Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // ABLAXX statistical de-excitation model 26 // ABLAXX statistical de-excitation model 27 // Jose Luis Rodriguez, UDC (translation from << 27 // Jose Luis Rodriguez, GSI (translation from ABLA07 and contact person) 28 // Pekka Kaitaniemi, HIP (initial translation 28 // Pekka Kaitaniemi, HIP (initial translation of ablav3p) 29 // Aleksandra Kelic, GSI (ABLA07 code) 29 // Aleksandra Kelic, GSI (ABLA07 code) 30 // Davide Mancusi, CEA (contact person INCL) 30 // Davide Mancusi, CEA (contact person INCL) 31 // Aatos Heikkinen, HIP (project coordination) 31 // Aatos Heikkinen, HIP (project coordination) 32 // 32 // 33 33 >> 34 #define ABLAXX_IN_GEANT4_MODE 1 >> 35 34 #include "globals.hh" 36 #include "globals.hh" 35 #include <cmath> << 37 36 #include <iostream> << 38 #ifdef ABLAXX_IN_GEANT4_MODE 37 39 38 #include "G4AblaInterface.hh" 40 #include "G4AblaInterface.hh" 39 #include "G4DoubleHyperDoubleNeutron.hh" << 40 #include "G4DoubleHyperH4.hh" << 41 #include "G4DynamicParticle.hh" << 42 #include "G4ExcitationHandler.hh" << 43 #include "G4HyperAlpha.hh" << 44 #include "G4HyperH4.hh" << 45 #include "G4HyperHe5.hh" << 46 #include "G4HyperTriton.hh" << 47 #include "G4IonTable.hh" << 48 #include "G4ParticleDefinition.hh" 41 #include "G4ParticleDefinition.hh" 49 #include "G4PhysicalConstants.hh" << 50 #include "G4PhysicsModelCatalog.hh" << 51 #include "G4ReactionProduct.hh" << 52 #include "G4ReactionProductVector.hh" 42 #include "G4ReactionProductVector.hh" >> 43 #include "G4ReactionProduct.hh" >> 44 #include "G4DynamicParticle.hh" >> 45 #include "G4IonTable.hh" 53 #include "G4SystemOfUnits.hh" 46 #include "G4SystemOfUnits.hh" >> 47 #include "G4PhysicalConstants.hh" >> 48 #include <iostream> >> 49 #include <cmath> 54 50 55 G4AblaInterface::G4AblaInterface(G4ExcitationH << 51 G4AblaInterface::G4AblaInterface() : 56 : G4VPreCompoundModel(ptr, "ABLAXX") << 52 G4VPreCompoundModel(NULL, "ABLA"), 57 , ablaResult(new G4VarNtp) << 53 ablaResult(new G4VarNtp), 58 , theABLAModel(new G4Abla(ablaResult)) << 54 volant(new G4Volant), 59 , eventNumber(0) << 55 theABLAModel(new G4Abla(volant, ablaResult)), 60 , secID(-1) << 56 eventNumber(0) 61 , isInitialised(false) << 57 { 62 { << 58 theABLAModel->initEvapora(); 63 secID = G4PhysicsModelCatalog::GetModelID( << 59 theABLAModel->SetParameters(); 64 // G4cout << "### NEW PrecompoundModel " < << 60 } 65 if (!ptr) << 61 66 SetExcitationHandler(new G4ExcitationH << 62 G4AblaInterface::~G4AblaInterface() { 67 InitialiseModel(); << 63 delete volant; 68 G4cout << G4endl << "G4AblaInterface::Init << 64 delete ablaResult; 69 } << 65 delete theABLAModel; 70 << 66 } 71 G4AblaInterface::~G4AblaInterface() << 67 72 { << 68 G4ReactionProductVector *G4AblaInterface::DeExcite(G4Fragment &aFragment) { 73 applyYourselfResult.Clear(); << 69 volant->clear(); 74 delete ablaResult; << 70 ablaResult->clear(); 75 delete theABLAModel; << 71 76 delete