Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/abla/src/G4AblaInterface.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/hadronic/models/abla/src/G4AblaInterface.cc (Version 11.3.0) and /processes/hadronic/models/abla/src/G4AblaInterface.cc (Version 11.1.1)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 // ABLAXX statistical de-excitation model          26 // ABLAXX statistical de-excitation model
 27 // Jose Luis Rodriguez, UDC (translation from  <<  27 // Jose Luis Rodriguez, GSI (translation from ABLA07 and contact person)
 28 // Pekka Kaitaniemi, HIP (initial translation      28 // Pekka Kaitaniemi, HIP (initial translation of ablav3p)
 29 // Aleksandra Kelic, GSI (ABLA07 code)             29 // Aleksandra Kelic, GSI (ABLA07 code)
 30 // Davide Mancusi, CEA (contact person INCL)       30 // Davide Mancusi, CEA (contact person INCL)
 31 // Aatos Heikkinen, HIP (project coordination)     31 // Aatos Heikkinen, HIP (project coordination)
 32 //                                                 32 //
 33                                                    33 
 34 #include "globals.hh"                              34 #include "globals.hh"
 35 #include <cmath>                               << 
 36 #include <iostream>                                35 #include <iostream>
                                                   >>  36 #include <cmath>
 37                                                    37 
 38 #include "G4AblaInterface.hh"                      38 #include "G4AblaInterface.hh"
 39 #include "G4DoubleHyperDoubleNeutron.hh"       <<  39 #include "G4ParticleDefinition.hh"
 40 #include "G4DoubleHyperH4.hh"                  <<  40 #include "G4ReactionProductVector.hh"
                                                   >>  41 #include "G4ReactionProduct.hh"
 41 #include "G4DynamicParticle.hh"                    42 #include "G4DynamicParticle.hh"
 42 #include "G4ExcitationHandler.hh"              << 
 43 #include "G4HyperAlpha.hh"                     << 
 44 #include "G4HyperH4.hh"                        << 
 45 #include "G4HyperHe5.hh"                       << 
 46 #include "G4HyperTriton.hh"                    << 
 47 #include "G4IonTable.hh"                           43 #include "G4IonTable.hh"
 48 #include "G4ParticleDefinition.hh"             <<  44 #include "G4SystemOfUnits.hh"
 49 #include "G4PhysicalConstants.hh"                  45 #include "G4PhysicalConstants.hh"
 50 #include "G4PhysicsModelCatalog.hh"                46 #include "G4PhysicsModelCatalog.hh"
 51 #include "G4ReactionProduct.hh"                <<  47 #include "G4ExcitationHandler.hh"
 52 #include "G4ReactionProductVector.hh"          <<  48 #include "G4HyperTriton.hh"
 53 #include "G4SystemOfUnits.hh"                  <<  49 #include "G4HyperH4.hh"
                                                   >>  50 #include "G4HyperAlpha.hh"
                                                   >>  51 #include "G4DoubleHyperH4.hh"
                                                   >>  52 #include "G4DoubleHyperDoubleNeutron.hh"
                                                   >>  53 #include "G4HyperHe5.hh"
 54                                                    54 
 55 G4AblaInterface::G4AblaInterface(G4ExcitationH <<  55 G4AblaInterface::G4AblaInterface(G4ExcitationHandler* ptr) :
 56     : G4VPreCompoundModel(ptr, "ABLAXX")       <<  56   G4VPreCompoundModel(ptr, "ABLAXX"),
 57     , ablaResult(new G4VarNtp)                 <<  57   ablaResult(new G4VarNtp),
 58     , theABLAModel(new G4Abla(ablaResult))     <<  58   volant(new G4Volant),
 59     , eventNumber(0)                           <<  59   theABLAModel(new G4Abla(volant, ablaResult)),
 60     , secID(-1)                                <<  60   eventNumber(0),
 61     , isInitialised(false)                     <<  61   secID(-1),
 62 {                                              <<  62   isInitialised(false)
 63     secID = G4PhysicsModelCatalog::GetModelID( <<  63 {
 64     // G4cout << "### NEW PrecompoundModel " < <<  64   secID = G4PhysicsModelCatalog::GetModelID("model_" + GetModelName());
 65     if (!ptr)                                  <<  65   // G4cout << "### NEW PrecompoundModel " << this << G4endl;
 66         SetExcitationHandler(new G4ExcitationH <<  66   if (!ptr) SetExcitationHandler(new G4ExcitationHandler);
 67     InitialiseModel();                         <<  67   InitialiseModel();
