Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/abrasion/src/G4WilsonAbrasionModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/hadronic/models/abrasion/src/G4WilsonAbrasionModel.cc (Version 11.3.0) and /processes/hadronic/models/abrasion/src/G4WilsonAbrasionModel.cc (Version 7.0.p1)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                    <<   3 // * DISCLAIMER                                                       *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th <<   5 // * The following disclaimer summarizes all the specific disclaimers *
  6 // * the Geant4 Collaboration.  It is provided <<   6 // * of contributors to this software. The specific disclaimers,which *
  7 // * conditions of the Geant4 Software License <<   7 // * govern, are listed with their locations in:                      *
  8 // * LICENSE and available at  http://cern.ch/ <<   8 // *   http://cern.ch/geant4/license                                  *
  9 // * include a list of copyright holders.      << 
 10 // *                                                9 // *                                                                  *
 11 // * Neither the authors of this software syst     10 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     11 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     12 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     13 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  <<  14 // * use.                                                             *
 16 // * for the full disclaimer and the limitatio << 
 17 // *                                               15 // *                                                                  *
 18 // * This  code  implementation is the result  <<  16 // * This  code  implementation is the  intellectual property  of the *
 19 // * technical work of the GEANT4 collaboratio <<  17 // * GEANT4 collaboration.                                            *
 20 // *                                               18 // *                                                                  *
 21 // * Parts of this code which have been  devel     19 // * Parts of this code which have been  developed by QinetiQ Ltd     *
 22 // * under contract to the European Space Agen <<  20 // * under contract to the European Space Agency (ESA) are the        *
 23 // * intellectual property of ESA. Rights to u     21 // * intellectual property of ESA. Rights to use, copy, modify and    *
 24 // * redistribute this software for general pu     22 // * redistribute this software for general public use are granted    *
 25 // * in compliance with any licensing, distrib     23 // * in compliance with any licensing, distribution and development   *
 26 // * policy adopted by the Geant4 Collaboratio     24 // * policy adopted by the Geant4 Collaboration. This code has been   *
 27 // * written by QinetiQ Ltd for the European S     25 // * written by QinetiQ Ltd for the European Space Agency, under ESA  *
 28 // * contract 17191/03/NL/LvH (Aurora Programm <<  26 // * contract 17191/03/NL/LvH (Aurora Programme).           *
 29 // *                                               27 // *                                                                  *
 30 // * By using,  copying,  modifying or  distri <<  28 // * By copying,  distributing  or modifying the Program (or any work *
 31 // * any work based  on the software)  you  ag <<  29 // * based  on  the Program)  you indicate  your  acceptance of  this *
 32 // * use  in  resulting  scientific  publicati <<  30 // * statement, and all its terms.                                    *
 33 // * acceptance of all terms of the Geant4 Sof << 
 34 // *******************************************     31 // ********************************************************************
 35 //                                                 32 //
 36 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <<  33 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 37 //                                                 34 //
 38 // MODULE:              G4WilsonAbrasionModel.     35 // MODULE:              G4WilsonAbrasionModel.cc
 39 //                                                 36 //
 40 // Version:   1.0                              <<  37 // Version:   B.1
 41 // Date:    08/12/2009                         <<  38 // Date:    15/04/04
 42 // Author:    P R Truscott                         39 // Author:    P R Truscott
 43 // Organisation:  QinetiQ Ltd, UK                  40 // Organisation:  QinetiQ Ltd, UK
 44 // Customer:    ESA/ESTEC, NOORDWIJK               41 // Customer:    ESA/ESTEC, NOORDWIJK
 45 // Contract:    17191/03/NL/LvH                    42 // Contract:    17191/03/NL/LvH
 46 //                                                 43 //
 47 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <<  44 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 48 //                                                 45 //
 49 // CHANGE HISTORY                                  46 // CHANGE HISTORY
 50 // --------------                                  47 // --------------
 51 //                                                 48 //
 52 // 6 October 2003, P R Truscott, QinetiQ Ltd,      49 // 6 October 2003, P R Truscott, QinetiQ Ltd, UK
 53 // Created.                                        50 // Created.
 54 //                                                 51 //
 55 // 15 March 2004, P R Truscott, QinetiQ Ltd, U     52 // 15 March 2004, P R Truscott, QinetiQ Ltd, UK
 56 // Beta release                                    53 // Beta release
 57 //                                                 54 //
 58 // 18 January 2005, M H Mendenhall, Vanderbilt <<  55 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 59 // Pointers to theAbrasionGeometry and product <<  56 ////////////////////////////////////////////////////////////////////////////////
 60 // handler deleted to prevent memory leaks.  A << 
 61 // fragment previously not properly defined.   << 
 62 //                                             << 
 63 // 08 December 2009, P R Truscott, QinetiQ Ltd << 
 64 // ver 1.0                                     << 
 65 // There was originally a possibility of the m << 
 66 // considering Couloumb repulsion, rm, being t << 
 67 //     rm >= fradius * (rP + rT)               << 
 68 // where fradius is currently 0.99, then it is << 
 69 // unchanged.  Additional conditions to escape << 
 70 // parameter: if the loop counter evtcnt reach << 
 71 // continued.                                  << 
 72 // Additional clauses have been included in    << 
 73 //    G4WilsonAbrasionModel::GetNucleonInduced << 
 74 // Previously it was possible to get sqrt of n << 
 75 // algorithm not properly defined if either:   << 
 76 //    rT > rP && rsq < rTsq - rPsq) or (rP > r << 
 77 //                                             << 
 78 // 12 June 2012, A. Ribon, CERN, Switzerland   << 
 79 // Fixing trivial warning errors of shadowed v << 
 80 //                                             << 
 81 // 4 August 2015, A. Ribon, CERN, Switzerland  << 
 82 // Replacing std::exp and std::pow with the fa << 
 83 //                                             << 
 84 // 7 August 2015, A. Ribon, CERN, Switzerland  << 
 85 // Checking of 'while' loops.                  << 
 86 //                                                 57 //
 87 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% << 
 88 ////////////////////////////////////////////// << 
 89                                                << 
 90 #include "G4WilsonAbrasionModel.hh"                58 #include "G4WilsonAbrasionModel.hh"
 91 #include "G4WilsonRadius.hh"                       59 #include "G4WilsonRadius.hh"
 92 #include "G4NuclearAbrasionGeometry.hh"            60 #include "G4NuclearAbrasionGeometry.hh"
 93 #include "G4WilsonAblationModel.hh"                61 #include "G4WilsonAblationModel.hh"
 94                                                    62 
 95 #include "G4PhysicalConstants.hh"              << 
 96 #include "G4SystemOfUnits.hh"                  << 
 97 #include "G4ExcitationHandler.hh"                  63 #include "G4ExcitationHandler.hh"
 98 #include "G4Evaporation.hh"                        64 #include "G4Evaporation.hh"
                                                   >>  65 #include "G4FermiBreakUp.hh"
                                                   >>  66 #include "G4StatMF.hh"
 99 #include "G4ParticleDefinition.hh"                 67 #include "G4ParticleDefinition.hh"
100 #include "G4DynamicParticle.hh"                    68 #include "G4DynamicParticle.hh"
101 #include "Randomize.hh"                            69 #include "Randomize.hh"
102 #include "G4Fragment.hh"                           70 #include "G4Fragment.hh"
                                                   >>  71 #include "G4VNuclearDensity.hh"
                                                   >>  72 #include "G4NuclearShellModelDensity.hh"
                                                   >>  73 #include "G4NuclearFermiDensity.hh"
                                                   >>  74 #include "G4FermiMomentum.hh"
103 #include "G4ReactionProductVector.hh"              75 #include "G4ReactionProductVector.hh"
104 #include "G4LorentzVector.hh"                      76 #include "G4LorentzVector.hh"
105 #include "G4ParticleMomentum.hh"                   77 #include "G4ParticleMomentum.hh"
106 #include "G4Poisson.hh"                            78 #include "G4Poisson.hh"
107 #include "G4ParticleTable.hh"                      79 #include "G4ParticleTable.hh"
108 #include "G4IonTable.hh"                           80 #include "G4IonTable.hh"
109 #include "globals.hh"                              81 #include "globals.hh"
110                                                <<  82 ////////////////////////////////////////////////////////////////////////////////
111 #include "G4Exp.hh"                            <<  83 //
112 #include "G4Pow.hh"                            <<  84 G4WilsonAbrasionModel::G4WilsonAbrasionModel (G4bool useAblation1)
113                                                << 
114 #include "G4PhysicsModelCatalog.hh"            << 
115                                                << 
116                                                << 
117 G4WilsonAbrasionModel::G4WilsonAbrasionModel(G << 
118   : G4HadronicInteraction("G4WilsonAbrasion"), << 
119 {                                                  85 {
120   // Send message to stdout to advise that the <<  86 //
                                                   >>  87 //
                                                   >>  88 // Send message to stdout to advise that the G4Abrasion model is being used.
