2.*fptot*fptot); 390 G4double cosTet=1.0-T/(2.*fptot*fptot); 391 if(cosTet > 1.0 ) cosTet= 1.; 391 if(cosTet > 1.0 ) cosTet= 1.; 392 if(cosTet < -1.0 ) cosTet=-1.; 392 if(cosTet < -1.0 ) cosTet=-1.; 393 fTetaCMS=std::acos(cosTet); 393 fTetaCMS=std::acos(cosTet); 394 return fTetaCMS; 394 return fTetaCMS; 395 } else 395 } else 396 { 396 { 397 return 2.*G4UniformRand()-1.; 397 return 2.*G4UniformRand()-1.; 398 } 398 } 399 } 399 } 400 400 401 401 402 ////////////////////////////////////////////// 402 ///////////////////////////////////////////////////////////////////// 403 // Sample of Theta in Lab System 403 // Sample of Theta in Lab System 404 G4double G4AntiNuclElastic::SampleThetaLab(co 404 G4double G4AntiNuclElastic::SampleThetaLab(const G4ParticleDefinition* p, G4double plab, 405 405 G4int Z, G4int A) 406 { 406 { 407 G4double T; 407 G4double T; 408 T = SampleInvariantT( p, plab, Z, A); 408 T = SampleInvariantT( p, plab, Z, A); 409 409 410 // NaN finder 410 // NaN finder 411 if(!(T < 0.0 || T >= 0.0)) 411 if(!(T < 0.0 || T >= 0.0)) 412 { 412 { 413 if (verboseLevel > 0) 413 if (verboseLevel > 0) 414 { 414 { 415 G4cout << "G4DiffuseElastic:WARNING: A = 415 G4cout << "G4DiffuseElastic:WARNING: A = " << A 416 << " mom(GeV)= " << plab/GeV 416 << " mom(GeV)= " << plab/GeV 417 << " S-wave will be sampled" 417 << " S-wave will be sampled" 418 << G4endl; 418 << G4endl; 419 } 419 } 420 T = G4UniformRand()*fTmax; 420 T = G4UniformRand()*fTmax; 421 } 421 } 422 422 423 G4double phi = G4UniformRand()*twopi; 423 G4double phi = G4UniformRand()*twopi; 424 424 425 G4double cost(1.); 425 G4double cost(1.); 426 if(fTmax > 0.) {cost = 1. - 2.0*T/fTmax;} 426 if(fTmax > 0.) {cost = 1. - 2.0*T/fTmax;} 427 427 428 G4double sint; 428 G4double sint; 429 if( cost >= 1.0 ) 429 if( cost >= 1.0 ) 430 { 430 { 431 cost = 1.0; 431 cost = 1.0; 432 sint = 0.0; 432 sint = 0.0; 433 } 433 } 434 else if( cost <= -1.0) 434 else if( cost <= -1.0) 435 { 435 { 436 cost = -1.0; 436 cost = -1.0; 437 sint = 0.0; 437 sint = 0.0; 438 } 438 } 439 else 439 else 440 { 440 { 441 sint = std::sqrt((1.0-cost)*(1.0+cost)); 441 sint = std::sqrt((1.0-cost)*(1.0+cost)); 442 } 442 } 443 443 444 G4double m1 = p->GetPDGMass(); 444 G4double m1 = p->GetPDGMass(); 445 G4ThreeVector v(sint*std::cos(phi),sint*std: 445 G4ThreeVector v(sint*std::cos(phi),sint*std::sin(phi),cost); 446 v *= fptot; 446 v *= fptot; 447 G4LorentzVector nlv(v.x(),v.y(),v.z(),std::s 447 G4LorentzVector nlv(v.x(),v.y(),v.z(),std::sqrt(fptot*fptot + m1*m1)); 448 448 449 nlv.boost(fbst); 449 nlv.boost(fbst); 450 450 451 G4ThreeVector np = nlv.vect(); 451 G4ThreeVector np = nlv.vect(); 452 G4double theta = np.theta(); 452 G4double theta = np.theta(); 453 fThetaLab = theta; 453 fThetaLab = theta; 454 454 455 return theta; 455 return theta; 456 } 456 } 457 457 458 ////////////////////////////////////////////// 458 //////////////////////////////////////////////////////////////////// 459 // Calculation of Damp factor 459 // Calculation of Damp factor 460 G4double G4AntiNuclElastic::DampFactor(G4doub 460 G4double G4AntiNuclElastic::DampFactor(G4double x) 461 { 461 { 462 G4double df; 462 G4double df; 463 G4double f3 = 6.; // first factorials 463 G4double f3 = 6.; // first factorials 464 464 465 if( std::fabs(x) < 0.01 ) 465 if( std::fabs(x) < 0.01 ) 466 { 466 { 467 df=1./(1.