 68     G4cout << G4endl << "G4AblaInterface::Init <<  68   G4cout << G4endl << "G4AblaInterface::InitialiseModel() was right." << G4endl;
 69 }                                                  69 }
 70                                                    70 
 71 G4AblaInterface::~G4AblaInterface()                71 G4AblaInterface::~G4AblaInterface()
 72 {                                                  72 {
 73     applyYourselfResult.Clear();               <<  73   delete volant;
 74     delete ablaResult;                         <<  74   delete ablaResult;
 75     delete theABLAModel;                       <<  75   delete theABLAModel;
 76     delete GetExcitationHandler();             <<  76   delete GetExcitationHandler();
 77 }                                                  77 }
 78                                                    78 
 79 void G4AblaInterface::BuildPhysicsTable(const  <<  79 void G4AblaInterface::BuildPhysicsTable(const G4ParticleDefinition&)
 80                                                << 
 81 void G4AblaInterface::InitialiseModel()        << 
 82 {                                                  80 {
 83     if (isInitialised)                         <<  81   InitialiseModel();
 84         return;                                << 
 85     isInitialised = true;                      << 
 86     theABLAModel->initEvapora();               << 
 87     theABLAModel->SetParameters();             << 
 88     GetExcitationHandler()->Initialise();      << 
 89 }                                                  82 }
 90                                                    83 
 91 G4HadFinalState* G4AblaInterface::ApplyYoursel <<  84 void G4AblaInterface::InitialiseModel()
 92 {                                                  85 {
 93     // This method is adapted from  G4PreCompo <<  86   if (isInitialised) return;
 94     // and it is used only by Binary Cascade ( <<  87   isInitialised = true;
 95     // Abla for nuclear de-excitation. This me <<  88   theABLAModel->initEvapora();
 96     // for proton and neutron projectile with  <<  89   theABLAModel->SetParameters();
 97     // creating a "compound" nucleus made by t <<  90   GetExcitationHandler()->Initialise();
 98     // projectile", before calling the DeExcit <<  91 }
 99     const G4ParticleDefinition* primary = theP <<  92 
100     if (primary != G4Neutron::Definition() &&  <<  93 G4ReactionProductVector *G4AblaInterface::DeExcite(G4Fragment& aFragment) {
101     {                                          <<  94   if (!isInitialised) InitialiseModel();
102         G4ExceptionDescription ed;             <<  95 
103         ed << "G4AblaModel is used for ";      <<  96   volant->clear();
104         if (primary)                           <<  97   ablaResult->clear();
105             ed << primary->GetParticleName();  <<  98 
106         G4Exception("G4AblaInterface::ApplyYou <<  99   const G4int ARem = aFragment.GetA_asInt();
107         return nullptr;                        << 100   const G4int ZRem = aFragment.GetZ_asInt();
108     }                                          << 101   const G4int SRem = -aFragment.GetNumberOfLambdas();  // Strangeness = - (Number of lambdas)
109                                                << 102   const G4double eStarRem = aFragment.GetExcitationEnergy() / MeV;
110     G4int Zp = 0;                              << 103   const G4double jRem     = aFragment.GetAngularMomentum().mag() / hbar_Planck;
111     G4int Ap = 1;                              << 104   const G4LorentzVector& pRem = aFragment.GetMomentum();
112     if (primary == G4Proton::Definition())     << 105   const G4double pxRem        = pRem.x() / MeV;
113         Zp = 1;                                << 106   const G4double pyRem        = pRem.y() / MeV;
114     G4double timePrimary = thePrimary.GetGloba << 107   const G4double pzRem        = pRem.z() / MeV;
115     G4int A = theNucleus.GetA_asInt();         << 108 
116     G4int Z = theNucleus.GetZ_asInt();         << 109   ++eventNumber;
117     G4LorentzVector p = thePrimary.Get4Momentu << 110 
118     G4double mass = G4NucleiProperties::GetNuc << 111   theABLAModel->DeexcitationAblaxx(ARem, ZRem, eStarRem, jRem, pxRem, pyRem,
119     p += G4LorentzVector(0.0, 0.0, 0.0, mass); << 112                                    pzRem, (G4int)eventNumber, SRem);
120                                                << 113 