                                                   >>  89 //
121   PrintWelcomeMessage();                           90   PrintWelcomeMessage();
122                                                <<  91 //
123   // Set the default verbose level to 0 - no o <<  92 //
                                                   >>  93 // Set the default verbose level to 0 - no output.
                                                   >>  94 //
124   verboseLevel = 0;                                95   verboseLevel = 0;
125   useAblation  = useAblation1;                     96   useAblation  = useAblation1;
126   theAblation  = nullptr;                      <<  97 //
127                                                <<  98 //
128   // No de-excitation handler has been supplie <<  99 // No de-excitation handler has been supplied - define the default handler.
129                                                << 100 //
130   theExcitationHandler = new G4ExcitationHandl << 101   theExcitationHandler  = new G4ExcitationHandler;
                                                   >> 102   theExcitationHandlerx = new G4ExcitationHandler;
131   if (useAblation)                                103   if (useAblation)
132   {                                               104   {
133     theAblation = new G4WilsonAblationModel;      105     theAblation = new G4WilsonAblationModel;
134     theAblation->SetVerboseLevel(verboseLevel)    106     theAblation->SetVerboseLevel(verboseLevel);
135     theExcitationHandler->SetEvaporation(theAb << 107     theExcitationHandler->SetEvaporation(theAblation);
                                                   >> 108     theExcitationHandlerx->SetEvaporation(theAblation);
136   }                                               109   }
137                                                << 110   else
138   // Set the minimum and maximum range for the << 111   {
139   // this is in energy per nucleon number).    << 112     theAblation                      = NULL;
140                                                << 113     G4Evaporation * theEvaporation   = new G4Evaporation;
                                                   >> 114     G4FermiBreakUp * theFermiBreakUp = new G4FermiBreakUp;
                                                   >> 115     G4StatMF * theMF                 = new G4StatMF;
                                                   >> 116     theExcitationHandler->SetEvaporation(theEvaporation);
                                                   >> 117     theExcitationHandler->SetFermiModel(theFermiBreakUp);
                                                   >> 118     theExcitationHandler->SetMultiFragmentation(theMF);
                                                   >> 119     theExcitationHandler->SetMaxAandZForFermiBreakUp(12, 6);
                                                   >> 120     theExcitationHandler->SetMinEForMultiFrag(5.0*MeV);
                                                   >> 121 
                                                   >> 122     theEvaporation  = new G4Evaporation;
                                                   >> 123     theFermiBreakUp = new G4FermiBreakUp;
                                                   >> 124     theExcitationHandlerx->SetEvaporation(theEvaporation);
                                                   >> 125     theExcitationHandlerx->SetFermiModel(theFermiBreakUp);
                                                   >> 126     theExcitationHandlerx->SetMaxAandZForFermiBreakUp(12, 6);
                                                   >> 127   }
                                                   >> 128 //
                                                   >> 129 //
                                                   >> 130 // Set the minimum and maximum range for the model (despite nomanclature, this
                                                   >> 131 // is in energy per nucleon number).  
                                                   >> 132 //
141   SetMinEnergy(70.0*MeV);                         133   SetMinEnergy(70.0*MeV);
142   SetMaxEnergy(10.1*GeV);                         134   SetMaxEnergy(10.1*GeV);
143   isBlocked = false;                              135   isBlocked = false;
144                                                << 136 //
145   // npK, when mutiplied by the nuclear Fermi  << 137 //
146   // momentum over which the secondary nucleon << 138 // npK, when mutiplied by the nuclear Fermi momentum, determines the range of
147                                                << 139 // momentum over which the secondary nucleon momentum is sampled.
148   r0sq = 0.0;                                  << 140 //
149   npK = 5.0;                                   << 141   npK              = 5.0;
150   B = 10.0 * MeV;                              << 142   B                = 10.0 * MeV;
151   third = 1.0 / 3.0;                           << 143   third            = 1.0 / 3.0;
152   fradius = 0.99;                              << 144   conserveEnergy   = false;
153   conserveEnergy = false;                      << 
154   conserveMomentum = true;                        145   conserveMomentum = true;
155                                                << 
156   // Creator model ID for the secondaries crea << 
157   secID = G4PhysicsModelCatalog::GetModelID( " << 
158 }                                              << 
159                                                << 
160 void G4WilsonAbrasionModel::ModelDescription(s << 
161 {                                              << 
162   outFile << "G4WilsonAbrasionModel is a macro << 
163           << "nucleus-nucleus collisions using << 
164           << "The smaller projectile nucleus g << 
165           << "target nucleus, leaving a residu << 
166           << "region where the projectile and  << 
167           << "is then treated as a highly exci << 
168           << "model is based on the NUCFRG2 mo << 
169           << "projectile energies between 70 M << 
170 }                                                 146 }
171                                                << 147 ////////////////////////////////////////////////////////////////////////////////
172 G4WilsonAbrasionModel::G4WilsonAbrasionModel(G << 148 //
173  G4HadronicInteraction("G4WilsonAbrasion"), se << 149 G4WilsonAbrasionModel::G4WilsonAbrasionModel (G4ExcitationHandler *aExcitationHandler)
174 {                                                 150 {
                                                   >> 151 //
                                                   >> 152 //
175 // Send message to stdout to advise that the G    153 // Send message to stdout to advise that the G4Abrasion model is being used.
176                                                << 154 //
177   PrintWelcomeMessage();                          155   PrintWelcomeMessage();
178                                                << 156 //
                                                   >> 157 //
179 // Set the default verbose level to 0 - no out    158 // Set the default verbose level to 0 - no output.
180                                                << 159 //
181   verboseLevel = 0;                               160   verboseLevel = 0;
182                                                << 161 //                      
183   theAblation = nullptr;   //A.R. 26-Jul-2012  << 
184   useAblation = false;     //A.R. 14-Aug-2012  << 
185                                                << 
186 //                                                162 //
187 // The user is able to provide the excitation     163 // The user is able to provide the excitation handler as well as an argument
188 // which is provided in this instantiation is     164 // which is provided in this instantiation is used to determine
189 // whether the spectators of the interaction a    165 // whether the spectators of the interaction are free following the abrasion.
190 //                                                166 //
191   theExcitationHandler = aExcitationHandler;   << 167   theExcitationHandler             = aExcitationHandler;
                                                   >> 168   theExcitationHandlerx            = new G4ExcitationHandler;
                                                   >> 169   G4Evaporation * theEvaporation   = new G4Evaporation;
                                                   >> 170   G4FermiBreakUp * theFermiBreakUp = new G4FermiBreakUp;
                                                   >> 171   theExcitationHandlerx->SetEvaporation(theEvaporation);
                                                   >> 172   theExcitationHandlerx->SetFermiModel(theFermiBreakUp);
                                                   >> 173   theExcitationHandlerx->SetMaxAandZForFermiBreakUp(12, 6);
192 //                                                174 //
193 //                                                175 //
194 // Set the minimum and maximum range for the m    176 // Set the minimum and maximum range for the model (despite nomanclature, this
195 // is in energy per nucleon number).              177 // is in energy per nucleon number).  
196 //                                                178 //
197   SetMinEnergy(70.0*MeV);                         179   SetMinEnergy(70.0*MeV);
198   SetMaxEnergy(10.1*GeV);                         180   SetMaxEnergy(10.1*GeV);
199   isBlocked = false;                              181   isBlocked = false;
200 //                                                182 //
201 //                                                183 //
202 // npK, when mutiplied by the nuclear Fermi mo    184 // npK, when mutiplied by the nuclear Fermi momentum, determines the range of
203 // momentum over which the secondary nucleon m    185 // momentum over which the secondary nucleon momentum is sampled.
204 //                                                186 //
205   r0sq             = 0.0;                      << 
206   npK              = 5.0;                         187   npK              = 5.0;
207   B                = 10.0 * MeV;                  188   B                = 10.0 * MeV;
208   third            = 1.0 / 3.0;                   189   third            = 1.0 / 3.0;
209   fradius          = 0.99;                     << 
210   conserveEnergy   = false;                       190   conserveEnergy   = false;
211   conserveMomentum = true;                        191   conserveMomentum = true;
212                                                << 
213   // Creator model ID for the secondaries crea << 
214   secID = G4PhysicsModelCatalog::GetModelID( " << 
215 }                                                 192 }
216 //////////////////////////////////////////////    193 ////////////////////////////////////////////////////////////////////////////////
217 //                                                194 //
218 G4WilsonAbrasionModel::~G4WilsonAbrasionModel( << 195 G4WilsonAbrasionModel::~G4WilsonAbrasionModel ()
219 {                                                 196 {
                                                   >> 197 //
                                                   >> 198 //
                                                   >> 199 // The destructor doesn't have to do a great deal!
