Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4AntiNuclElastic.cc - A.Galoyan 02.05.2011 26 // 27 // 27 // Geant4 Header : G4AntiNuclElastic 28 // Geant4 Header : G4AntiNuclElastic 28 // 29 // 29 // 30 // 30 31 31 #include "G4AntiNuclElastic.hh" 32 #include "G4AntiNuclElastic.hh" 32 33 33 #include "G4PhysicalConstants.hh" 34 #include "G4PhysicalConstants.hh" 34 #include "G4SystemOfUnits.hh" 35 #include "G4SystemOfUnits.hh" 35 #include "G4ParticleTable.hh" 36 #include "G4ParticleTable.hh" 36 #include "G4ParticleDefinition.hh" 37 #include "G4ParticleDefinition.hh" 37 #include "G4IonTable.hh" 38 #include "G4IonTable.hh" 38 #include "Randomize.hh" 39 #include "Randomize.hh" 39 #include "G4AntiProton.hh" 40 #include "G4AntiProton.hh" 40 #include "G4AntiNeutron.hh" 41 #include "G4AntiNeutron.hh" 41 #include "G4AntiDeuteron.hh" 42 #include "G4AntiDeuteron.hh" 42 #include "G4AntiAlpha.hh" 43 #include "G4AntiAlpha.hh" 43 #include "G4AntiTriton.hh" 44 #include "G4AntiTriton.hh" 44 #include "G4AntiHe3.hh" 45 #include "G4AntiHe3.hh" 45 #include "G4Proton.hh" 46 #include "G4Proton.hh" 46 #include "G4Neutron.hh" 47 #include "G4Neutron.hh" 47 #include "G4Deuteron.hh" 48 #include "G4Deuteron.hh" 48 #include "G4Alpha.hh" 49 #include "G4Alpha.hh" 49 #include "G4Pow.hh" 50 #include "G4Pow.hh" 50 #include "G4Exp.hh" 51 #include "G4Exp.hh" 51 #include "G4Log.hh" 52 #include "G4Log.hh" 52 53 53 #include "G4NucleiProperties.hh" 54 #include "G4NucleiProperties.hh" 54 #include "G4CrossSectionDataSetRegistry.hh" << 55 55 56 56 G4AntiNuclElastic::G4AntiNuclElastic() 57 G4AntiNuclElastic::G4AntiNuclElastic() 57 : G4HadronElastic("AntiAElastic") 58 : G4HadronElastic("AntiAElastic") 58 { 59 { 59 //V.Ivanchenko commented out 60 //V.Ivanchenko commented out 60 //SetMinEnergy( 0.1*GeV ); 61 //SetMinEnergy( 0.1*GeV ); 61 //SetMaxEnergy( 10.*TeV ); 62 //SetMaxEnergy( 10.*TeV ); 62 63 >> 64 63 theAProton = G4AntiProton::AntiProton( 65 theAProton = G4AntiProton::AntiProton(); 64 theANeutron = G4AntiNeutron::AntiNeutro 66 theANeutron = G4AntiNeutron::AntiNeutron(); 65 theADeuteron = G4AntiDeuteron::AntiDeute 67 theADeuteron = G4AntiDeuteron::AntiDeuteron(); 66 theATriton = G4AntiTriton::AntiTriton( 68 theATriton = G4AntiTriton::AntiTriton(); 67 theAAlpha = G4AntiAlpha::AntiAlpha(); 69 theAAlpha = G4AntiAlpha::AntiAlpha(); 68 theAHe3 = G4AntiHe3::AntiHe3(); 70 theAHe3 = G4AntiHe3::AntiHe3(); 69 71 70 theProton = G4Proton::Proton(); 72 theProton = G4Proton::Proton(); 71 theNeutron = G4Neutron::Neutron(); 73 theNeutron = G4Neutron::Neutron(); 72 theDeuteron = G4Deuteron::Deuteron(); 74 theDeuteron = G4Deuteron::Deuteron(); 73 theAlpha = G4Alpha::Alpha(); 75 theAlpha = G4Alpha::Alpha(); 74 76 75 G4CrossSectionDataSetRegistry* reg = G4Cross << 76 cs = static_cast<G4ComponentAntiNuclNuclearX << 77 if(!cs) { cs = new G4ComponentAntiNuclNuclea << 78 77 >> 78 cs = new G4ComponentAntiNuclNuclearXS(); 79 fParticle = 0; 79 fParticle = 0; 80 fWaveVector = 0.; 80 fWaveVector = 0.; 81 fBeta = 0.; 81 fBeta = 0.; 82 fZommerfeld = 0.; 82 fZommerfeld = 0.; 83 fAm = 0.; 83 fAm = 0.; 84 fTetaCMS = 0.; 84 fTetaCMS = 0.; 85 fRa = 0.; 85 fRa = 0.; 86 fRef = 0.; 86 fRef = 0.; 87 fceff = 0.; 87 fceff = 0.; 88 fptot = 0.; 88 fptot = 0.; 89 fTmax = 0.; 89 fTmax = 0.; 90 fThetaLab = 0.; 90 fThetaLab = 0.; 91 } 91 } 92 92 93 ////////////////////////////////////////////// 93 ///////////////////////////////////////////////////////////////////////// 94 G4AntiNuclElastic::~G4AntiNuclElastic() 94 G4AntiNuclElastic::~G4AntiNuclElastic() 95 {} << 95 { >> 96 delete cs; >> 97 } 96 98 97 ////////////////////////////////////////////// 99 //////////////////////////////////////////////////////////////////////// 98 // sample momentum transfer in the CMS system 100 // sample momentum transfer in the CMS system 99 G4double G4AntiNuclElastic::SampleInvariantT(c 101 G4double G4AntiNuclElastic::SampleInvariantT(const G4ParticleDefinition* particle, 100 G4double Plab, G4int Z, G4int 102 G4double Plab, G4int Z, G4int A) 101 { 103 { 102 G4double T; 104 G4double T; 103 G4double Mproj = particle->GetPDGMass(); 105 G4double Mproj = particle->GetPDGMass(); 104 G4LorentzVector Pproj(0.,0.,Plab,std::sqrt(P 106 G4LorentzVector