121     G4Fragment anInitialState(A + Ap, Z + Zp,  << 114   G4ReactionProductVector* result = new G4ReactionProductVector;
122     anInitialState.SetNumberOfExcitedParticle( << 115 
123     anInitialState.SetNumberOfHoles(1, Zp);    << 116   for(G4int j = 0; j < ablaResult->ntrack; ++j)
124     anInitialState.SetCreationTime(thePrimary. << 117   { // Copy ABLA result to the EventInfo
125     anInitialState.SetCreatorModelID(secID);   << 118     G4ReactionProduct* product =
126                                                << 119       toG4Particle(ablaResult->avv[j], ablaResult->zvv[j], ablaResult->svv[j],
127     G4ReactionProductVector* deExciteResult =  << 120                    ablaResult->enerj[j], ablaResult->pxlab[j],
128                                                << 121                    ablaResult->pylab[j], ablaResult->pzlab[j]);
129     applyYourselfResult.Clear();               << 122     if(product)
130     applyYourselfResult.SetStatusChange(stopAn << 
131     for (auto const& prod : *deExciteResult)   << 
132     {                                             123     {
133         G4DynamicParticle* aNewDP =            << 124       product->SetCreatorModelID(secID);
134             new G4DynamicParticle(prod->GetDef << 125       result->push_back(product);
135         G4HadSecondary aNew = G4HadSecondary(a << 
136         G4double time = std::max(prod->GetForm << 
137         aNew.SetTime(timePrimary + time);      << 
138         aNew.SetCreatorModelID(prod->GetCreato << 
139         delete prod;                           << 
140         applyYourselfResult.AddSecondary(aNew) << 
141     }                                             126     }
142     delete deExciteResult;                     << 127   }
143     return &applyYourselfResult;               << 128   return result;
144 }                                                 129 }
145                                                   130 
146 G4ReactionProductVector* G4AblaInterface::DeEx << 131 G4ParticleDefinition *G4AblaInterface::toG4ParticleDefinition(G4int A, G4int Z, G4int S) const {
147 {                                              << 132   if     (A == 1  && Z == 1  && S == 0 ) return G4Proton::Proton();
148     if (!isInitialised)                        << 133   else if(A == 1  && Z == 0  && S == 0 ) return G4Neutron::Neutron();
149         InitialiseModel();                     << 134   else if(A == 1  && Z == 0  && S == -1) return G4Lambda::Lambda();
150                                                << 135   else if(A == -1 && Z == 1  && S == 0 ) return G4PionPlus::PionPlus();
151     ablaResult->clear();                       << 136   else if(A == -1 && Z == -1 && S == 0 ) return G4PionMinus::PionMinus();
152                                                << 137   else if(A == -1 && Z == 0  && S == 0 ) return G4PionZero::PionZero();
153     const G4int ARem = aFragment.GetA_asInt(); << 138   else if(A == 0  && Z == 0  && S == 0 ) return G4Gamma::Gamma();
154     const G4int ZRem = aFragment.GetZ_asInt(); << 139   else if(A == 2  && Z == 1  && S == 0 ) return G4Deuteron::Deuteron();
155     const G4int SRem = -aFragment.GetNumberOfL << 140   else if(A == 3  && Z == 1  && S == 0 ) return G4Triton::Triton();
156     const G4double eStarRem = aFragment.GetExc << 141   else if(A == 3  && Z == 2  && S == 0 ) return G4He3::He3();
157     const G4double jRem = aFragment.GetAngular << 142   else if(A == 3  && Z == 1  && S == -1) return G4HyperTriton::Definition();
158     const G4LorentzVector& pRem = aFragment.Ge << 143   else if(A == 4  && Z == 2  && S == 0 ) return G4Alpha::Alpha();
159     const G4double pxRem = pRem.x() / MeV;     << 144   else if(A == 4  && Z == 1  && S == -1) return G4HyperH4::Definition();
160     const G4double pyRem = pRem.y() / MeV;     << 145   else if(A == 4  && Z == 2  && S == -1) return G4HyperAlpha::Definition();
161     const G4double pzRem = pRem.z() / MeV;     << 146   else if(A == 4  && Z == 1  && S == -2) return G4DoubleHyperH4::Definition();
162                                                << 147   else if(A == 4  && Z == 0  && S == -2) return G4DoubleHyperDoubleNeutron::Definition();
163     ++eventNumber;                             << 148   else if(A == 5  && Z == 2  && S == -1) return G4HyperHe5::Definition();
164                                                << 149   else if(A > 0   && Z > 0   && A > Z  )
165     theABLAModel->DeexcitationAblaxx(ARem, ZRe << 150   {  // Returns ground state ion definition.