                                                   >> 200 //
220   delete theExcitationHandler;                    201   delete theExcitationHandler;
                                                   >> 202   delete theExcitationHandlerx;
221 }                                                 203 }
222 //////////////////////////////////////////////    204 ////////////////////////////////////////////////////////////////////////////////
223 //                                                205 //
224 G4HadFinalState *G4WilsonAbrasionModel::ApplyY    206 G4HadFinalState *G4WilsonAbrasionModel::ApplyYourself (
225   const G4HadProjectile &theTrack, G4Nucleus &    207   const G4HadProjectile &theTrack, G4Nucleus &theTarget)
226 {                                                 208 {
227 //                                                209 //
228 //                                                210 //
229 // The secondaries will be returned in G4HadFi    211 // The secondaries will be returned in G4HadFinalState &theParticleChange -
230 // initialise this.  The original track will a    212 // initialise this.  The original track will always be discontinued and
231 // secondaries followed.                          213 // secondaries followed.
232 //                                                214 //
233   theParticleChange.Clear();                      215   theParticleChange.Clear();
234   theParticleChange.SetStatusChange(stopAndKil    216   theParticleChange.SetStatusChange(stopAndKill);
235 //                                                217 //
236 //                                                218 //
237 // Get relevant information about the projecti    219 // Get relevant information about the projectile and target (A, Z, energy/nuc,
238 // momentum, etc).                                220 // momentum, etc).
239 //                                                221 //
240   const G4ParticleDefinition *definitionP = th    222   const G4ParticleDefinition *definitionP = theTrack.GetDefinition();
241   const G4double AP  = definitionP->GetBaryonN << 223   const G4double AP   = definitionP->GetBaryonNumber();
242   const G4double ZP  = definitionP->GetPDGChar << 224   const G4double ZP   = definitionP->GetPDGCharge();
243   G4LorentzVector pP = theTrack.Get4Momentum() << 225   G4LorentzVector pP  = theTrack.Get4Momentum();
244   G4double E         = theTrack.GetKineticEner << 226   G4double E          = theTrack.GetKineticEnergy()/AP;
245   G4double AT        = theTarget.GetA_asInt(); << 227   G4double AT         = theTarget.GetN();
246   G4double ZT        = theTarget.GetZ_asInt(); << 228   G4double ZT         = theTarget.GetZ();
247   G4double TotalEPre = theTrack.GetTotalEnergy << 229   G4double TotalEPre  = theTrack.GetTotalEnergy() +
248     theTarget.AtomicMass(AT, ZT) + theTarget.G    230     theTarget.AtomicMass(AT, ZT) + theTarget.GetEnergyDeposit();
249   G4double TotalEPost = 0.0;                      231   G4double TotalEPost = 0.0;
250 //                                                232 //
251 //                                                233 //
252 // Determine the radii of the projectile and t    234 // Determine the radii of the projectile and target nuclei.
253 //                                                235 //
254   G4WilsonRadius aR;                              236   G4WilsonRadius aR;
255   G4double rP   = aR.GetWilsonRadius(AP);         237   G4double rP   = aR.GetWilsonRadius(AP);
256   G4double rT   = aR.GetWilsonRadius(AT);         238   G4double rT   = aR.GetWilsonRadius(AT);
257   G4double rPsq = rP * rP;                        239   G4double rPsq = rP * rP;
258   G4double rTsq = rT * rT;                        240   G4double rTsq = rT * rT;
259   if (verboseLevel >= 2)                          241   if (verboseLevel >= 2)
260   {                                               242   {
261     G4cout <<"################################    243     G4cout <<"########################################"
262            <<"################################    244            <<"########################################"
263            <<G4endl;                              245            <<G4endl;
264     G4cout.precision(6);                          246     G4cout.precision(6);
265     G4cout <<"IN G4WilsonAbrasionModel" <<G4en    247     G4cout <<"IN G4WilsonAbrasionModel" <<G4endl;
266     G4cout <<"Initial projectile A=" <<AP         248     G4cout <<"Initial projectile A=" <<AP 
267            <<", Z=" <<ZP                          249            <<", Z=" <<ZP
268            <<", radius = " <<rP/fermi <<" fm"     250            <<", radius = " <<rP/fermi <<" fm"
269            <<G4endl;                              251            <<G4endl; 
270     G4cout <<"Initial target     A=" <<AT         252     G4cout <<"Initial target     A=" <<AT
271            <<", Z=" <<ZT                          253            <<", Z=" <<ZT
272            <<", radius = " <<rT/fermi <<" fm"     254            <<", radius = " <<rT/fermi <<" fm"
273            <<G4endl;                              255            <<G4endl;
274     G4cout <<"Projectile momentum and Energy/n    256     G4cout <<"Projectile momentum and Energy/nuc = " <<pP <<" ," <<E <<G4endl;
275   }                                               257   }
276 //                                                258 //
277 //                                                259 //
278 // The following variables are used to determi    260 // The following variables are used to determine the impact parameter in the
279 // near-field (i.e. taking into consideration     261 // near-field (i.e. taking into consideration the electrostatic repulsion).
280 //                                                262 //
281   G4double rm   = ZP * ZT * elm_coupling / (E     263   G4double rm   = ZP * ZT * elm_coupling / (E * AP);
282   G4double r    = 0.0;                            264   G4double r    = 0.0;
283   G4double rsq  = 0.0;                            265   G4double rsq  = 0.0;
284 //                                                266 //
285 //                                                267 //
286 // Initialise some of the variables which wll     268 // Initialise some of the variables which wll be used to calculate the chord-
287 // length for nucleons in the projectile and t    269 // length for nucleons in the projectile and target, and hence calculate the
288 // number of abraded nucleons and the excitati    270 // number of abraded nucleons and the excitation energy.
289 //                                                271 //
290   G4NuclearAbrasionGeometry *theAbrasionGeomet << 272   G4NuclearAbrasionGeometry *theAbrasionGeometry = NULL;
291   G4double CT   = 0.0;                            273   G4double CT   = 0.0;
292   G4double F    = 0.0;                            274   G4double F    = 0.0;
293   G4int Dabr    = 0;                              275   G4int Dabr    = 0;
294 //                                                276 //
295 //                                                277 //
296 // The following loop is performed until the n    278 // The following loop is performed until the number of nucleons which are
297 // abraded by the process is >1, i.e. an inter    279 // abraded by the process is >1, i.e. an interaction MUST occur.
298 //                                                280 //
299   G4bool skipInteraction = false;  // It will  << 281   while (Dabr == 0)
300   const G4int maxNumberOfLoops = 1000;         << 
301   G4int loopCounter = -1;                      << 
302   while (Dabr == 0 && ++loopCounter < maxNumbe << 
303   {                                               282   {
304 //                                                283 //
305 //                                                284 //
306 // Sample the impact parameter.  For the momen    285 // Sample the impact parameter.  For the moment, this class takes account of
307 // electrostatic effects on the impact paramet    286 // electrostatic effects on the impact parameter, but (like HZETRN AND NUCFRG2)
308 // does not make any correction for the effect    287 // does not make any correction for the effects of nuclear-nuclear repulsion.
309 //                                                288 //
310     G4double rPT   = rP + rT;                     289     G4double rPT   = rP + rT;
311     G4double rPTsq = rPT * rPT;                   290     G4double rPTsq = rPT * rPT;
312 //                                             << 
313 //                                             << 
314 // This is a "catch" to make sure we don't go  << 
315 // energy is too low to overcome nuclear repul << 
316 // value of rm < fradius * rPT then we're unli << 
317 // impact parameter (energy of incident partic << 
318 //                                             << 
319     if (rm >= fradius * rPT) {                 << 
320       skipInteraction = true;                  << 
321     }                                          << 
322 //                                             << 
323 //                                             << 
324 // Now sample impact parameter until the crite << 
325 // and target overlap, but repulsion is taken  << 
326 //                                             << 
327     G4int evtcnt   = 0;                        << 
328     r              = 1.1 * rPT;                   291     r              = 1.1 * rPT;
329     while (r > rPT && ++evtcnt < 1000)  /* Loo << 292     while (r > rPT)
330     {                                             293     {
331       G4double bsq = rPTsq * G4UniformRand();     294       G4double bsq = rPTsq * G4UniformRand();
332       r            = (rm + std::sqrt(rm*rm + 4    295       r            = (rm + std::sqrt(rm*rm + 4.0*bsq)) / 2.0;
333     }                                             296     }
334 //                                             << 
335 //                                             << 
336 // We've tried to sample this 1000 times, but  << 
337 //                                             << 
338     if (evtcnt >= 1000) {                      << 
339       skipInteraction = true;                  << 
340     }                                          << 
341                                                << 
342     rsq = r * r;                                  297     rsq = r * r;
343 //                                                298 //
344 //                                                299 //
345 // Now determine the chord-length through the     300 // Now determine the chord-length through the target nucleus.