+x*x/f3); 467 df=1./(1.+x*x/f3); 468 } 468 } 469 else 469 else 470 { 470 { 471 df = x/std::sinh(x); 471 df = x/std::sinh(x); 472 } 472 } 473 return df; 473 return df; 474 } 474 } 475 475 476 476 477 ////////////////////////////////////////////// 477 ///////////////////////////////////////////////////////////////////////////////// 478 // Calculation of particle velocity Beta 478 // Calculation of particle velocity Beta 479 479 480 G4double G4AntiNuclElastic::CalculateParticle 480 G4double G4AntiNuclElastic::CalculateParticleBeta( const G4ParticleDefinition* particle, 481 G4double mom 481 G4double momentum ) 482 { 482 { 483 G4double mass = particle->GetPDGMass(); 483 G4double mass = particle->GetPDGMass(); 484 G4double a = momentum/mass; 484 G4double a = momentum/mass; 485 fBeta = a/std::sqrt(1+a*a); 485 fBeta = a/std::sqrt(1+a*a); 486 486 487 return fBeta; 487 return fBeta; 488 } 488 } 489 489 490 490 491 ////////////////////////////////////////////// 491 /////////////////////////////////////////////////////////////////////////////////// 492 // Calculation of parameter Zommerfeld 492 // Calculation of parameter Zommerfeld 493 493 494 G4double G4AntiNuclElastic::CalculateZommerfe 494 G4double G4AntiNuclElastic::CalculateZommerfeld( G4double beta, G4double Z1, G4double Z2 ) 495 { 495 { 496 fZommerfeld = fine_structure_const*Z1*Z2/bet 496 fZommerfeld = fine_structure_const*Z1*Z2/beta; 497 497 498 return fZommerfeld; 498 return fZommerfeld; 499 } 499 } 500 500 501 ////////////////////////////////////////////// 501 //////////////////////////////////////////////////////////////////////////////////// 502 // 502 // 503 G4double G4AntiNuclElastic::CalculateAm( G4dou 503 G4double G4AntiNuclElastic::CalculateAm( G4double momentum, G4double n, G4double Z) 504 { 504 { 505 G4double k = momentum/hbarc; 505 G4double k = momentum/hbarc; 506 G4double ch = 1.13 + 3.76*n*n; 506 G4double ch = 1.13 + 3.76*n*n; 507 G4double zn = 1.77*k/G4Pow::GetInstance()-> 507 G4double zn = 1.77*k/G4Pow::GetInstance()->A13(Z)*Bohr_radius; 508 G4double zn2 = zn*zn; 508 G4double zn2 = zn*zn; 509 fAm = ch/zn2; 509 fAm = ch/zn2; 510 510 511 return fAm; 511 return fAm; 512 } 512 } 513 513 514 ////////////////////////////////////////////// 514 ///////////////////////////////////////////////////////////// 515 // 515 // 516 // Bessel J0 function based on rational approx 516 // Bessel J0 function based on rational approximation from 517 // J.F. Hart, Computer Approximations, New Yor 517 // J.F. Hart, Computer Approximations, New York, Willey 1968, p. 141 518 518 519 G4double G4AntiNuclElastic::BesselJzero(G4doub 519 G4double G4AntiNuclElastic::BesselJzero(G4double value) 520 { 520 { 521 G4double modvalue, value2, fact1, fact2, arg 521 G4double modvalue, value2, fact1, fact2, arg, shift, bessel; 522 522 523 modvalue = std::fabs(value); 523 modvalue = std::fabs(value); 524 524 525 