Pproj(0.,0.,Plab,std::sqrt(Plab*Plab+Mproj*Mproj)); 105 G4double ctet1 = GetcosTeta1(Plab, A); 107 G4double ctet1 = GetcosTeta1(Plab, A); 106 108 107 G4double energy=Pproj.e()-Mproj; 109 G4double energy=Pproj.e()-Mproj; 108 110 109 const G4ParticleDefinition* theParticle = pa 111 const G4ParticleDefinition* theParticle = particle; 110 112 111 G4ParticleDefinition * theTargetDef = 0; << 113 G4ParticleDefinition * theDef = 0; 112 114 113 if (Z == 1 && A == 1) theTargetDef = th << 115 if(Z == 1 && A == 1) theDef = theProton; 114 else if (Z == 1 && A == 2) theTargetDef = th << 116 else if (Z == 1 && A == 2) theDef = theDeuteron; 115 else if (Z == 1 && A == 3) theTargetDef = G4 << 117 else if (Z == 1 && A == 3) theDef = G4Triton::Triton(); 116 else if (Z == 2 && A == 3) theTargetDef = G4 << 118 else if (Z == 2 && A == 3) theDef = G4He3::He3(); 117 else if (Z == 2 && A == 4) theTargetDef = th << 119 else if (Z == 2 && A == 4) theDef = theAlpha; 118 120 119 121 120 G4double TargMass =G4NucleiProperties::GetNu 122 G4double TargMass =G4NucleiProperties::GetNuclearMass(A,Z); 121 123 122 //transform to CMS 124 //transform to CMS 123 125 124 G4LorentzVector lv(0.0,0.0,0.0,TargMass); 126 G4LorentzVector lv(0.0,0.0,0.0,TargMass); 125 lv += Pproj; 127 lv += Pproj; 126 G4double S = lv.mag2()/(GeV*GeV); << 128 G4double S = lv.mag2()/GeV/GeV; 127 129 128 G4ThreeVector bst = lv.boostVector(); 130 G4ThreeVector bst = lv.boostVector(); 129 Pproj.boost(-bst); 131 Pproj.boost(-bst); 130 132 131 G4ThreeVector p1 = Pproj.vect(); 133 G4ThreeVector p1 = Pproj.vect(); 132 G4double ptot = p1.mag(); 134 G4double ptot = p1.mag(); 133 135 134 fbst = bst; 136 fbst = bst; 135 fptot= ptot; 137 fptot= ptot; 136 fTmax = 4.0*ptot*ptot; // In (MeV/c)^2 << 138 fTmax = 4.0*ptot*ptot; 137 139 138 if(Plab < (std::abs(particle->GetBaryonNumbe << 140 if(Plab/std::abs(particle->GetBaryonNumber()) < 100.*MeV) // Uzhi 24 Nov. 2011 139 {return fTmax*G4UniformRand();} << 141 {return fTmax*G4UniformRand();} // Uzhi 24 Nov. 2011 140 142 141 // Calculation of NN collision properties << 142 G4double PlabPerN = Plab/std::abs(theParticl << 143 G4double NucleonMass = 0.5*( theProton->GetP << 144 G4double PrNucleonMass(0.); // Projectile a << 145 if( std::abs(theParticle->GetBaryonNumber()) << 146 else << 147 G4double energyPerN = std::sqrt( sqr(PlabPer << 148 energyPerN -= PrNucleonMass; << 149 //--- << 150 << 151 G4double Z1 = particle->GetPDGCharge(); 143 G4double Z1 = particle->GetPDGCharge(); 152 G4double Z2 = Z; 144 G4double Z2 = Z; 153 145 154 G4double beta = CalculateParticleBeta(partic 146 G4double beta = CalculateParticleBeta(particle, ptot); 155 G4double n = CalculateZommerfeld( beta, Z1 147 G4double n = CalculateZommerfeld( beta, Z1, Z2 ); 156 G4double Am = CalculateAm( ptot, n, Z2 ); 148 G4double Am = CalculateAm( ptot, n, Z2 ); 157 fWaveVector = ptot; // /hbarc; 149 fWaveVector = ptot; // /hbarc; 158 150 159 G4LorentzVector Fproj(0.,0.,0.,0.); 151 G4LorentzVector Fproj(0.,0.,0.,0.); 160 const G4double mevToBarn = 0.38938e+6; << 152 G4double XsCoulomb = sqr(n/fWaveVector)*pi*(1+ctet1)/(1.+Am)/(1.+2.*Am-ctet1); 161 G4double XsCoulomb = mevToBarn*sqr(n/fWaveVe << 153 XsCoulomb=XsCoulomb*0.38938e+6; >> 154 >> 155 >> 156 G4double XsElastHad =cs->GetElasticElementCrossSection(particle, energy, Z, (G4double)A); >> 157 G4double XstotalHad =cs->GetTotalElementCrossSection(particle, energy, Z, (G4double)A); 162 158 163 G4double XsElastHadronic =cs->GetElasticElem << 164 G4double XsTotalHadronic =cs->GetTotalElemen << 165 159 166 XsElastHadronic/=millibarn; XsTotalHadronic/ << 160 XsElastHad/=millibarn; XstotalHad/=millibarn; 167 161 168 G4double CoulombProb = XsCoulomb/(XsCoulomb << 162 >> 163 G4double CoulombProb = XsCoulomb/(XsCoulomb+XsElastHad); >> 164 >> 165 // G4cout<<" XselastHadron " << XsElastHad << " XsCol "<< XsCoulomb <<G4endl; >> 166 // G4cout <<" XsTotal" << XstotalHad <<G4endl; >> 167 // G4cout<<"XsInel"<< XstotalHad-XsElastHad<<G4endl; 169 168 170 if(G4UniformRand() < CoulombProb) 169 if(G4UniformRand() < CoulombProb) 171 { // Simulation of Coulomb scattering 170 { // Simulation of Coulomb scattering 172 171 173 G4double phi = twopi * G4UniformRand(); << 172 G4double phi = twopi * G4UniformRand(); 174 G4double Ksi = G4UniformRand(); << 173 G4double Ksi = G4UniformRand(); 175 174 176 G4double par1 = 2.