Geant4 Cross Reference |
1 // 1 2 // ******************************************* 3 // * License and Disclaimer 4 // * 5 // * The Geant4 software is copyright of th 6 // * the Geant4 Collaboration. It is provided 7 // * conditions of the Geant4 Software License 8 // * LICENSE and available at http://cern.ch/ 9 // * include a list of copyright holders. 10 // * 11 // * Neither the authors of this software syst 12 // * institutes,nor the agencies providing fin 13 // * work make any representation or warran 14 // * regarding this software system or assum 15 // * use. Please see the license in the file 16 // * for the full disclaimer and the limitatio 17 // * 18 // * This code implementation is the result 19 // * technical work of the GEANT4 collaboratio 20 // * By using, copying, modifying or distri 21 // * any work based on the software) you ag 22 // * use in resulting scientific publicati 23 // * acceptance of all terms of the Geant4 Sof 24 // ******************************************* 25 // 26 // G4RKFieldIntegrator 27 #include "G4RKFieldIntegrator.hh" 28 #include "G4PhysicalConstants.hh" 29 #include "G4SystemOfUnits.hh" 30 #include "G4NucleiProperties.hh" 31 #include "G4FermiMomentum.hh" 32 #include "G4NuclearFermiDensity.hh" 33 #include "G4NuclearShellModelDensity.hh" 34 #include "G4Nucleon.hh" 35 #include "G4Exp.hh" 36 #include "G4Log.hh" 37 #include "G4Pow.hh" 38 39 // Class G4RKFieldIntegrator 40 //******************************************** 41 42 // only theActive are propagated, nothing else 43 // only theSpectators define the field, nothin 44 45 void G4RKFieldIntegrator::Transport(G4KineticT 46 { 47 (void)theActive; 48 (void)theSpectators; 49 (void)theTimeStep; 50 } 51 52 53 G4double G4RKFieldIntegrator::CalculateTotalEn 54 { 55 const G4double Alpha = 0.25/fermi/fermi; 56 const G4double t1 = -7264.04*fermi*ferm 57 const G4double tGamma = 87.65*fermi*fermi* 58 // const G4double Gamma = 1.676; 59 const G4double Vo = -0.498*fermi; 60 const G4double GammaY = 1.4*fermi; 61 62 G4double Etot = 0; 63 G4int nBarion = (G4int)Barions.size(); 64 for(G4int c1 = 0; c1 < nBarion; ++c1) 65 { 66 G4KineticTrack* p1 = Barions.operator[]( 67 // Ekin 68 Etot += p1->Get4Momentum().e(); 69 for(G4int c2 = c1 + 1; c2 < nBarion; ++c 70 { 71 G4KineticTrack* p2 = Barions.operator 72 G4double r12 = (p1->GetPosition() - p 73 74 // Esk2 75 Etot += t1*G4Pow::GetInstance()->A23( 76 77 // Eyuk 78 Etot += Vo*0.5/r12*G4Exp(1/(4*Alpha*G 79 (G4Exp(-r12/GammaY)*(1 - Erf(0.5/G 80 G4Exp( r12/GammaY)*(1 - Erf(0.5/G 81 82 // Ecoul 83 Etot += 1.44*p1->GetDefinition()->Get 84 85 // Epaul 86 Etot = 0; 87 88 for(G4int c3 = c2 + 1; c3 < nBarion; 89 { 90 G4KineticTrack* p3 = Barions.opera 91 G4double r13 = (p1->GetPosition() 92 93 // Esk3 94 Etot = tGamma*G4Pow::GetInstance( 95 } 96 } 97 } 98 return Etot; 99 } 100 101 //******************************************** 102 // originated from the Numerical recipes error 103 G4double G4RKFieldIntegrator::Erf(G4double X) 104 { 105 const G4double Z1 = 1; 106 const G4double HF = Z1/2; 107 const G4double C1 = 0.56418958; 108 109 const G4double P10 = +3.6767877; 110 const G4double Q10 = +3.2584593; 111 const G4double P11 = -9.7970465E-2; 112 113 // static G4ThreadLocal G4double P2[5] = { 7 114 // static G4ThreadLocal G4double Q2[5] = { 7 115 const G4double P2[5] = { 7.3738883, 6.86501 116 const G4double Q2[5] = { 7.3739609, 15.1849 117 118 const G4double P30 = -1.2436854E-1; 119 const G4double Q30 = +4.4091706E-1; 120 const G4double P31 = -9.6821036E-2; 121 122 