166                                                << 151     auto ionfromtable = G4IonTable::GetIonTable()->GetIon(Z, A, std::abs(S), 0);  // S is the number of lambdas
167     G4ReactionProductVector* result = new G4Re << 152     if(ionfromtable)
168                                                << 153       return ionfromtable;
169     for (G4int j = 0; j < ablaResult->ntrack;  << 
170     { // Copy ABLA result to the EventInfo     << 
171         G4ReactionProduct* product = toG4Parti << 
172                                                << 
173                                                << 
174                                                << 
175                                                << 
176                                                << 
177                                                << 
178         if (product)                           << 
179         {                                      << 
180             product->SetCreatorModelID(secID); << 
181             result->push_back(product);        << 
182         }                                      << 
183     }                                          << 
184     return result;                             << 
185 }                                              << 
186                                                << 
187 G4ParticleDefinition* G4AblaInterface::toG4Par << 
188 {                                              << 
189     if (A == 1 && Z == 1 && S == 0)            << 
190         return G4Proton::Proton();             << 
191     else if (A == 1 && Z == 0 && S == 0)       << 
192         return G4Neutron::Neutron();           << 
193     else if (A == 1 && Z == 0 && S == -1)      << 
194         return G4Lambda::Lambda();             << 
195     else if (A == -1 && Z == 1 && S == 0)      << 
196         return G4PionPlus::PionPlus();         << 
197     else if (A == -1 && Z == -1 && S == 0)     << 
198         return G4PionMinus::PionMinus();       << 
199     else if (A == -1 && Z == 0 && S == 0)      << 
200         return G4PionZero::PionZero();         << 
201     else if (A == 0 && Z == 0 && S == 0)       << 
202         return G4Gamma::Gamma();               << 
203     else if (A == 2 && Z == 1 && S == 0)       << 
204         return G4Deuteron::Deuteron();         << 
205     else if (A == 3 && Z == 1 && S == 0)       << 
206         return G4Triton::Triton();             << 
207     else if (A == 3 && Z == 2 && S == 0)       << 
208         return G4He3::He3();                   << 
209     else if (A == 3 && Z == 1 && S == -1)      << 
210         return G4HyperTriton::Definition();    << 
211     else if (A == 4 && Z == 2 && S == 0)       << 
212         return G4Alpha::Alpha();               << 
213     else if (A == 4 && Z == 1 && S == -1)      << 
214         return G4HyperH4::Definition();        << 
215     else if (A == 4 && Z == 2 && S == -1)      << 
216         return G4HyperAlpha::Definition();     << 
217     else if (A == 4 && Z == 1 && S == -2)      << 
218         return G4DoubleHyperH4::Definition();  << 
219     else if (A == 4 && Z == 0 && S == -2)      << 
220         return G4DoubleHyperDoubleNeutron::Def << 
221     else if (A == 5 && Z == 2 && S == -1)      << 
222         return G4HyperHe5::Definition();       << 
223     else if (A > 0 && Z > 0 && A > Z)          << 
224     { // Returns ground state ion definition.  << 
225         auto ionfromtable = G4IonTable::GetIon << 
226         if (ionfromtable)                      << 
227             return ionfromtable;               << 
228         else                                   << 
229         {                                      << 
230             G4cout << "Can't convert particle  << 
231                    << " to G4ParticleDefinitio << 
232             return 0;                          << 
233         }                                      << 
234     }                                          << 
235     else                                          154     else
236     { // Error, unrecognized particle          << 155     {
237         G4cout << "Can't convert particle with << 156       G4cout << "Can't convert particle with A=" << A << ", Z=" << Z << ", S=" << S
238                << " to G4ParticleDefinition, t << 157        << " to G4ParticleDefinition, trouble ahead" << G4endl;
239         return 0;                              << 158       return 0;
240     }                                          << 159     }
241 }                                              << 160   }
242                                                << 161   else
243 G4ReactionProduct*                             << 162   {  // Error, unrecognized particle
244     G4AblaInterface::toG4Particle(G4int A, G4i << 163     G4cout << "Can't convert particle with A=" << A << ", Z=" << Z << ", S=" << S
245 {                                              << 164      << " to G4ParticleDefinition, trouble ahead" << G4endl;