*(1.+Am)/(1.+ctet1); << 175 G4double par1 = 2.*(1.+Am)/(1.+ctet1); 177 176 178 // ////sample ThetaCMS in Coulomb part << 177 // ////sample ThetaCMS in Coulomb part 179 178 180 G4double cosThetaCMS = (par1*ctet1- Ksi*(1 << 179 G4double cosThetaCMS = (par1*ctet1- Ksi*(1.+2.*Am))/(par1-Ksi); 181 180 182 G4double PtZ=ptot*cosThetaCMS; << 181 G4double PtZ=ptot*cosThetaCMS; 183 Fproj.setPz(PtZ); << 182 Fproj.setPz(PtZ); 184 G4double PtProjCMS = ptot*std::sqrt(1.0 - << 183 G4double PtProjCMS = ptot*std::sqrt(1.0 - cosThetaCMS*cosThetaCMS); 185 G4double PtX= PtProjCMS * std::cos(phi); << 184 G4double PtX= PtProjCMS * std::cos(phi); 186 G4double PtY= PtProjCMS * std::sin(phi); << 185 G4double PtY= PtProjCMS * std::sin(phi); 187 Fproj.setPx(PtX); << 186 Fproj.setPx(PtX); 188 Fproj.setPy(PtY); << 187 Fproj.setPy(PtY); 189 Fproj.setE(std::sqrt(PtX*PtX+PtY*PtY+PtZ*P << 188 Fproj.setE(std::sqrt(PtX*PtX+PtY*PtY+PtZ*PtZ+Mproj*Mproj)); 190 T = -(Pproj-Fproj).mag2(); << 189 T = -(Pproj-Fproj).mag2(); 191 } << 190 } else 192 else << 193 { << 194 // Simulation of strong interaction scatte << 195 191 196 G4double Qmax = 2.*ptot/197.33; // in fm << 192 { >> 193 ///////Simulation of strong interaction scattering//////////////////////////// 197 194 198 G4double Amag = 1.0; // A1 in Majora << 195 // G4double Qmax = 2.*ptot*197.33; // in fm^-1 199 G4double SlopeMag = 0.5; // A2 in Majora << 196 G4double Qmax = 2.*3.0*197.33; // in fm^-1 200 << 197 G4double Amag = 70*70; // A1 in Magora funct:A1*exp(-q*A2) 201 G4double sig_pbarp = cs->GetAntiHadronNucl << 198 G4double SlopeMag = 2.*3.0; // A2 in Magora funct:A1*exp(-q*A2) 202 << 199 203 fRa = 1.113*G4Pow::GetInstance()->Z13(A) - << 200 G4double sig_pbarp= cs->GetAntiHadronNucleonTotCrSc(particle,energy); 204 0.227/G4Pow::GetInstance()->Z13(A); << 201 205 if(A == 3) fRa=1.81; << 202 fRa = 1.113*G4Pow::GetInstance()->Z13(A) - 206 if(A == 4) fRa=1.37; << 203 0.227/G4Pow::GetInstance()->Z13(A); >> 204 if(A == 3) fRa=1.81; >> 205 if(A == 4) fRa=1.37; 207 206 208 if((A>=12.) && (A<27) ) fRa=fRa*0.85; << 207 if((A>=12.) && (A<27) ) fRa=fRa*0.85; 209 if((A>=27.) && (A<48) ) fRa=fRa*0.90; << 208 if((A>=27.) && (A<48) ) fRa=fRa*0.90; 210 if((A>=48.) && (A<65) ) fRa=fRa*0.95; << 209 if((A>=48.) && (A<65) ) fRa=fRa*0.95; 211 << 210 212 G4double Ref2 = XsTotalHadronic/10./2./pi; << 211 G4double Ref2 = 0; 213 G4double ceff2 = 0.0; << 212 G4double ceff2 =0; 214 G4double rho = 0.0; << 213 G4double rho = 0; 215 << 214 if ((theParticle == theAProton) || (theParticle == theANeutron)) 216 if ((theParticle == theAProton) || (thePa << 215 { 217 { << 216 if(theDef == theProton) 218 if(theTargetDef == theProton) << 217 { 219 { << 218 // G4double Mp2=sqr(theDef->GetPDGMass()/GeV ); 220 // Determination of the real part of P << 219 221 if(Plab < 610.) << 220 // change 30 October 222 { rho = 1.3347-10.342*Plab/1000.+22.27 << 221 223 13.634*Plab/1000.*Plab/1000.*P << 222 if(Plab < 610.) 224 if((Plab < 5500.)&&(Plab >= 610.) ) << 223 { rho = 1.3347-10.342*Plab/1000.+22.277*Plab/1000.*Plab/1000.- 225 { rho = 0.22; } << 224 13.634*Plab/1000.*Plab/1000.*Plab/1000. ;} 226 if((Plab >= 5500.)&&(Plab < 12300.) ) << 225 if((Plab < 5500.)&&(Plab >= 610.) ) 227 { rho = -0.32; } << 226 { rho = 0.22; } 228 if( Plab >= 12300.) << 227 if((Plab >= 5500.)&&(Plab < 12300.) ) 229 { rho = 0.135-2.26/(std::sqrt(S)) ;} << 228 { rho = -0.32; } 230 Ref2 = 0.35 + 0.9/std::sqrt(std::sqrt << 229 if( Plab >= 12300.) 231 ceff2 = 0.375 - 2./S + 0.44/(sqr(S-4.) << 230 { rho = 0.135-2.26/(std::sqrt(S)) ;} 232 Ref2 =Ref2*Ref2; << 231 233 ceff2 = ceff2*ceff2; << 232 Ref2 = 0.35 + 0.9/std::sqrt(std::sqrt(S-4.*0.88))+0.04*G4Log(S) ; 234 } << 233 ceff2 = 0.375 - 2./S + 0.44/(sqr(S-4.)+1.5) ; 235 << 234 236 if( (Z==1)&&(A==2) ) << 235 /* 237 { << 236 Ref2=0.8/std::sqrt(std::sqrt(S-4.