G4double V = std::abs(X); 123 G4double H; 124 G4double Y; 125 G4int c1; 126 127 if(V < HF) 128 { 129 Y = V*V; 130 H = X*(P10 + P11*Y)/(Q10+Y); 131 } 132 else 133 { 134 if(V < 4) 135 { 136 G4double AP = P2[4]; 137 G4double AQ = Q2[4]; 138 for(c1 = 3; c1 >= 0; c1--) 139 { 140 AP = P2[c1] + V*AP; 141 AQ = Q2[c1] + V*AQ; 142 } 143 H = 1 - G4Exp(-V*V)*AP/AQ; 144 } 145 else 146 { 147 Y = 1./V*V; 148 H = 1 - G4Exp(-V*V)*(C1+Y*(P30 + P31*Y 149 } 150 if (X < 0) 151 H = -H; 152 } 153 return H; 154 } 155 156 //******************************************** 157 //This is a QMD version to calculate excitatio 158 //which consists from G4KTV &the Particles 159 /* 160 G4double G4RKFieldIntegrator::GetExcitationEne 161 { 162 // Excitation energy of a fragment consisti 163 // is Etot - Z*Mp - (A - Z)*Mn - B(A, Z), w 164 // and Mp, Mn are proton and neutron mass, 165 G4int NZ = 0; 166 G4int NA = 0; 167 G4double Etot = CalculateTotalEnergy(thePar 168 for(G4int cParticle = 0; cParticle < thePar 169 { 170 G4KineticTrack* pKineticTrack = theParti 171 G4int Encoding = std::abs(pKineticTrack 172 if (Encoding == 2212) 173 NZ++, NA++; 174 if (Encoding == 2112) 175 NA++; 176 Etot -= pKineticTrack->GetDefinition()-> 177 } 178 return Etot - G4NucleiProperties::GetBindin 179 } 180 */ 181 182 //******************************************** 183 //This is a simplified method to get excitatio 184 // nucleus with nHitNucleons. 185 G4double G4RKFieldIntegrator::GetExcitationEne 186 { 187 const G4double MeanE = 50; 188 G4double Sum = 0; 189 for(G4int c1 = 0; c1 < nHitNucleons; ++c1) 190 { 191 Sum += -MeanE*G4Log(G4UniformRand()); 192 } 193 return Sum; 194 } 195 //******************************************** 196 197 /* 198 //This is free propagation of particles for CA 199 void G4RKFieldIntegrator::Integrate(G4KineticT 200 { 201 for(G4int cParticle = 0; cParticle < thePar 202 { 203 G4KineticTrack* pKineticTrack = theParti 204 pKineticTrack->SetPosition(pKineticTrack 205 } 206 } 207 */ 208 //******************************************** 209 210 void G4RKFieldIntegrator::Integrate(const G4Ki 211 { 212 for(std::size_t cParticle = 0; cParticle < 213 { 214 G4KineticTrack* pKineticTrack = theBario 215 pKineticTrack->SetPosition(pKineticTrack 216 } 217 } 218 219 //******************************************** 220 221 // constant to calculate theCoulomb barrier 222 const G4double G4RKFieldIntegrator::coulomb = 223 224 // kaon's potential constant (real part only) 225 // 0.35 + i0.82 or 0.63 + i0.89 fermi 226 const G4double G4RKFieldIntegrator::a_kaon = 0 227 228 // pion's potential constant (real part only) 229 //!! for pions it has todiffer from kaons 230 // 0.35 + i0.82 or 0.63 + i0.89 fermi 231 const G4double G4RKFieldIntegrator::a_pion = 0 232 233 // antiproton's potential constant (real part 234 // 1.53 + i2.50 fermi 235 const G4double G4RKFieldIntegrator::a_antiprot 236 237 // methods for calculating potentials for diff 238 // aPosition is relative to the nucleus center 239 G4double G4RKFieldIntegrator::GetNeutronPotent 240 { 241 /* 242 const G4double Mn = 939.56563 * MeV; // ma 243 244 G4VNuclearDensity *theDencity; 245 if(theA < 17) theDencity = new G4NuclearShe 246 else theDencity = new G4NuclearFer 247 248 // GetDencity() accepts only G4ThreeVector 249 G4ThreeVector aPosition(0.0, 0.0, radius); 250 G4double density = theDencity->GetDensity(a 251 delete theDencity; 252 253 G4FermiMomentum *fm = new G4FermiMomentum() 254 fm->Init(theA, theZ); 255 G4double fermiMomentum = fm->GetFermiMoment 256 delete fm; 257 