246     G4ParticleDefinition* def = toG4ParticleDe << 165     return 0;
247     if (def == 0)                              << 166   }
248     { // Check if we have a valid particle def << 167 }
249         return 0;                              << 168 
250     }                                          << 169 G4ReactionProduct* G4AblaInterface::toG4Particle(G4int A, G4int Z, G4int S,
251                                                << 170              G4double kinE, G4double px,
252     const G4double energy = kinE * MeV;        << 171                                                  G4double py, G4double pz) const {
253     const G4ThreeVector momentum(px, py, pz);  << 172   G4ParticleDefinition* def = toG4ParticleDefinition(A, Z, S);
254     const G4ThreeVector momentumDirection = mo << 173   if(def == 0)
255     G4DynamicParticle p(def, momentumDirection << 174   { // Check if we have a valid particle definition
256     G4ReactionProduct* r = new G4ReactionProdu << 175     return 0;
257     (*r) = p;                                  << 176   }
258     return r;                                  << 177 
                                                   >> 178   const G4double energy = kinE * MeV;
                                                   >> 179   const G4ThreeVector momentum(px, py, pz);
                                                   >> 180   const G4ThreeVector momentumDirection = momentum.unit();
                                                   >> 181   G4DynamicParticle p(def, momentumDirection, energy);
                                                   >> 182   G4ReactionProduct* r = new G4ReactionProduct(def);
                                                   >> 183   (*r) = p;
                                                   >> 184   return r;
259 }                                                 185 }
260                                                   186 
261 void G4AblaInterface::ModelDescription(std::os    187 void G4AblaInterface::ModelDescription(std::ostream& outFile) const
262 {                                                 188 {
263     outFile << "ABLA++ does not provide an imp << 189   outFile << "ABLA++ does not provide an implementation of the ApplyYourself method!\n\n";
264                "method!\n\n";                  << 
265 }                                                 190 }
266                                                   191 
267 void G4AblaInterface::DeExciteModelDescription    192 void G4AblaInterface::DeExciteModelDescription(std::ostream& outFile) const
268 {                                                 193 {
269     outFile << "ABLA++ is a statistical model  << 194   outFile
270             << "the gamma emission and the eva << 195     << "ABLA++ is a statistical model for nuclear de-excitation. It simulates\n"
271             << "particles and IMFs, as well as << 196     << "the gamma emission and the evaporation of neutrons, light charged\n"
272             << "included in Geant4 is a C++ tr << 197     << "particles and IMFs, as well as fission where applicable. The code\n"
273             << "code ABLA07. Although the mode << 198     << "included in Geant4 is a C++ translation of the original Fortran\n"
274             << "hypernuclei by including the e << 199     << "code ABLA07. Although the model has been recently extended to\n"
275             << "More details about the physics << 200     << "hypernuclei by including the evaporation of lambda particles.\n"
276             << "Physics Reference Manual and i << 201     << "More details about the physics are available in the Geant4\n"
277             << "References:\n"                 << 202     << "Physics Reference Manual and in the reference articles.\n\n"
278             << "(1) A. Kelic, M. V. Ricciardi, << 203     << "References:\n"
279             << "ICTP-IAEA Advanced Workshop on << 204     << "(1) A. Kelic, M. V. Ricciardi, and K. H. Schmidt, in Proceedings of "
280             << "ICTP Trieste, Italy, 4–8 Feb << 205        "Joint\n"
281                "Leray, Y. Yariv, A. Mengoni, A << 206     << "ICTP-IAEA Advanced Workshop on Model Codes for Spallation Reactions,\n"
282                "INDC(NDS)-530, Vienna, 2008),  << 207     << "ICTP Trieste, Italy, 4–8 February 2008, edited by D. Filges, S. Leray, "
283             << "(2) J.L. Rodriguez-Sanchez, J. << 208        "Y. Yariv,\n"
284             << "(3) J.L. Rodriguez-Sanchez et  << 209     << "A. Mengoni, A. Stanculescu, and G. Mank (IAEA INDC(NDS)-530, Vienna, "
285             << "(4) J.L. Rodriguez-Sanchez et  << 210        "2008), pp. 181–221.\n\n"
                                                   >> 211     << "(2) J.L. Rodriguez-Sanchez, J.-C. David et al., Phys. Rev. C 98, "
                                                   >> 212        "021602 (2018)\n\n";
286 }                                                 213 }
                                                   >> 214 
287                                                   215