*Mp2)) + 0.55; 238 Ref2 = fRa*fRa - 0.28 + 0.019 * sig_pb << 237 if(S>1000.) Ref2=0.62+0.02*G4Log(S) ; 239 ceff2 = 0.297 + 7.853e-04*sig_pbarp + << 238 ceff2 = 0.035/(sqr(S-4.3)+0.4) + 0.085 * G4Log(S) ; 240 } << 239 if(S>1000.) ceff2 = 0.005 * G4Log(S) + 0.29; 241 if( (Z==1)&&(A==3) ) << 240 */ 242 { << 241 243 Ref2 = fRa*fRa - 1.36 + 0.025 * sig_pb << 242 Ref2=Ref2*Ref2; 244 ceff2 = 0.149 + 7.091e-04*sig_pbarp + << 243 ceff2 = ceff2*ceff2; 245 } << 244 246 if( (Z==2)&&(A==3) ) << 245 SlopeMag = 0.5; // Uzhi 247 { << 246 Amag= 1.; // Uzhi 248 Ref2 = fRa*fRa - 1.36 + 0.025 * sig_pb << 247 } 249 ceff2 = 0.149 + 7.091e-04*sig_pbarp + << 248 250 } << 249 if(Z>2) 251 if( (Z==2)&&(A==4) ) << 250 { Ref2 = fRa*fRa +2.48*0.01*sig_pbarp*fRa - 2.23e-6*sig_pbarp*sig_pbarp*fRa*fRa; 252 { << 251 ceff2 = 0.16+3.3e-4*sig_pbarp+0.35*G4Exp(-0.03*sig_pbarp); 253 Ref2 = fRa*fRa -0.46 +0.03*sig_pbarp - << 252 } 254 ceff2= 0.078 + 6.657e-4*sig_pbarp + 0. << 253 if( (Z==2)&&(A==4) ) 255 } << 254 { Ref2 = fRa*fRa -0.46 +0.03*sig_pbarp - 2.98e-6*sig_pbarp*sig_pbarp; 256 if(Z>2) << 255 ceff2= 0.078 + 6.657e-4*sig_pbarp + 0.3359*G4Exp(-0.03*sig_pbarp); 257 { << 256 } 258 Ref2 = fRa*fRa +2.48*0.01*sig_pbarp*fR << 257 if( (Z==1)&&(A==3) ) 259 ceff2 = 0.16+3.3e-4*sig_pbarp+0.35*G4E << 258 { Ref2 = fRa*fRa - 1.36 + 0.025 * sig_pbarp - 3.69e-7 * sig_pbarp*sig_pbarp; 260 } << 259 ceff2 = 0.149 + 7.091e-04*sig_pbarp + 0.3743*G4Exp(-0.03*sig_pbarp); 261 } // End of if ((theParticle == theAProto << 260 } 262 << 261 if( (Z==2)&&(A==3) ) 263 if (theParticle == theADeuteron) << 262 { Ref2 = fRa*fRa - 1.36 + 0.025 * sig_pbarp - 3.69e-7 * sig_pbarp*sig_pbarp; 264 { << 263 ceff2 = 0.149 + 7.091e-04*sig_pbarp + 0.3743*G4Exp(-0.03*sig_pbarp); 265 if(theTargetDef == theProton) << 264 } 266 { << 265 if( (Z==1)&&(A==2) ) 267 ceff2 = 0.297 + 7.853e-04*sig_pbarp + << 266 { 268 } << 267 Ref2 = fRa*fRa - 0.28 + 0.019 * sig_pbarp + 2.06e-6 * sig_pbarp*sig_pbarp; 269 if(theTargetDef == theDeuteron) << 268 ceff2 = 0.297 + 7.853e-04*sig_pbarp + 0.2899*G4Exp(-0.03*sig_pbarp); 270 { << 269 } 271 ceff2 = 0.65 + 3.0e-4*sig_pbarp + 0.55 << 270 } 272 } << 271 273 if( (theTargetDef == G4Triton::Triton()) << 272 if (theParticle == theADeuteron) 274 { << 273 { 275 ceff2 = 0.57 + 2.5e-4*sig_pbarp + 0.65 << 274 sig_pbarp= cs->GetAntiHadronNucleonTotCrSc(particle,energy/2.); 276 } << 275 Ref2 = XstotalHad/10./2./pi ; 277 if(theTargetDef == theAlpha) << 276 if(Z>2) 278 { << 277 { 279 ceff2 = 0.40 + 3.5e-4 *sig_pbarp + 0.4 << 278 ceff2 = 0.38 + 2.0e-4 *sig_pbarp + 0.5 * G4Exp(-0.03*sig_pbarp); 280 } << 279 } 281 if(Z>2) << 280 if(theDef == theProton) 282 { << 281 { 283 ceff2 = 0.38 + 2.0e-4 *sig_pbarp + 0.5 << 282 ceff2 = 0.297 + 7.853e-04*sig_pbarp + 0.2899*G4Exp(-0.03*sig_pbarp); 284 } << 283 } 285 } << 284 if(theDef == theDeuteron) 286 << 285 { 287 if( (theParticle ==theAHe3) || (theParticl << 286 ceff2 = 0.65 + 3.0e-4*sig_pbarp + 0.55 * G4Exp(-0.03*sig_pbarp); 288 { << 287 } 289 if(theTargetDef == theProton) << 288 if( (theDef == G4Triton::Triton()) || (theDef == G4He3::He3() ) ) 290 { << 289 { 291 ceff2 = 0.149 + 7.091e-04*sig_pbarp + << 290 ceff2 = 0.57 + 2.5e-4*sig_pbarp + 0.65 * G4Exp(-0.02*sig_pbarp); 292 } << 291 } 293 if(theTargetDef == theDeuteron) << 292 if(theDef == theAlpha) 294 { << 293 { 295 ceff2 = 0.57 + 2.5e-4*sig_pbarp + 0.65 << 294 ceff2 = 0.40 + 3.5e-4 *sig_pbarp + 0.45 * G4Exp(-0.02*sig_pbarp); 296 } << 295 } 297 if( (theTargetDef == G4Triton::Triton()) << 296 } 298 { << 297 299 ceff2 = 0.39 + 2.7e-4*sig_pbarp + 0.7 << 298 if( (theParticle ==theAHe3) || (theParticle ==theATriton) ) 300 } << 299 { 301 if(theTargetDef == theAlpha) << 300 sig_pbarp = cs->GetAntiHadronNucleonTotCrSc(particle,energy/3.); 302 { << 301 Ref2 = XstotalHad/10./2./pi ; 303 ceff2 = 0.24 + 3.5e-4*sig_pbarp + 0.75 << 302 if(Z>2) 304 } << 303 { 305 if(Z>2) << 304 ceff2 = 0.26 + 2.2e-4*sig_pbarp + 0.33*G4Exp(-0.03*sig_pbarp); 306 { << 305 } 307 ceff2 = 0.26 + 2.2e-4*sig_pbarp + 0.33 << 306 if(theDef == theProton) 308 } << 307 { 309 } << 308 ceff2 = 0.149 + 7.091e-04*sig_pbarp + 0.3743*G4Exp(-0.03*sig_pbarp); 310 << 309 } 311 if ( (theParticle == theAAlpha) || (ceff2 << 310 if(theDef == theDeuteron) 312 { << 311 { 313 if(theTargetDef == theProton) << 312 ceff2 = 0.57 + 2.5e-4*sig_pbarp + 0.65 * G4Exp(-0.02*sig_pbarp); 314 { << 313 } 315 ceff2= 0.078 + 6.657e-4*sig_pbarp + 0. << 314 if( (theDef == G4Triton::Triton()) || (theDef == G4He3::He3() ) ) 316 } << 315 { 317 if(theTargetDef == theDeuteron) << 316 ceff2 = 0.39 + 2.7e-4*sig_pbarp + 0.7 * G4Exp(-0.02*sig_pbarp); 318 { << 317 } 319 ceff2 = 0.40 + 3.5e-4 *sig_pbarp + 0.4 << 318 if(theDef == theAlpha) 320 } << 319 { 321 if( (theTargetDef == G4Triton::Triton()) << 320 ceff2 = 0.24 + 3.5e-4*sig_pbarp + 0.75 * G4Exp(-0.03*sig_pbarp); 322 { << 321 } 323 ceff2 = 0.24 + 3.5e-4*sig_pbarp + 0.75 << 322 } 324 } << 323 325 if(theTargetDef == theAlpha) << 324 326 { << 325 if (theParticle == theAAlpha) 327 ceff2 = 0.17 + 3.5e-4*sig_pbarp + 0.45 << 326 { 328 } << 327 sig_pbarp = cs->GetAntiHadronNucleonTotCrSc(particle,energy/3.); 329 if(Z>2) << 328 Ref2 = XstotalHad/10./2./pi ; 330 { << 329 if(Z>2) 331 ceff2 = 0.22 + 2.0e-4*sig_pbarp + 0.2 << 330 { 332 } << 331 ceff2 = 0.22 + 2.0e-4*sig_pbarp + 0.2 * G4Exp(-0.03*sig_pbarp); 333 } << 332 } 334 << 333 if(theDef == theProton) 335 fRef=std::sqrt(Ref2); << 334 { 336 fceff = std::sqrt(ceff2); << 335 ceff2= 0.078 + 6.657e-4*sig_pbarp + 0.3359*G4Exp(-0.03*sig_pbarp); 337 << 336 } 338 G4double Q = 0.0 ; << 337 if(theDef == theDeuteron) 339 G4double BracFunct; << 338 { 340 << 339 ceff2 = 0.40 + 3.5e-4 *sig_pbarp + 0.45 * G4Exp(-0.02*sig_pbarp); 341 const G4int maxNumberOfLoops = 10000; << 340 } 342 G4int loopCounter = 0; << 341 if( (theDef == G4Triton::Triton()) || (theDef == G4He3::He3() ) ) 343 do << 342 { 344 { << 343 ceff2 = 0.24 + 3.5e-4*sig_pbarp + 0.75 * G4Exp(-0.03*sig_pbarp); 345 Q = -G4Log(1.-(1.- G4Exp(-SlopeMag * Qma << 344 } 346 G4double x = fRef * Q; << 345 if(theDef == theAlpha) 347 BracFunct = ( ( sqr(BesselOneByArg(x))+s << 346 { 348 * sqr(DampFactor(pi*fceff*Q))) /(Ama << 347 ceff2 = 0.17 + 3.5e-4*sig_pbarp + 0.45 * G4Exp(-0.03*sig_pbarp); 349 BracFunct = BracFunct * Q; << 350 } << 351 while ( (G4UniformRand()>BracFunct) && << 352 ++loopCounter < maxNumberOfLoops ) << 353 if ( loopCounter >= maxNumberOfLoops ) { << 354 fTetaCMS = 0.0; << 355 return 0.0; << 356 } 348 } >> 349 } 357 350 358 T= sqr(Q); << 351 fRef=std::sqrt(Ref2); 359 T*=3.893913e+4; // fm^(-2) -> MeV^2 << 352 fceff = std::sqrt(ceff2); >> 353 // G4cout<<" Ref "<<fRef<<" c_eff "<<fceff<< " rho "<< rho<<G4endl; 360 354 361 } // End of simulation of strong interactio << 355 >> 356 G4double Q = 0.0 ; >> 357 G4double BracFunct; >> 358 const G4int maxNumberOfLoops = 10000; >> 359 G4int loopCounter = 0; >> 360 do >> 361 { >> 362 Q = -G4Log(1.-(1.- G4Exp(-SlopeMag * Qmax))* G4UniformRand() )/SlopeMag; >> 363 G4double x = fRef * Q; >> 364 BracFunct = ( ( sqr(BesselOneByArg(x))+sqr(rho/2. * BesselJzero(x)) ) >> 365 * sqr(DampFactor(pi*fceff*Q))) /(Amag*G4Exp(-SlopeMag*Q)); >> 366 >> 367 BracFunct = BracFunct * Q * sqr(sqr(fRef)); >> 368 } >> 369 while ( (G4UniformRand()>BracFunct) && >> 370 ++loopCounter < maxNumberOfLoops ); /* Loop checking, 10.08.2015, A.Ribon */ >> 371 if ( loopCounter >= maxNumberOfLoops ) { >> 372 fTetaCMS = 0.0; >> 373 return 0.0; >> 374 } >> 375 >> 376 T= sqr(Q); >> 377 T*=3.893913e+4; // fm -> MeV^2 >> 378 } >> 379 >> 380 G4double cosTet=1.0-T/(2.*ptot*ptot); >> 381 if(cosTet > 1.0 ) cosTet= 1.; // Uzhi 30 Nov. >> 382 if(cosTet < -1.0 ) cosTet=-1.; // Uzhi 30 Nov. >> 383 fTetaCMS=std::acos(cosTet); 362 384 363 return T; << 385 return T; 364 } 386 } 365 387 366 ////////////////////////////////////////////// 388 ///////////////////////////////////////////////////////////////////// 367 // Sample of Theta in CMS 389 // Sample of Theta in CMS 368 G4double G4AntiNuclElastic::SampleThetaCMS(co 390 G4double G4AntiNuclElastic::SampleThetaCMS(const G4ParticleDefinition* p, G4double plab, 369 391 G4int Z, G4int A) 370 { 392 { 371 G4double T; 393 G4double T; 372 T = SampleInvariantT( p, plab, Z, A); 394 T = SampleInvariantT( p, plab, Z, A); 373 395 374 // NaN finder 396 // NaN finder 375 if(!(T < 0.0 || T >= 0.0)) 397 if(!(T < 0.0 || T >= 0.0)) 376 { 398 { 377 if (verboseLevel > 0) 399 if (verboseLevel > 0) 378 { 400 { 379 G4cout << "G4DiffuseElastic:WARNING: A = 401 G4cout << "G4DiffuseElastic:WARNING: A = " << A 380 << " mom(GeV)= " << plab/GeV 402 << " mom(GeV)= " << plab/GeV 381 << " S-wave will be sampled" 403 << " S-wave will be sampled" 382 << G4endl; 404 << G4endl; 383 } 405 } 384 T = G4UniformRand()*fTmax; 406 T = G4UniformRand()*fTmax; 385 407 386 } 408 } 387 409 388 if(fptot > 0.) << 410 if(fptot > 0.) // Uzhi 24 Nov. 2011 389 { 411 { 390 G4double cosTet=1.0-T/(2.