258 return sqr(fermiMomentum)/(2 * Mn) 259 + G4CreateNucleus::GetBindingEnergy(theZ 260 //+ G4NucleiProperties::GetBindingEnergy 261 */ 262 263 return 0.0; 264 } 265 266 G4double G4RKFieldIntegrator::GetProtonPotenti 267 { 268 /* 269 // calculate Coulomb barrier value 270 G4double theCoulombBarrier = coulomb * theZ 271 const G4double Mp = 938.27231 * MeV; // ma 272 273 G4VNuclearDensity *theDencity; 274 if(theA < 17) theDencity = new G4NuclearShe 275 else theDencity = new G4NuclearFer 276 277 // GetDencity() accepts only G4ThreeVector 278 G4ThreeVector aPosition(0.0, 0.0, radius); 279 G4double density = theDencity->GetDensity(a 280 delete theDencity; 281 282 G4FermiMomentum *fm = new G4FermiMomentum() 283 fm->Init(theA, theZ); 284 G4double fermiMomentum = fm->GetFermiMoment 285 delete fm; 286 287 return sqr(fermiMomentum)/ (2 * Mp) 288 + G4CreateNucleus::GetBindingEnergy(theZ 289 //+ G4NucleiProperties::GetBindingEnergy 290 + theCoulombBarrier; 291 */ 292 293 return 0.0; 294 } 295 296 G4double G4RKFieldIntegrator::GetAntiprotonPot 297 { 298 /* 299 //G4double theM = G4NucleiProperties::GetAt 300 G4double theM = theZ * G4Proton::Proton()-> 301 + (theA - theZ) * G4Neutron::Neutron()-> 302 + G4CreateNucleus::GetBindingEnergy(theZ 303 304 const G4double Mp = 938.27231 * MeV; // ma 305 G4double mu = (theM * Mp)/(theM + Mp); 306 307 // antiproton's potential coefficient 308 // V = coeff_antiproton * nucleus_density 309 G4double coeff_antiproton = -2.*pi/mu * (1. 310 311 G4VNuclearDensity *theDencity; 312 if(theA < 17) theDencity = new G4NuclearShe 313 else theDencity = new G4NuclearFer 314 315 // GetDencity() accepts only G4ThreeVector 316 G4ThreeVector aPosition(0.0, 0.0, radius); 317 G4double density = theDencity->GetDensity(a 318 delete theDencity; 319 320 return coeff_antiproton * density; 321 */ 322 323 return 0.0; 324 } 325 326 G4double G4RKFieldIntegrator::GetKaonPotential 327 { 328 /* 329 //G4double theM = G4NucleiProperties::GetAt 330 G4double theM = theZ * G4Proton::Proton()-> 331 + (theA - theZ) * G4Neutron::Neutron()-> 332 + G4CreateNucleus::GetBindingEnergy(theZ 333 334 const G4double Mk = 496. * MeV; // ma 335 G4double mu = (theM * Mk)/(theM + Mk); 336 337 // kaon's potential coefficient 338 // V = coeff_kaon * nucleus_density 339 G4double coeff_kaon = -2.*pi/mu * (1. + Mk/ 340 341 G4VNuclearDensity *theDencity; 342 if(theA < 17) theDencity = new G4NuclearShe 343 else theDencity = new G4NuclearFer 344 345 // GetDencity() accepts only G4ThreeVector 346 G4ThreeVector aPosition(0.0, 0.0, radius); 347 G4double density = theDencity->GetDensity(a 348 delete theDencity; 349 350 return coeff_kaon * density; 351 */ 352 353 return 0.0; 354 } 355 356 G4double G4RKFieldIntegrator::GetPionPotential 357 { 358 /* 359 //G4double theM = G4NucleiProperties::GetAt 360 G4double theM = theZ * G4Proton::Proton()-> 361 + (theA - theZ) * G4Neutron::Neutron()-> 362 + G4CreateNucleus::GetBindingEnergy(theZ 363 364 const G4double Mpi = 139. * MeV; // ma 365 G4double mu = (theM * Mpi)/(theM + Mpi); 366 367 // pion's potential coefficient 368 // V = coeff_pion * nucleus_density 369 G4double coeff_pion = -2.*pi/mu * (1. + Mpi 370 371 G4VNuclearDensity *theDencity; 372 if(theA < 17) theDencity = new G4NuclearShe 373 else theDencity = new G4NuclearFer 374 375 // GetDencity() accepts only G4ThreeVector 376 G4ThreeVector aPosition(0.0, 0.0, radius); 377 G4double density = theDencity->GetDensity(a 378 delete theDencity; 379 380 return coeff_pion * density; 381 */ 382 383 return 0.0; 384 } 385