346 //                                                301 //
347     if (rT > rP)                                  302     if (rT > rP)
348     {                                             303     {
349       G4double x = (rPsq + rsq - rTsq) / 2.0 /    304       G4double x = (rPsq + rsq - rTsq) / 2.0 / r;
350       if (x > 0.0) CT = 2.0 * std::sqrt(rTsq -    305       if (x > 0.0) CT = 2.0 * std::sqrt(rTsq - x*x);
351       else         CT = 2.0 * std::sqrt(rTsq -    306       else         CT = 2.0 * std::sqrt(rTsq - rsq);
352     }                                             307     }
353     else                                          308     else
354     {                                             309     {
355       G4double x = (rTsq + rsq - rPsq) / 2.0 /    310       G4double x = (rTsq + rsq - rPsq) / 2.0 / r;
356       if (x > 0.0) CT = 2.0 * std::sqrt(rTsq -    311       if (x > 0.0) CT = 2.0 * std::sqrt(rTsq - x*x);
357       else         CT = 2.0 * rT;                 312       else         CT = 2.0 * rT;
358     }                                             313     }
359 //                                                314 //
360 //                                                315 //
361 // Determine the number of abraded nucleons.      316 // Determine the number of abraded nucleons.  Note that the mean number of
362 // abraded nucleons is used to sample the Pois    317 // abraded nucleons is used to sample the Poisson distribution.  The Poisson
363 // distribution is sampled only ten times with    318 // distribution is sampled only ten times with the current impact parameter,
364 // and if it fails after this to find a case f    319 // and if it fails after this to find a case for which the number of abraded
365 // nucleons >1, the impact parameter is re-sam    320 // nucleons >1, the impact parameter is re-sampled.
366 //                                                321 //
367     delete theAbrasionGeometry;                << 
368     theAbrasionGeometry = new G4NuclearAbrasio    322     theAbrasionGeometry = new G4NuclearAbrasionGeometry(AP,AT,r);
369     F                   = theAbrasionGeometry-    323     F                   = theAbrasionGeometry->F();
370     G4double lambda     = 16.6*fermi / G4Pow:: << 324     G4double lambda     = 16.6*fermi / std::pow(E/MeV,0.26);
371     G4double Mabr       = F * AP * (1.0 - G4Ex << 325     G4double Mabr       = F * AP * (1.0 - std::exp(-CT/lambda));
372     G4long n            = 0;                      326     G4long n            = 0;
373     for (G4int i = 0; i<10; ++i)               << 327     for (G4int i = 0; i<10; i++)
374     {                                             328     {
375       n = G4Poisson(Mabr);                        329       n = G4Poisson(Mabr);
376       if (n > 0)                                  330       if (n > 0)
377       {                                           331       {
378         if (n>AP) Dabr = (G4int) AP;              332         if (n>AP) Dabr = (G4int) AP;
379         else      Dabr = (G4int) n;               333         else      Dabr = (G4int) n;
380         break;                                    334         break;
381       }                                           335       }
382     }                                             336     }
383   }  // End of while loop                      << 
384                                                << 
385   if ( loopCounter >= maxNumberOfLoops || skip << 
386     // Assume nuclei do not collide and return << 
387     theParticleChange.SetStatusChange(isAlive) << 
388     theParticleChange.SetEnergyChange(theTrack << 
389     theParticleChange.SetMomentumChange(theTra << 
390     if (verboseLevel >= 2) {                   << 
391       G4cout <<"Particle energy too low to ove << 
392       G4cout <<"Event rejected and original tr << 
393       G4cout <<"############################## << 
394              <<"############################## << 
395              <<G4endl;                         << 
396     }                                          << 
397     delete theAbrasionGeometry;                << 
398     return &theParticleChange;                 << 
399   }                                               337   }
400                                                << 
401   if (verboseLevel >= 2)                          338   if (verboseLevel >= 2)
402   {                                               339   {
403     G4cout <<G4endl;                              340     G4cout <<G4endl;
404     G4cout <<"Impact parameter    = " <<r/ferm    341     G4cout <<"Impact parameter    = " <<r/fermi <<" fm" <<G4endl;
405     G4cout <<"# Abraded nucleons  = " <<Dabr <    342     G4cout <<"# Abraded nucleons  = " <<Dabr <<G4endl;
406   }                                               343   }
407 //                                                344 //
408 //                                                345 //
409 // The number of abraded nucleons must be no g    346 // The number of abraded nucleons must be no greater than the number of
410 // nucleons in either the projectile or the ta    347 // nucleons in either the projectile or the target.  If AP - Dabr < 2 or 
411 // AT - Dabr < 2 then either we have only a nu    348 // AT - Dabr < 2 then either we have only a nucleon left behind in the
412 // projectile/target or we've tried to abrade     349 // projectile/target or we've tried to abrade too many nucleons - and Dabr
413 // should be limited.                             350 // should be limited.
414 //                                                351 //
415   if (AP - (G4double) Dabr < 2.0) Dabr = (G4in    352   if (AP - (G4double) Dabr < 2.0) Dabr = (G4int) AP;
416   if (AT - (G4double) Dabr < 2.0) Dabr = (G4in    353   if (AT - (G4double) Dabr < 2.0) Dabr = (G4int) AT;
417 //                                                354 //
418 //                                                355 //
419 // Determine the abraded secondary nucleons fr    356 // Determine the abraded secondary nucleons from the projectile.  *fragmentP
420 // is a pointer to the prefragment from the pr    357 // is a pointer to the prefragment from the projectile and nSecP is the number
421 // of nucleons in theParticleChange which have    358 // of nucleons in theParticleChange which have been abraded.  The total energy
422 // from these is determined.                      359 // from these is determined.
423 //                                                360 //
424   G4ThreeVector boost   = pP.findBoostToCM();     361   G4ThreeVector boost   = pP.findBoostToCM();
425   G4Fragment *fragmentP = GetAbradedNucleons (    362   G4Fragment *fragmentP = GetAbradedNucleons (Dabr, AP, ZP, rP); 
426   G4int nSecP           = (G4int)theParticleCh << 363   G4int nSecP           = theParticleChange.GetNumberOfSecondaries();
427   G4int i               = 0;                      364   G4int i               = 0;
428   for (i=0; i<nSecP; ++i)                      << 365   for (i=0; i<nSecP; i++)
429   {                                               366   {
430     TotalEPost += theParticleChange.GetSeconda    367     TotalEPost += theParticleChange.GetSecondary(i)->
431       GetParticle()->GetTotalEnergy();            368       GetParticle()->GetTotalEnergy();
432   }                                               369   }
433 //                                                370 //
434 //                                                371 //
435 // Determine the number of spectators in the i    372 // Determine the number of spectators in the interaction region for the
436 // projectile.                                    373 // projectile.
437 //                                                374 //
438   G4int DspcP = (G4int) (AP*F) - Dabr;            375   G4int DspcP = (G4int) (AP*F) - Dabr;
439   if (DspcP <= 0)           DspcP = 0;            376   if (DspcP <= 0)           DspcP = 0;
440   else if (DspcP > AP-Dabr) DspcP = ((G4int) A    377   else if (DspcP > AP-Dabr) DspcP = ((G4int) AP) - Dabr;
441 //                                                378 //
442 //                                                379 //
443 // Determine excitation energy associated with    380 // Determine excitation energy associated with excess surface area of the
444 // projectile (EsP) and the excitation due to     381 // projectile (EsP) and the excitation due to scattering of nucleons which are
445 // retained within the projectile (ExP).  Add     382 // retained within the projectile (ExP).  Add the total energy from the excited
446 // nucleus to the total energy of the secondar    383 // nucleus to the total energy of the secondaries.