*fptot*fptot); 412 G4double cosTet=1.0-T/(2.*fptot*fptot); 391 if(cosTet > 1.0 ) cosTet= 1.; << 413 if(cosTet > 1.0 ) cosTet= 1.; // Uzhi 30 Nov. 392 if(cosTet < -1.0 ) cosTet=-1.; << 414 if(cosTet < -1.0 ) cosTet=-1.; // Uzhi 30 Nov. 393 fTetaCMS=std::acos(cosTet); 415 fTetaCMS=std::acos(cosTet); 394 return fTetaCMS; 416 return fTetaCMS; 395 } else << 417 } else // Uzhi 24 Nov. 2011 396 { << 418 { // Uzhi 24 Nov. 2011 397 return 2.*G4UniformRand()-1.; << 419 return 2.*G4UniformRand()-1.; // Uzhi 24 Nov. 2011 398 } << 420 } // Uzhi 24 Nov. 2011 399 } 421 } 400 422 401 423 402 ////////////////////////////////////////////// 424 ///////////////////////////////////////////////////////////////////// 403 // Sample of Theta in Lab System 425 // Sample of Theta in Lab System 404 G4double G4AntiNuclElastic::SampleThetaLab(co 426 G4double G4AntiNuclElastic::SampleThetaLab(const G4ParticleDefinition* p, G4double plab, 405 427 G4int Z, G4int A) 406 { 428 { 407 G4double T; 429 G4double T; 408 T = SampleInvariantT( p, plab, Z, A); 430 T = SampleInvariantT( p, plab, Z, A); 409 431 410 // NaN finder 432 // NaN finder 411 if(!(T < 0.0 || T >= 0.0)) 433 if(!(T < 0.0 || T >= 0.0)) 412 { 434 { 413 if (verboseLevel > 0) 435 if (verboseLevel > 0) 414 { 436 { 415 G4cout << "G4DiffuseElastic:WARNING: A = 437 G4cout << "G4DiffuseElastic:WARNING: A = " << A 416 << " mom(GeV)= " << plab/GeV 438 << " mom(GeV)= " << plab/GeV 417 << " S-wave will be sampled" 439 << " S-wave will be sampled" 418 << G4endl; 440 << G4endl; 419 } 441 } 420 T = G4UniformRand()*fTmax; 442 T = G4UniformRand()*fTmax; 421 } 443 } 422 444 423 G4double phi = G4UniformRand()*twopi; 445 G4double phi = G4UniformRand()*twopi; 424 446 425 G4double cost(1.); 447 G4double cost(1.); 426 if(fTmax > 0.) {cost = 1. - 2.0*T/fTmax;} << 448 if(fTmax > 0.) {cost = 1. - 2.0*T/fTmax;} // Uzhi 24 Nov. 2011 427 449 428 G4double sint; 450 G4double sint; 429 if( cost >= 1.0 ) 451 if( cost >= 1.0 ) 430 { 452 { 431 cost = 1.0; 453 cost = 1.0; 432 sint = 0.0; 454 sint = 0.0; 433 } 455 } 434 else if( cost <= -1.0) 456 else if( cost <= -1.0) 435 { 457 { 436 cost = -1.0; 458 cost = -1.0; 437 sint = 0.0; 459 sint = 0.0; 438 } 460 } 439 else 461 else 440 { 462 { 441 sint = std::sqrt((1.0-cost)*(1.0+cost)); 463 sint = std::sqrt((1.0-cost)*(1.0+cost)); 442 } 464 } 443 465 444 G4double m1 = p->GetPDGMass(); 466 G4double m1 = p->GetPDGMass(); 445 G4ThreeVector v(sint*std::cos(phi),sint*std: 467 G4ThreeVector v(sint*std::cos(phi),sint*std::sin(phi),cost); 446 v *= fptot; 468 v *= fptot; 447 G4LorentzVector nlv(v.x(),v.y(),v.z(),std::s 469 G4LorentzVector nlv(v.x(),v.y(),v.z(),std::sqrt(fptot*fptot + m1*m1)); 448 470 449 nlv.boost(fbst); 471 nlv.boost(fbst); 450 472 451 G4ThreeVector np = nlv.vect(); 473 G4ThreeVector np = nlv.vect(); 452 G4double theta = np.theta(); 474 G4double theta = np.theta(); 453 fThetaLab = theta; 475 fThetaLab = theta; 454 476 455 return theta; 477 return theta; 456 } 478 } 457 479 458 ////////////////////////////////////////////// 480 //////////////////////////////////////////////////////////////////// 459 // Calculation of Damp factor 481 // Calculation of Damp factor 460 G4double G4AntiNuclElastic::DampFactor(G4doub 482 G4double G4AntiNuclElastic::DampFactor(G4double x) 461 { 483 { 462 G4double df; 484 G4double df; 463 G4double f3 = 6.; // first factorials 485 G4double f3 = 6.; // first factorials 464 486 465 if( std::fabs(x) < 0.01 ) 487 if( std::fabs(x) < 0.01 ) 466 { 488 { 467 df=1./(1.+x*x/f3); 489 df=1./(1.