if ( value < 8.0 && value > -8.0 ) 525 if ( value < 8.0 && value > -8.0 ) 526 { 526 { 527 value2 = value*value; 527 value2 = value*value; 528 528 529 fact1 = 57568490574.0 + value2*(-13362590 529 fact1 = 57568490574.0 + value2*(-13362590354.0 530 + value2*( 65161964 530 + value2*( 651619640.7 531 + value2*(-11214424 531 + value2*(-11214424.18 532 + value2*( 77392.33 532 + value2*( 77392.33017 533 + value2*(-184.9052 533 + value2*(-184.9052456 ) ) ) ) ); 534 534 535 fact2 = 57568490411.0 + value2*( 10295329 535 fact2 = 57568490411.0 + value2*( 1029532985.0 536 + value2*( 9494680. 536 + value2*( 9494680.718 537 + value2*(59272.648 537 + value2*(59272.64853 538 + value2*(267.85327 538 + value2*(267.8532712 539 + value2*1.0 539 + value2*1.0 ) ) ) ); 540 540 541 bessel = fact1/fact2; 541 bessel = fact1/fact2; 542 } 542 } 543 else 543 else 544 { 544 { 545 arg = 8.0/modvalue; 545 arg = 8.0/modvalue; 546 546 547 value2 = arg*arg; 547 value2 = arg*arg; 548 548 549 shift = modvalue-0.785398164; 549 shift = modvalue-0.785398164; 550 550 551 fact1 = 1.0 + value2*(-0.1098628627e-2 551 fact1 = 1.0 + value2*(-0.1098628627e-2 552 + value2*(0.2734510407e-4 552 + value2*(0.2734510407e-4 553 + value2*(-0.2073370639e-5 553 + value2*(-0.2073370639e-5 554 + value2*0.2093887211e-6 ) 554 + value2*0.2093887211e-6 ) ) ); 555 fact2 = -0.1562499995e-1 + value2*(0.143048 555 fact2 = -0.1562499995e-1 + value2*(0.1430488765e-3 556 + value2*(-0.691 556 + value2*(-0.6911147651e-5 557 + value2*(0.7621 557 + value2*(0.7621095161e-6 558 - value2*0.93494 558 - value2*0.934945152e-7 ) ) ); 559 559 560 bessel = std::sqrt(0.636619772/modvalue)*( 560 bessel = std::sqrt(0.636619772/modvalue)*(std::cos(shift)*fact1 - arg*std::sin(shift)*fact2); 561 } 561 } 562 return bessel; 562 return bessel; 563 } 563 } 564 564 565 565 566 ////////////////////////////////////////////// 566 ////////////////////////////////////////////////////////////////////////////// 567 // Bessel J1 function based on rational approx 567 // Bessel J1 function based on rational approximation from 568 // J.F. Hart, Computer Approximations, New Yor 568 // J.F. Hart, Computer Approximations, New York, Willey 1968, p. 141 569 569 570 G4double G4AntiNuclElastic::BesselJone(G4doub 570 G4double G4AntiNuclElastic::BesselJone(G4double value) 571 { 571 { 572 G4double modvalue, value2, fact1, fact2, arg 572 G4double modvalue, value2, fact1, fact2, arg, shift, bessel; 573 573 574 modvalue = std::fabs(value); 574 modvalue = std::fabs(value); 575 575 576 if ( modvalue < 8.0 ) 576 if ( modvalue < 8.0 ) 577 { 577 { 578 value2 = value*value; 578 value2 = value*value; 579 fact1 = value*(72362614232.0 + value2*(-7 579 fact1 = value*(72362614232.0 + value2*(-7895059235.0 580 + value2*( 2 580 + value2*( 242396853.1 581 + value2*(-2 581 + value2*(-2972611.439 582 + value2*( 1 582 + value2*( 15704.48260 583 + value2*(-3 583 + value2*(-30.16036606 ) ) ) ) ) ); 584 584 585 fact2 = 144725228442.0 + value2*(23005351 585 fact2 = 144725228442.0 + value2*(2300535178.0 586 + value2*(18583304 586 + value2*(18583304.74 587 + value2*(99447.43 587 + value2*(99447.43394 