447 //                                                384 //
448   G4bool excitationAbsorbedByProjectile = fals    385   G4bool excitationAbsorbedByProjectile = false;
449   if (fragmentP != nullptr)                    << 386   if (fragmentP != NULL)
450   {                                               387   {
451     G4double EsP = theAbrasionGeometry->GetExc    388     G4double EsP = theAbrasionGeometry->GetExcitationEnergyOfProjectile();
452     G4double ExP = 0.0;                           389     G4double ExP = 0.0;
453     if (Dabr < AT)                                390     if (Dabr < AT)
454       excitationAbsorbedByProjectile = G4Unifo    391       excitationAbsorbedByProjectile = G4UniformRand() < 0.5;
455     if (excitationAbsorbedByProjectile)           392     if (excitationAbsorbedByProjectile)
456       ExP = GetNucleonInducedExcitation(rP, rT    393       ExP = GetNucleonInducedExcitation(rP, rT, r);
457     G4double xP = EsP + ExP;                      394     G4double xP = EsP + ExP;
458     if (xP > B*(AP-Dabr)) xP = B*(AP-Dabr);       395     if (xP > B*(AP-Dabr)) xP = B*(AP-Dabr);
459     G4LorentzVector lorentzVector = fragmentP-    396     G4LorentzVector lorentzVector = fragmentP->GetMomentum();
460     lorentzVector.setE(lorentzVector.e()+xP);     397     lorentzVector.setE(lorentzVector.e()+xP);
461     fragmentP->SetMomentum(lorentzVector);        398     fragmentP->SetMomentum(lorentzVector);
462     TotalEPost += lorentzVector.e();              399     TotalEPost += lorentzVector.e();
463   }                                               400   }
464   G4double EMassP = TotalEPost;                   401   G4double EMassP = TotalEPost;
465 //                                                402 //
466 //                                                403 //
467 // Determine the abraded secondary nucleons fr    404 // Determine the abraded secondary nucleons from the target.  Note that it's
468 // assumed that the same number of nucleons ar    405 // assumed that the same number of nucleons are abraded from the target as for
469 // the projectile, and obviously no boost is a    406 // the projectile, and obviously no boost is applied to the products. *fragmentT
470 // is a pointer to the prefragment from the ta    407 // is a pointer to the prefragment from the target and nSec is the total number
471 // of nucleons in theParticleChange which have    408 // of nucleons in theParticleChange which have been abraded.  The total energy
472 // from these is determined.                      409 // from these is determined.
473 //                                                410 //
474   G4Fragment *fragmentT = GetAbradedNucleons (    411   G4Fragment *fragmentT = GetAbradedNucleons (Dabr, AT, ZT, rT); 
475   G4int nSec = (G4int)theParticleChange.GetNum << 412   G4int nSec = theParticleChange.GetNumberOfSecondaries();
476   for (i=nSecP; i<nSec; ++i)                   << 413   for (i=nSecP; i<nSec; i++)
477   {                                               414   {
478     TotalEPost += theParticleChange.GetSeconda    415     TotalEPost += theParticleChange.GetSecondary(i)->
479       GetParticle()->GetTotalEnergy();            416       GetParticle()->GetTotalEnergy();
480   }                                               417   }
481 //                                                418 //
482 //                                                419 //
483 // Determine the number of spectators in the i    420 // Determine the number of spectators in the interaction region for the
484 // target.                                        421 // target.
485 //                                                422 //
486   G4int DspcT = (G4int) (AT*F) - Dabr;            423   G4int DspcT = (G4int) (AT*F) - Dabr;
487   if (DspcT <= 0)           DspcT = 0;            424   if (DspcT <= 0)           DspcT = 0;
488   else if (DspcT > AP-Dabr) DspcT = ((G4int) A    425   else if (DspcT > AP-Dabr) DspcT = ((G4int) AT) - Dabr;
489 //                                                426 //
490 //                                                427 //
491 // Determine excitation energy associated with    428 // Determine excitation energy associated with excess surface area of the
492 // target (EsT) and the excitation due to scat    429 // target (EsT) and the excitation due to scattering of nucleons which are
493 // retained within the target (ExT).  Add the     430 // retained within the target (ExT).  Add the total energy from the excited
494 // nucleus to the total energy of the secondar    431 // nucleus to the total energy of the secondaries.
495 //                                                432 //
496   if (fragmentT != nullptr)                    << 433   if (fragmentT != NULL)
497   {                                               434   {
498     G4double EsT = theAbrasionGeometry->GetExc    435     G4double EsT = theAbrasionGeometry->GetExcitationEnergyOfTarget();
499     G4double ExT = 0.0;                           436     G4double ExT = 0.0;
500     if (!excitationAbsorbedByProjectile)          437     if (!excitationAbsorbedByProjectile)
501       ExT = GetNucleonInducedExcitation(rT, rP    438       ExT = GetNucleonInducedExcitation(rT, rP, r);
502     G4double xT = EsT + ExT;                      439     G4double xT = EsT + ExT;
503     if (xT > B*(AT-Dabr)) xT = B*(AT-Dabr);       440     if (xT > B*(AT-Dabr)) xT = B*(AT-Dabr);
504     G4LorentzVector lorentzVector = fragmentT-    441     G4LorentzVector lorentzVector = fragmentT->GetMomentum();
505     lorentzVector.setE(lorentzVector.e()+xT);     442     lorentzVector.setE(lorentzVector.e()+xT);
506     fragmentT->SetMomentum(lorentzVector);        443     fragmentT->SetMomentum(lorentzVector);
507     TotalEPost += lorentzVector.e();              444     TotalEPost += lorentzVector.e();
508   }                                               445   }
509 //                                                446 //
510 //                                                447 //
511 // Now determine the difference between the pr    448 // Now determine the difference between the pre and post interaction
512 // energy - this will be used to determine the    449 // energy - this will be used to determine the Lorentz boost if conservation
513 // of energy is to be imposed/attempted.          450 // of energy is to be imposed/attempted.
514 //                                                451 //
515   G4double deltaE = TotalEPre - TotalEPost;       452   G4double deltaE = TotalEPre - TotalEPost;
516   if (deltaE > 0.0 && conserveEnergy)             453   if (deltaE > 0.0 && conserveEnergy)
517   {                                               454   {
518     G4double beta = std::sqrt(1.0 - EMassP*EMa << 455     G4double beta = std::sqrt(1.0 - EMassP*EMassP/std::pow(deltaE+EMassP,2.0));
519     boost = boost / boost.mag() * beta;           456     boost = boost / boost.mag() * beta;
520   }                                               457   }
521 //                                                458 //
522 //                                                459 //
523 // Now boost the secondaries from the projecti    460 // Now boost the secondaries from the projectile.
524 //                                                461 //
525   G4ThreeVector pBalance = pP.vect();             462   G4ThreeVector pBalance = pP.vect();
526   for (i=0; i<nSecP; ++i)                      << 463   for (i=0; i<nSecP; i++)
527   {                                               464   {
528     G4DynamicParticle *dynamicP = theParticleC    465     G4DynamicParticle *dynamicP = theParticleChange.GetSecondary(i)->
529       GetParticle();                              466       GetParticle();
530     G4LorentzVector lorentzVector = dynamicP->    467     G4LorentzVector lorentzVector = dynamicP->Get4Momentum();
531     lorentzVector.boost(-boost);                  468     lorentzVector.boost(-boost);
532     dynamicP->Set4Momentum(lorentzVector);        469     dynamicP->Set4Momentum(lorentzVector);
533     pBalance -= lorentzVector.vect();             470     pBalance -= lorentzVector.vect();
534   }                                               471   }
535 //                                                472 //
536 //                                                473 //
537 // Set the boost for the projectile prefragmen    474 // Set the boost for the projectile prefragment.  This is now based on the
538 // conservation of momentum.  However, if the     475 // conservation of momentum.  However, if the user selected momentum of the
539 // prefragment is not to be conserved this sim    476 // prefragment is not to be conserved this simply boosted to the velocity of the
540 // original projectile times the ratio of the     477 // original projectile times the ratio of the unexcited to the excited mass
541 // of the prefragment (the excitation increase    478 // of the prefragment (the excitation increases the effective mass of the
542 // prefragment, and therefore modifying the bo    479 // prefragment, and therefore modifying the boost is an attempt to prevent
543 // the momentum of the prefragment being exces    480 // the momentum of the prefragment being excessive).
544 //                                                481 //
545   if (fragmentP != nullptr)                    << 482   if (fragmentP != NULL)
546   {                                               483   {
547     G4LorentzVector lorentzVector = fragmentP-    484     G4LorentzVector lorentzVector = fragmentP->GetMomentum();
548     G4double fragmentM            = lorentzVec << 485     G4double m                    = lorentzVector.m();
549     if (conserveMomentum)                         486     if (conserveMomentum)
550       fragmentP->SetMomentum                      487       fragmentP->SetMomentum
551         (G4LorentzVector(pBalance,std::sqrt(pB << 488         (G4LorentzVector(pBalance,std::sqrt(pBalance.mag2()+m*m+1.0*eV*eV)));
552     else                                          489     else
553     {                                             490     {
554       G4double fragmentGroundStateM = fragment << 491       G4double mg = fragmentP->GetGroundStateMass();
555       fragmentP->SetMomentum(lorentzVector.boo << 492       fragmentP->SetMomentum(lorentzVector.boost(-boost * mg/m));
556     }                                             493     }
557   }                                               494   }
558 //                                                495 //
559 //                                                496 //
560 // Output information to user if verbose infor    497 // Output information to user if verbose information requested.