+x*x/f3); 468 } 490 } 469 else 491 else 470 { 492 { 471 df = x/std::sinh(x); 493 df = x/std::sinh(x); 472 } 494 } 473 return df; 495 return df; 474 } 496 } 475 497 476 498 477 ////////////////////////////////////////////// 499 ///////////////////////////////////////////////////////////////////////////////// 478 // Calculation of particle velocity Beta 500 // Calculation of particle velocity Beta 479 501 480 G4double G4AntiNuclElastic::CalculateParticle 502 G4double G4AntiNuclElastic::CalculateParticleBeta( const G4ParticleDefinition* particle, 481 G4double mom 503 G4double momentum ) 482 { 504 { 483 G4double mass = particle->GetPDGMass(); 505 G4double mass = particle->GetPDGMass(); 484 G4double a = momentum/mass; 506 G4double a = momentum/mass; 485 fBeta = a/std::sqrt(1+a*a); 507 fBeta = a/std::sqrt(1+a*a); 486 508 487 return fBeta; 509 return fBeta; 488 } 510 } 489 511 490 512 491 ////////////////////////////////////////////// 513 /////////////////////////////////////////////////////////////////////////////////// 492 // Calculation of parameter Zommerfeld 514 // Calculation of parameter Zommerfeld 493 515 494 G4double G4AntiNuclElastic::CalculateZommerfe 516 G4double G4AntiNuclElastic::CalculateZommerfeld( G4double beta, G4double Z1, G4double Z2 ) 495 { 517 { 496 fZommerfeld = fine_structure_const*Z1*Z2/bet 518 fZommerfeld = fine_structure_const*Z1*Z2/beta; 497 519 498 return fZommerfeld; 520 return fZommerfeld; 499 } 521 } 500 522 501 ////////////////////////////////////////////// 523 //////////////////////////////////////////////////////////////////////////////////// 502 // 524 // 503 G4double G4AntiNuclElastic::CalculateAm( G4dou 525 G4double G4AntiNuclElastic::CalculateAm( G4double momentum, G4double n, G4double Z) 504 { 526 { 505 G4double k = momentum/hbarc; 527 G4double k = momentum/hbarc; 506 G4double ch = 1.13 + 3.76*n*n; 528 G4double ch = 1.13 + 3.76*n*n; 507 G4double zn = 1.77*k/G4Pow::GetInstance()-> 529 G4double zn = 1.77*k/G4Pow::GetInstance()->A13(Z)*Bohr_radius; 508 G4double zn2 = zn*zn; 530 G4double zn2 = zn*zn; 509 fAm = ch/zn2; 531 fAm = ch/zn2; 510 532 511 return fAm; 533 return fAm; 512 } 534 } 513 535 514 ////////////////////////////////////////////// 536 ///////////////////////////////////////////////////////////// 515 // 537 // 516 // Bessel J0 function based on rational approx 538 // Bessel J0 function based on rational approximation from 517 // J.F. Hart, Computer Approximations, New Yor 539 // J.F. Hart, Computer Approximations, New York, Willey 1968, p. 141 518 540 519 G4double G4AntiNuclElastic::BesselJzero(G4doub 541 G4double G4AntiNuclElastic::BesselJzero(G4double value) 520 { 542 { 521 G4double modvalue, value2, fact1, fact2, arg 543 G4double modvalue, value2, fact1, fact2, arg, shift, bessel; 522 544 523 modvalue = std::fabs(value); 545 modvalue = std::fabs(value); 524 546 525 if ( value < 8.0 && value > -8.0 ) 547 if ( value < 8.0 && value > -8.0 ) 526 { 548 { 527 value2 = value*value; 549 value2 = value*value; 528 550 529 fact1 = 57568490574.0 + value2*(-13362590 551 fact1 = 57568490574.0 + value2*(-13362590354.0 530 + value2*( 65161964 552 + value2*( 651619640.7 531 + value2*(-11214424 553 + value2*(-11214424.18 532 + value2*( 77392.33 554 + value2*( 77392.33017 533 + value2*(-184.9052 555 + value2*(-184.9052456 ) ) ) ) ); 534 556 535 fact2 = 57568490411.0 + value2*( 10295329 557 fact2 = 57568490411.0 + value2*( 1029532985.0 536 + value2*( 9494680. 558 + value2*( 9494680.718 537 + value2*(59272.648 559 + value2*(59272.64853 538 + value2*(267.85327 560 + value2*(267.8532712 539 + value2*1.0 561 + value2*1.0 ) ) ) ); 540 562 541 bessel = fact1/fact2; 563 bessel = fact1/fact2; 542 } 564 } 543 else 565 else 544 { 566 { 545 arg = 8.0/modvalue; 567 arg = 8.0/modvalue; 546 568 547 value2 = arg*arg; 569 value2 = arg*arg; 548 570 549 shift = modvalue-0.785398164; 571 shift = modvalue-0.785398164; 550 572 551 fact1 = 1.0 + value2*(-0.1098628627e-2 573 fact1 = 1.0 + value2*(-0.1098628627e-2 552 + value2*(0.2734510407e-4 574 + value2*(0.2734510407e-4 553 + value2*(-0.2073370639e-5 575 + value2*(-0.2073370639e-5 554 + value2*0.2093887211e-6 ) 576 + value2*0.2093887211e-6 ) ) ); 555 fact2 = -0.1562499995e-1 + value2*(0.143048 577 fact2 = -0.1562499995e-1 + value2*(0.1430488765e-3 556 + value2*(-0.691 578 + value2*(-0.6911147651e-5 557 + value2*(0.7621 579 + value2*(0.7621095161e-6 558 - value2*0.93494 580 - value2*0.934945152e-7 ) ) ); 559 581 560 bessel = std::sqrt(0.636619772/modvalue)*( 582 bessel = std::sqrt(0.636619772/modvalue)*(std::cos(shift)*fact1 - arg*std::sin(shift)*fact2); 561 } 583 } 562 return bessel; 584 return bessel; 563 } 585 } 564 586 565 587 566 ////////////////////////////////////////////// 588 ////////////////////////////////////////////////////////////////////////////// 567 // Bessel J1 function based on rational