588 + value2*(376.9991 588 + value2*(376.9991397 589 + value2*1.0 589 + value2*1.0 ) ) ) ); 590 bessel = fact1/fact2; 590 bessel = fact1/fact2; 591 } 591 } 592 else 592 else 593 { 593 { 594 arg = 8.0/modvalue; 594 arg = 8.0/modvalue; 595 value2 = arg*arg; 595 value2 = arg*arg; 596 596 597 shift = modvalue - 2.356194491; 597 shift = modvalue - 2.356194491; 598 598 599 fact1 = 1.0 + value2*( 0.183105e-2 599 fact1 = 1.0 + value2*( 0.183105e-2 600 + value2*(-0.3516396496e-4 600 + value2*(-0.3516396496e-4 601 + value2*(0.2457520174e-5 601 + value2*(0.2457520174e-5 602 + value2*(-0.240337019e-6 602 + value2*(-0.240337019e-6 ) ) ) ); 603 603 604 fact2 = 0.04687499995 + value2*(-0.2002690 604 fact2 = 0.04687499995 + value2*(-0.2002690873e-3 605 + value2*( 0.8449199 605 + value2*( 0.8449199096e-5 606 + value2*(-0.8822898 606 + value2*(-0.88228987e-6 607 + value2*0.105787412 607 + value2*0.105787412e-6 ) ) ); 608 608 609 bessel = std::sqrt( 0.636619772/modvalue)* 609 bessel = std::sqrt( 0.636619772/modvalue)*(std::cos(shift)*fact1 - arg*std::sin(shift)*fact2); 610 if (value < 0.0) bessel = -bessel; 610 if (value < 0.0) bessel = -bessel; 611 } 611 } 612 return bessel; 612 return bessel; 613 } 613 } 614 614 615 ////////////////////////////////////////////// 615 //////////////////////////////////////////////////////////////////////////////// 616 // return J1(x)/x with special case for small 616 // return J1(x)/x with special case for small x 617 G4double G4AntiNuclElastic::BesselOneByArg(G4d 617 G4double G4AntiNuclElastic::BesselOneByArg(G4double x) 618 { 618 { 619 G4double x2, result; 619 G4double x2, result; 620 620 621 if( std::fabs(x) < 0.01 ) 621 if( std::fabs(x) < 0.01 ) 622 { 622 { 623 x *= 0.5; 623 x *= 0.5; 624 x2 = x*x; 624 x2 = x*x; 625 result = (2.- x2 + x2*x2/6.)/4.; 625 result = (2.- x2 + x2*x2/6.)/4.; 626 } 626 } 627 else 627 else 628 { 628 { 629 result = BesselJone(x)/x; 629 result = BesselJone(x)/x; 630 } 630 } 631 return result; 631 return result; 632 } 632 } 633 633 634 ////////////////////////////////////////////// 634 ///////////////////////////////////////////////////////////////////////////////// 635 // return angle from which Coulomb scattering 635 // return angle from which Coulomb scattering is calculated 636 G4double G4AntiNuclElastic::GetcosTeta1(G4doub 636 G4double G4AntiNuclElastic::GetcosTeta1(G4double plab, G4int A) 637 { 637 { 638 638 639 // G4double p0 =G4LossTableManager::Instance() 639 // G4double p0 =G4LossTableManager::Instance()->FactorForAngleLimit()*CLHEP::hbarc/CLHEP::fermi; 640 G4double p0 = 1.*hbarc/fermi; 640 G4double p0 = 1.*hbarc/fermi; 641 //G4double cteta1 = 1.0 - p0*p0/2.0 * pow(A,2. 641 //G4double cteta1 = 1.0 - p0*p0/2.0 * pow(A,2./3.)/(plab*plab); 642 G4double cteta1 = 1.0 - p0*p0/2.0 * G4Pow::G 642 G4double cteta1 = 1.0 - p0*p0/2.0 * G4Pow::GetInstance()->Z23(A)/(plab*plab); 643 ////////////////// 643 ////////////////// 644 if(cteta1 < -1.) cteta1 = -1.0; 644 if(cteta1 < -1.) cteta1 = -1.0; 645 return cteta1; 645 return cteta1; 646 } 646 } 647 647 648 648 649 649 650 650 651 651 652 652 653 653 654 654