561 //                                                498 //
562   if (verboseLevel >= 2)                          499   if (verboseLevel >= 2)
563   {                                               500   {
564     G4cout <<G4endl;                              501     G4cout <<G4endl;
565     G4cout <<"--------------------------------    502     G4cout <<"-----------------------------------" <<G4endl;
566     G4cout <<"Secondary nucleons from projecti    503     G4cout <<"Secondary nucleons from projectile:" <<G4endl;
567     G4cout <<"--------------------------------    504     G4cout <<"-----------------------------------" <<G4endl;
568     G4cout.precision(7);                          505     G4cout.precision(7);
569     for (i=0; i<nSecP; ++i)                    << 506     for (i=0; i<nSecP; i++)
570     {                                             507     {
571       G4cout <<"Particle # " <<i <<G4endl;        508       G4cout <<"Particle # " <<i <<G4endl;
572       theParticleChange.GetSecondary(i)->GetPa    509       theParticleChange.GetSecondary(i)->GetParticle()->DumpInfo();
573       G4DynamicParticle *dyn = theParticleChan    510       G4DynamicParticle *dyn = theParticleChange.GetSecondary(i)->GetParticle();
574       G4cout <<"New nucleon (P) " <<dyn->GetDe    511       G4cout <<"New nucleon (P) " <<dyn->GetDefinition()->GetParticleName()
575              <<" : "              <<dyn->Get4M    512              <<" : "              <<dyn->Get4Momentum()
576              <<G4endl;                            513              <<G4endl;
577     }                                             514     }
578     G4cout <<"---------------------------" <<G    515     G4cout <<"---------------------------" <<G4endl;
579     G4cout <<"The projectile prefragment:" <<G    516     G4cout <<"The projectile prefragment:" <<G4endl;
580     G4cout <<"---------------------------" <<G    517     G4cout <<"---------------------------" <<G4endl;
581     if (fragmentP != nullptr)                  << 518     if (fragmentP != NULL)
582       G4cout <<*fragmentP <<G4endl;               519       G4cout <<*fragmentP <<G4endl;
583     else                                          520     else
584       G4cout <<"(No residual prefragment)" <<G    521       G4cout <<"(No residual prefragment)" <<G4endl;
585     G4cout <<G4endl;                              522     G4cout <<G4endl;
586     G4cout <<"-------------------------------"    523     G4cout <<"-------------------------------" <<G4endl;
587     G4cout <<"Secondary nucleons from target:"    524     G4cout <<"Secondary nucleons from target:" <<G4endl;
588     G4cout <<"-------------------------------"    525     G4cout <<"-------------------------------" <<G4endl;
589     G4cout.precision(7);                          526     G4cout.precision(7);
590     for (i=nSecP; i<nSec; ++i)                 << 527     for (i=nSecP; i<nSec; i++)
591     {                                             528     {
592       G4cout <<"Particle # " <<i <<G4endl;        529       G4cout <<"Particle # " <<i <<G4endl;
593       theParticleChange.GetSecondary(i)->GetPa    530       theParticleChange.GetSecondary(i)->GetParticle()->DumpInfo();
594       G4DynamicParticle *dyn = theParticleChan    531       G4DynamicParticle *dyn = theParticleChange.GetSecondary(i)->GetParticle();
595       G4cout <<"New nucleon (T) " <<dyn->GetDe    532       G4cout <<"New nucleon (T) " <<dyn->GetDefinition()->GetParticleName()
596              <<" : "              <<dyn->Get4M    533              <<" : "              <<dyn->Get4Momentum()
597              <<G4endl;                            534              <<G4endl;
598     }                                             535     }
599     G4cout <<"-----------------------" <<G4end    536     G4cout <<"-----------------------" <<G4endl;
600     G4cout <<"The target prefragment:" <<G4end    537     G4cout <<"The target prefragment:" <<G4endl;
601     G4cout <<"-----------------------" <<G4end    538     G4cout <<"-----------------------" <<G4endl;
602     if (fragmentT != nullptr)                  << 539     if (fragmentT != NULL)
603       G4cout <<*fragmentT <<G4endl;               540       G4cout <<*fragmentT <<G4endl;
604     else                                          541     else
605       G4cout <<"(No residual prefragment)" <<G    542       G4cout <<"(No residual prefragment)" <<G4endl;
606   }                                               543   }
607 //                                                544 //
608 //                                                545 //
609 // Now we can decay the nuclear fragments if p    546 // Now we can decay the nuclear fragments if present.  The secondaries are
610 // collected and boosted as well.  This is per    547 // collected and boosted as well.  This is performed first for the projectile...
611 //                                                548 //
612   if (fragmentP !=nullptr)                     << 549   if (fragmentP !=NULL)
613   {                                               550   {
614     G4ReactionProductVector *products = nullpt << 551     G4ReactionProductVector *products = NULL;
615     //    if (fragmentP->GetZ_asInt() != fragm << 552     if (fragmentP->GetZ() != fragmentP->GetA())
616     products = theExcitationHandler->BreakItUp << 553       products = theExcitationHandler->BreakItUp(*fragmentP);
617     // else                                    << 554     else
618     //   products = theExcitationHandlerx->Bre << 555       products = theExcitationHandlerx->BreakItUp(*fragmentP);      
619     delete fragmentP;                             556     delete fragmentP;
620     fragmentP = nullptr;                       << 557     fragmentP = NULL;
621                                                   558   
622     G4ReactionProductVector::iterator iter;       559     G4ReactionProductVector::iterator iter;
623     for (iter = products->begin(); iter != pro    560     for (iter = products->begin(); iter != products->end(); ++iter)
624     {                                             561     {
625       G4DynamicParticle *secondary =              562       G4DynamicParticle *secondary =
626         new G4DynamicParticle((*iter)->GetDefi    563         new G4DynamicParticle((*iter)->GetDefinition(),
627         (*iter)->GetTotalEnergy(), (*iter)->Ge    564         (*iter)->GetTotalEnergy(), (*iter)->GetMomentum());
628       theParticleChange.AddSecondary (secondar << 
629       G4String particleName = (*iter)->GetDefi    565       G4String particleName = (*iter)->GetDefinition()->GetParticleName();
630       delete (*iter); // get rid of leftover p << 
631       if (verboseLevel >= 2 && particleName.fi    566       if (verboseLevel >= 2 && particleName.find("[",0) < particleName.size())
632       {                                           567       {
633         G4cout <<"------------------------" <<    568         G4cout <<"------------------------" <<G4endl;
634         G4cout <<"The projectile fragment:" <<    569         G4cout <<"The projectile fragment:" <<G4endl;
635         G4cout <<"------------------------" <<    570         G4cout <<"------------------------" <<G4endl;
636         G4cout <<" fragmentP = " <<particleNam    571         G4cout <<" fragmentP = " <<particleName
637                <<" Energy    = " <<secondary->    572                <<" Energy    = " <<secondary->GetKineticEnergy()
638                <<G4endl;                          573                <<G4endl;
639       }                                           574       }
640     }                                             575     }
641     delete products;                           << 
642   }                                               576   }
643 //                                                577 //
644 //                                                578 //
645 // Now decay the target nucleus - no boost is     579 // Now decay the target nucleus - no boost is applied since in this
646 // approximation it is assumed that there is n    580 // approximation it is assumed that there is negligible momentum transfer from
647 // the projectile.                                581 // the projectile.
648 //                                                582 //
649   if (fragmentT != nullptr)                    << 583   if (fragmentT != NULL)
650   {                                               584   {
651     G4ReactionProductVector *products = nullpt << 585     G4ReactionProductVector *products = NULL;
652     //    if (fragmentT->GetZ_asInt() != fragm << 586     if (fragmentT->GetZ() != fragmentT->GetA())
653       products = theExcitationHandler->BreakIt    587       products = theExcitationHandler->BreakItUp(*fragmentT);
654     // else                                    << 588     else
655     //   products = theExcitationHandlerx->Bre << 589       products = theExcitationHandlerx->BreakItUp(*fragmentT);      
656     // delete fragmentT;                       << 590     delete fragmentT;
657     fragmentT = nullptr;                       << 591     fragmentT = NULL;
658                                                   592   
659     G4ReactionProductVector::iterator iter;       593     G4ReactionProductVector::iterator iter;
660     for (iter = products->begin(); iter != pro    594     for (iter = products->begin(); iter != products->end(); ++iter)
661     {                                             595     {
662       G4DynamicParticle *secondary =              596       G4DynamicParticle *secondary =
663         new G4DynamicParticle((*iter)->GetDefi    597         new G4DynamicParticle((*iter)->GetDefinition(),
664         (*iter)->GetTotalEnergy(), (*iter)->Ge    598         (*iter)->GetTotalEnergy(), (*iter)->GetMomentum());
665       theParticleChange.AddSecondary (secondar << 599       theParticleChange.AddSecondary (secondary);
666       G4String particleName = (*iter)->GetDefi    600       G4String particleName = (*iter)->GetDefinition()->GetParticleName();
667       delete (*iter); // get rid of leftover p << 
668       if (verboseLevel >= 2 && particleName.fi    601       if (verboseLevel >= 2 && particleName.find("[",0) < particleName.size())
669       {                                           602       {
670         G4cout <<"--------------------" <<G4en    603         G4cout <<"--------------------" <<G4endl;
671         G4cout <<"The target fragment:" <<G4en    604         G4cout <<"The target fragment:" <<G4endl;
672         G4cout <<"--------------------" <<G4en    605         G4cout <<"--------------------" <<G4endl;
673         G4cout <<" fragmentT = " <<particleNam    606         G4cout <<" fragmentT = " <<particleName
674                <<" Energy    = " <<secondary->    607                <<" Energy    = " <<secondary->GetKineticEnergy()
675                <<G4endl;                          608                <<G4endl;
676       }                                           609       }
677     }                                             610     }
678     delete products;                           << 
679   }                                               611   }
680                                                   612 
681   if (verboseLevel >= 2)                          613   if (verboseLevel >= 2)
682      G4cout <<"###############################    614      G4cout <<"########################################"
683             <<"###############################    615             <<"########################################"
684             <<G4endl;                             616             <<G4endl;
685                                                   617   
686   delete theAbrasionGeometry;                     618   delete theAbrasionGeometry;
                                                   >> 619 
687   return &theParticleChange;                      620   return &theParticleChange;
688 }                                                 621 }
689 //////////////////////////////////////////////    622 ////////////////////////////////////////////////////////////////////////////////
690 //                                                623 //
691 G4Fragment *G4WilsonAbrasionModel::GetAbradedN    624 G4Fragment *G4WilsonAbrasionModel::GetAbradedNucleons (G4int Dabr, G4double A,
692   G4double Z, G4double r)                         625   G4double Z, G4double r)
693 {                                                 626 {
694 //                                                627 //
695 //                                                628 //
696 // Initialise variables.  tau is the Fermi rad    629 // Initialise variables.  tau is the Fermi radius of the nucleus.  The variables
697 // p..., C... and gamma are used to help sampl << 630 // p..., C... and g(amma) are used to help sample the secondary nucleon
698 // spectrum.                                      631 // spectrum.