approx 589 // Bessel J1 function based on rational approximation from 568 // J.F. Hart, Computer Approximations, New Yor 590 // J.F. Hart, Computer Approximations, New York, Willey 1968, p. 141 569 591 570 G4double G4AntiNuclElastic::BesselJone(G4doub 592 G4double G4AntiNuclElastic::BesselJone(G4double value) 571 { 593 { 572 G4double modvalue, value2, fact1, fact2, arg 594 G4double modvalue, value2, fact1, fact2, arg, shift, bessel; 573 595 574 modvalue = std::fabs(value); 596 modvalue = std::fabs(value); 575 597 576 if ( modvalue < 8.0 ) 598 if ( modvalue < 8.0 ) 577 { 599 { 578 value2 = value*value; 600 value2 = value*value; 579 fact1 = value*(72362614232.0 + value2*(-7 601 fact1 = value*(72362614232.0 + value2*(-7895059235.0 580 + value2*( 2 602 + value2*( 242396853.1 581 + value2*(-2 603 + value2*(-2972611.439 582 + value2*( 1 604 + value2*( 15704.48260 583 + value2*(-3 605 + value2*(-30.16036606 ) ) ) ) ) ); 584 606 585 fact2 = 144725228442.0 + value2*(23005351 607 fact2 = 144725228442.0 + value2*(2300535178.0 586 + value2*(18583304 608 + value2*(18583304.74 587 + value2*(99447.43 609 + value2*(99447.43394 588 + value2*(376.9991 610 + value2*(376.9991397 589 + value2*1.0 611 + value2*1.0 ) ) ) ); 590 bessel = fact1/fact2; 612 bessel = fact1/fact2; 591 } 613 } 592 else 614 else 593 { 615 { 594 arg = 8.0/modvalue; 616 arg = 8.0/modvalue; 595 value2 = arg*arg; 617 value2 = arg*arg; 596 618 597 shift = modvalue - 2.356194491; 619 shift = modvalue - 2.356194491; 598 620 599 fact1 = 1.0 + value2*( 0.183105e-2 621 fact1 = 1.0 + value2*( 0.183105e-2 600 + value2*(-0.3516396496e-4 622 + value2*(-0.3516396496e-4 601 + value2*(0.2457520174e-5 623 + value2*(0.2457520174e-5 602 + value2*(-0.240337019e-6 624 + value2*(-0.240337019e-6 ) ) ) ); 603 625 604 fact2 = 0.04687499995 + value2*(-0.2002690 626 fact2 = 0.04687499995 + value2*(-0.2002690873e-3 605 + value2*( 0.8449199 627 + value2*( 0.8449199096e-5 606 + value2*(-0.8822898 628 + value2*(-0.88228987e-6 607 + value2*0.105787412 629 + value2*0.105787412e-6 ) ) ); 608 630 609 bessel = std::sqrt( 0.636619772/modvalue)* 631 bessel = std::sqrt( 0.636619772/modvalue)*(std::cos(shift)*fact1 - arg*std::sin(shift)*fact2); 610 if (value < 0.0) bessel = -bessel; 632 if (value < 0.0) bessel = -bessel; 611 } 633 } 612 return bessel; 634 return bessel; 613 } 635 } 614 636 615 ////////////////////////////////////////////// 637 //////////////////////////////////////////////////////////////////////////////// 616 // return J1(x)/x with special case for small 638 // return J1(x)/x with special case for small x 617 G4double G4AntiNuclElastic::BesselOneByArg(G4d 639 G4double G4AntiNuclElastic::BesselOneByArg(G4double x) 618 { 640 { 619 G4double x2, result; 641 G4double x2, result; 620 642 621 if( std::fabs(x) < 0.01 ) 643 if( std::fabs(x) < 0.01 ) 622 { 644 { 623 x *= 0.5; 645 x *= 0.5; 624 x2 = x*x; 646 x2 = x*x; 625 result = (2.- x2 + x2*x2/6.)/4.; 647 result = (2.- x2 + x2*x2/6.)/4.; 626 } 648 } 627 else 649 else 628 { 650 { 629 result = BesselJone(x)/x; 651 result = BesselJone(x)/x; 630 } 652 } 631 return result; 653 return result; 632 } 654 } 633 655 634 ////////////////////////////////////////////// 656 ///////////////////////////////////////////////////////////////////////////////// 635 // return angle from which Coulomb scattering 657 // return angle from which Coulomb scattering is calculated 636 G4double G4AntiNuclElastic::GetcosTeta1(G4doub 658 G4double G4AntiNuclElastic::GetcosTeta1(G4double plab, G4int A) 637 { 659 { 638 660 639 // G4double p0 =G4LossTableManager::Instance() 661 // G4double p0 =G4LossTableManager::Instance()->FactorForAngleLimit()*CLHEP::hbarc/CLHEP::fermi; 640 G4double p0 = 1.*hbarc/fermi; 662 G4double p0 = 1.*hbarc/fermi; 641 //G4double cteta1 = 1.0 - p0*p0/2.0 * pow(A,2. 663 //G4double cteta1 = 1.0 - p0*p0/2.0 * pow(A,2./3.)/(plab*plab); 642 G4double cteta1 = 1.0 - p0*p0/2.0 * G4Pow::G 664 G4double cteta1 = 1.0 - p0*p0/2.0 * G4Pow::GetInstance()->Z23(A)/(plab*plab); 643 ////////////////// 665 ////////////////// 644 if(cteta1 < -1.) cteta1 = -1.0; 666 if(cteta1 < -1.) cteta1 = -1.0; 645 return cteta1; 667 return cteta1; 646 } 668 } 647 669 648 670 649 671 650 672 651 673 652 674 653 675 654 676