699 //                                                632 //
700                                                   633   
701   G4double pK   = hbarc * G4Pow::GetInstance() << 634   G4double pK   = hbarc * std::pow(9.0 * pi / 4.0 * A, third) / (1.29 * r);
702   if (A <= 24.0) pK *= -0.229*G4Pow::GetInstan << 635   if (A <= 24.0) pK *= -0.229*std::pow(A,third) + 1.62; 
703   G4double pKsq = pK * pK;                        636   G4double pKsq = pK * pK;
704   G4double p1sq = 2.0/5.0 * pKsq;                 637   G4double p1sq = 2.0/5.0 * pKsq;
705   G4double p2sq = 6.0/5.0 * pKsq;                 638   G4double p2sq = 6.0/5.0 * pKsq;
706   G4double p3sq = 500.0 * 500.0;                  639   G4double p3sq = 500.0 * 500.0;
707   G4double C1   = 1.0;                            640   G4double C1   = 1.0;
708   G4double C2   = 0.03;                           641   G4double C2   = 0.03;
709   G4double C3   = 0.0002;                         642   G4double C3   = 0.0002;
710   G4double gamma = 90.0 * MeV;                 << 643   G4double g    = 90.0 * MeV;
711   G4double maxn = C1 + C2 + C3;                   644   G4double maxn = C1 + C2 + C3;
712 //                                                645 //
713 //                                                646 //
714 // initialise the number of secondary nucleons    647 // initialise the number of secondary nucleons abraded to zero, and initially set
715 // the type of nucleon abraded to proton ... j    648 // the type of nucleon abraded to proton ... just for now.
716 //                                                649 //  
717   G4double Aabr                     = 0.0;        650   G4double Aabr                     = 0.0;
718   G4double Zabr                     = 0.0;        651   G4double Zabr                     = 0.0; 
719   G4ParticleDefinition *typeNucleon = G4Proton    652   G4ParticleDefinition *typeNucleon = G4Proton::ProtonDefinition();
720   G4DynamicParticle *dynamicNucleon = nullptr; << 653   G4DynamicParticle *dynamicNucleon = NULL;
721   G4ParticleMomentum pabr(0.0, 0.0, 0.0);         654   G4ParticleMomentum pabr(0.0, 0.0, 0.0);
722 //                                                655 //
723 //                                                656 //
724 // Now go through each abraded nucleon and sam    657 // Now go through each abraded nucleon and sample type, spectrum and angle.
725 //                                                658 //
726   G4bool isForLoopExitAnticipated = false;     << 659   for (G4int i=0; i<Dabr; i++)
727   for (G4int i=0; i<Dabr; ++i)                 << 
728   {                                               660   {
729 //                                                661 //
730 //                                                662 //
731 // Sample the nucleon momentum distribution by    663 // Sample the nucleon momentum distribution by simple rejection techniques.  We
732 // reject values of p == 0.0 since this causes    664 // reject values of p == 0.0 since this causes bad behaviour in the sinh term.
733 //                                                665 //
734     G4double p   = 0.0;                           666     G4double p   = 0.0;
735     G4bool found = false;                         667     G4bool found = false;
736     const G4int maxNumberOfLoops = 100000;     << 668     while (!found)
737     G4int loopCounter = -1;                    << 
738     while (!found && ++loopCounter < maxNumber << 
739     {                                             669     {
740       while (p <= 0.0) p = npK * pK * G4Unifor << 670       while (p <= 0.0) p = npK * pK * G4UniformRand();
741       G4double psq = p * p;                       671       G4double psq = p * p;
742       found = maxn * G4UniformRand() < C1*G4Ex << 672       found = maxn * G4UniformRand() < C1*std::exp(-psq/p1sq/2.0) +
743         C2*G4Exp(-psq/p2sq/2.0) + C3*G4Exp(-ps << 673         C2*std::exp(-psq/p2sq/2.0) + C3*std::exp(-psq/p3sq/2.0) + p/g/std::sinh(p/g);
744     }                                          << 
745     if ( loopCounter >= maxNumberOfLoops )     << 
746     {                                          << 
747       isForLoopExitAnticipated = true;         << 
748       break;                                   << 
749     }                                             674     }
750 //                                                675 //
751 //                                                676 //
752 // Determine the type of particle abraded.  Ca    677 // Determine the type of particle abraded.  Can only be proton or neutron,
753 // and the probability is determine to be prop    678 // and the probability is determine to be proportional to the ratio as found
754 // in the nucleus at each stage.                  679 // in the nucleus at each stage.
755 //                                                680 //
756     G4double prob = (Z-Zabr)/(A-Aabr);            681     G4double prob = (Z-Zabr)/(A-Aabr);
757     if (G4UniformRand()<prob)                     682     if (G4UniformRand()<prob)
758     {                                             683     {
759       Zabr++;                                     684       Zabr++;
760       typeNucleon = G4Proton::ProtonDefinition    685       typeNucleon = G4Proton::ProtonDefinition();
761     }                                             686     }
762     else                                          687     else
763       typeNucleon = G4Neutron::NeutronDefiniti    688       typeNucleon = G4Neutron::NeutronDefinition();
764     Aabr++;                                       689     Aabr++;
765 //                                                690 //
766 //                                                691 //
767 // The angular distribution of the secondary n    692 // The angular distribution of the secondary nucleons is approximated to an
768 // isotropic distribution in the rest frame of    693 // isotropic distribution in the rest frame of the nucleus (this will be Lorentz
769 // boosted later.                                 694 // boosted later.
770 //                                                695 //
771     G4double costheta = 2.*G4UniformRand()-1.0    696     G4double costheta = 2.*G4UniformRand()-1.0;
772     G4double sintheta = std::sqrt((1.0 - costh    697     G4double sintheta = std::sqrt((1.0 - costheta)*(1.0 + costheta));
773     G4double phi      = 2.0*pi*G4UniformRand()    698     G4double phi      = 2.0*pi*G4UniformRand()*rad;
774     G4ThreeVector direction(sintheta*std::cos(    699     G4ThreeVector direction(sintheta*std::cos(phi),sintheta*std::sin(phi),costheta);
775     G4double nucleonMass = typeNucleon->GetPDG    700     G4double nucleonMass = typeNucleon->GetPDGMass();
776     G4double E           = std::sqrt(p*p + nuc    701     G4double E           = std::sqrt(p*p + nucleonMass*nucleonMass)-nucleonMass;
777     dynamicNucleon = new G4DynamicParticle(typ    702     dynamicNucleon = new G4DynamicParticle(typeNucleon,direction,E);
778     theParticleChange.AddSecondary (dynamicNuc << 703     theParticleChange.AddSecondary (dynamicNucleon);
779     pabr += p*direction;                          704     pabr += p*direction;
780   }                                               705   }
781 //                                                706 //
782 //                                                707 //
783 // Next determine the details of the nuclear p    708 // Next determine the details of the nuclear prefragment .. that is if there
784 // is one or more protons in the residue.  (No    709 // is one or more protons in the residue.  (Note that the 1 eV in the total
785 // energy is a safety factor to avoid any poss    710 // energy is a safety factor to avoid any possibility of negative rest mass
786 // energy.)                                       711 // energy.)
787 //                                                712 //
788   G4Fragment *fragment = nullptr;              << 713   G4Fragment *fragment = NULL;
789   if ( ! isForLoopExitAnticipated && Z-Zabr>=1 << 714   if (Z-Zabr>=1.0)
790   {                                               715   {
791     G4double ionMass = G4ParticleTable::GetPar    716     G4double ionMass = G4ParticleTable::GetParticleTable()->GetIonTable()->
792                        GetIonMass(G4lrint(Z-Za    717                        GetIonMass(G4lrint(Z-Zabr),G4lrint(A-Aabr));
793     G4double E       = std::sqrt(pabr.mag2() +    718     G4double E       = std::sqrt(pabr.mag2() + ionMass*ionMass);
794     G4LorentzVector lorentzVector = G4LorentzV    719     G4LorentzVector lorentzVector = G4LorentzVector(-pabr, E + 1.0*eV);
795     fragment =                                    720     fragment =
796       new G4Fragment((G4int) (A-Aabr), (G4int)    721       new G4Fragment((G4int) (A-Aabr), (G4int) (Z-Zabr), lorentzVector);
797   }                                               722   }
798                                                   723 
799   return fragment;                                724   return fragment;
800 }                                                 725 }
801 //////////////////////////////////////////////    726 ////////////////////////////////////////////////////////////////////////////////
802 //                                                727 //
803 G4double G4WilsonAbrasionModel::GetNucleonIndu    728 G4double G4WilsonAbrasionModel::GetNucleonInducedExcitation
804   (G4double rP, G4double rT, G4double r)          729   (G4double rP, G4double rT, G4double r)
805 {                                                 730 {
806 //                                                731 //
807 //                                                732 //
808 // Initialise variables.                          733 // Initialise variables.
809 //                                                734 //
810   G4double Cl   = 0.0;                            735   G4double Cl   = 0.0;
811   G4double rPsq = rP * rP;                        736   G4double rPsq = rP * rP;
812   G4double rTsq = rT * rT;                        737   G4double rTsq = rT * rT;
813   G4double rsq  = r * r;                          738   G4double rsq  = r * r;
814 //                                                739 //
815 //                                                740 //
816 // Depending upon the impact parameter, a diff    741 // Depending upon the impact parameter, a different form of the chord length is
817 // is used.                                       742 // is used.
818 //                                                743 //  
819   if (r > rT) Cl = 2.0*std::sqrt(rPsq + 2.0*r*    744   if (r > rT) Cl = 2.0*std::sqrt(rPsq + 2.0*r*rT - rsq - rTsq);
820   else        Cl = 2.0*rP;                        745   else        Cl = 2.0*rP;
821 //                                             << 746   
822 //                                             << 747   G4double bP = (rPsq+rsq-rTsq)/2.0/r;
823 // The next lines have been changed to include << 748   G4double Ct = 2.0*std::sqrt(rPsq - bP*bP);
824 // projectile and target are too close, Ct is  << 
825 // Otherwise the standard Wilson algorithm sho << 
826 // PRT 20091023.                               << 
827 //                                             << 
828   G4double Ct = 0.0;                           << 
829   if      (rT > rP && rsq < rTsq - rPsq) Ct =  << 
830   else if (rP > rT && rsq < rPsq - rTsq) Ct =  << 
831   else {                                       << 
832     G4double bP = (rPsq+rsq-rTsq)/2.0/r;       << 
833     G4double x  = rPsq - bP*bP;                << 
834     if (x < 0.0) {                             << 
835       G4cerr <<"############################## << 
836              <<"############################## << 
837              <<G4endl;                         << 
838       G4cerr <<"ERROR IN G4WilsonAbrasionModel << 
839              <<G4endl;                         << 
840       G4cerr <<"rPsq - bP*bP < 0.0 and cannot  << 
841       G4cerr <<"Set to zero instead" <<G4endl; << 
842       G4cerr <<"############################## << 
843              <<"############################## << 
844              <<G4endl;                         << 
845     }                                          << 
846     Ct = 2.0*std::sqrt(x);                     << 
847   }                                            << 
848                                                   749   
849   G4double Ex = 13.0 * Cl / fermi;                750   G4double Ex = 13.0 * Cl / fermi;
850   if (Ct > 1.5*fermi)                             751   if (Ct > 1.5*fermi)
851     Ex += 13.0 * Cl / fermi /3.0 * (Ct/fermi -    752     Ex += 13.0 * Cl / fermi /3.0 * (Ct/fermi - 1.5);
852                                                   753 
853   return Ex;                                      754   return Ex;
854 }                                                 755 }
855 //////////////////////////////////////////////    756 ////////////////////////////////////////////////////////////////////////////////
856 //                                                757 //
857 void G4WilsonAbrasionModel::SetUseAblation (G4    758 void G4WilsonAbrasionModel::SetUseAblation (G4bool useAblation1)
858 {                                                 759 {
859   if (useAblation != useAblation1)                760   if (useAblation != useAblation1)
860   {                                               761   {
861     useAblation = useAblation1;                   762     useAblation = useAblation1;
                                                   >> 763     delete theExcitationHandler;
                                                   >> 764     delete theExcitationHandlerx;
                                                   >> 765     theExcitationHandler  = new G4ExcitationHandler;
                                                   >> 766     theExcitationHandlerx = new G4ExcitationHandler;
862     if (useAblation)                              767     if (useAblation)
863     {                                             768     {
864       theAblation = new G4WilsonAblationModel;    769       theAblation = new G4WilsonAblationModel;
865       theAblation->SetVerboseLevel(verboseLeve    770       theAblation->SetVerboseLevel(verboseLevel);
866       theExcitationHandler->SetEvaporation(the    771       theExcitationHandler->SetEvaporation(theAblation);
                                                   >> 772       theExcitationHandlerx->SetEvaporation(theAblation);
867     }                                             773     }
868     else                                          774     else
869     {                                             775     {
870       delete theExcitationHandler;             << 776       theAblation                      = NULL;
871       theAblation                      = nullp << 777       G4Evaporation * theEvaporation   = new G4Evaporation;
872       theExcitationHandler  = new G4Excitation << 778       G4FermiBreakUp * theFermiBreakUp = new G4FermiBreakUp;
                                                   >> 779       G4StatMF * theMF                 = new G4StatMF;
                                                   >> 780       theExcitationHandler->SetEvaporation(theEvaporation);
                                                   >> 781       theExcitationHandler->SetFermiModel(theFermiBreakUp);
                                                   >> 782       theExcitationHandler->SetMultiFragmentation(theMF);
                                                   >> 783       theExcitationHandler->SetMaxAandZForFermiBreakUp(12, 6);
                                                   >> 784       theExcitationHandler->SetMinEForMultiFrag(5.0*MeV);
                                                   >> 785 
                                                   >> 786       theEvaporation  = new G4Evaporation;
                                                   >> 787       theFermiBreakUp = new G4FermiBreakUp;
                                                   >> 788       theExcitationHandlerx->SetEvaporation(theEvaporation);
                                                   >> 789       theExcitationHandlerx->SetFermiModel(theFermiBreakUp);
                                                   >> 790       theExcitationHandlerx->SetMaxAandZForFermiBreakUp(12, 6);
873     }                                             791     }
874   }                                               792   }
875   return;                                         793   return; 
876 }                                                 794 }
877 //////////////////////////////////////////////    795 ////////////////////////////////////////////////////////////////////////////////
878 //                                                796 //
879 void G4WilsonAbrasionModel::PrintWelcomeMessag    797 void G4WilsonAbrasionModel::PrintWelcomeMessage ()
880 {                                                 798 {
881   G4cout <<G4endl;                                799   G4cout <<G4endl;
882   G4cout <<" *********************************    800   G4cout <<" *****************************************************************"
883          <<G4endl;                                801          <<G4endl;
884   G4cout <<" Nuclear abrasion model for nuclea    802   G4cout <<" Nuclear abrasion model for nuclear-nuclear interactions activated"
885          <<G4endl;                                803          <<G4endl;
886   G4cout <<" (Written by QinetiQ Ltd for the E    804   G4cout <<" (Written by QinetiQ Ltd for the European Space Agency)"
887          <<G4endl;                                805          <<G4endl;
888   G4cout <<" *********************************    806   G4cout <<" *****************************************************************"
889          <<G4endl;                                807          <<G4endl;
890   G4cout << G4endl;                               808   G4cout << G4endl;
891                                                   809 
892   return;                                         810   return;
893 }                                                 811 }
894 //////////////////////////////////////////////    812 ////////////////////////////////////////////////////////////////////////////////
895 //                                                813 //
896                                                   814