GetExcitationHandler(); << 72 const G4int ARem = aFragment.GetA_asInt(); 77 } << 73 const G4int ZRem = aFragment.GetZ_asInt(); 78 << 74 const G4double eStarRem = aFragment.GetExcitationEnergy() / MeV; 79 void G4AblaInterface::BuildPhysicsTable(const << 75 const G4double jRem = aFragment.GetAngularMomentum().mag() / hbar_Planck; 80 << 76 const G4LorentzVector &pRem = aFragment.GetMomentum(); 81 void G4AblaInterface::InitialiseModel() << 77 const G4double pxRem = pRem.x() / MeV; 82 { << 78 const G4double pyRem = pRem.y() / MeV; 83 if (isInitialised) << 79 const G4double pzRem = pRem.z() / MeV; 84 return; << 80 85 isInitialised = true; << 81 eventNumber++; 86 theABLAModel->initEvapora(); << 82 87 theABLAModel->SetParameters(); << 83 theABLAModel->DeexcitationAblaxx(ARem, ZRem, 88 GetExcitationHandler()->Initialise(); << 84 eStarRem, 89 } << 85 jRem, 90 << 86 pxRem, 91 G4HadFinalState* G4AblaInterface::ApplyYoursel << 87 pyRem, 92 { << 88 pzRem, 93 // This method is adapted from G4PreCompo << 89 eventNumber); 94 // and it is used only by Binary Cascade ( << 90 95 // Abla for nuclear de-excitation. This me << 91 G4ReactionProductVector *result = new G4ReactionProductVector; 96 // for proton and neutron projectile with << 92 97 // creating a "compound" nucleus made by t << 93 for(int j = 0; j < ablaResult->ntrack; ++j) { // Copy ABLA result to the EventInfo 98 // projectile", before calling the DeExcit << 94 99 const G4ParticleDefinition* primary = theP << 95 G4ReactionProduct *product = toG4Particle(ablaResult->avv[j], 100 if (primary != G4Neutron::Definition() && << 96 ablaResult->zvv[j], 101 { << 97 ablaResult->svv[j], 102 G4ExceptionDescription ed; << 98 ablaResult->enerj[j], 103 ed << "G4AblaModel is used for "; << 99 ablaResult->pxlab[j], 104 if (primary) << 100 ablaResult->pylab[j], 105 ed << primary->GetParticleName(); << 101 ablaResult->pzlab[j]); 106 G4Exception("G4AblaInterface::ApplyYou << 102 if(product) 107 return nullptr; << 103 result->push_back(product); 108 } << 104 } 109 << 105 return result; 110 G4int Zp = 0; << 106 } 111 G4int Ap = 1; << 107 112 if (primary == G4Proton::Definition()) << 108 G4ParticleDefinition *G4AblaInterface::toG4ParticleDefinition(G4int A, G4int Z, G4int S) const { 113 Zp = 1; << 109 if (A == 1 && Z == 1 && S == 0) return G4Proton::Proton(); 114 G4double timePrimary = thePrimary.GetGloba << 110 else if(A == 1 && Z == 0 && S == 0) return G4Neutron::Neutron(); 115 G4int A = theNucleus.GetA_asInt(); << 111 else if(A == 1 && Z == 0 && S == -1) return G4Lambda::Lambda(); 116 G4int Z = theNucleus.GetZ_asInt(); << 112 else if(A == -1 && Z == 1 && S == 0) return G4PionPlus::PionPlus(); 117 G4LorentzVector p = thePrimary.Get4Momentu << 113 else if(A == -1 && Z == -1 && S == 0) return G4PionMinus::PionMinus(); 118 G4double mass = G4NucleiProperties::GetNuc << 114 else if(A == -1 && Z == 0 && S == 0) return G4PionZero::PionZero(); 119 p += G4LorentzVector(0.0, 0.0, 0.0, mass); << 115 else if(A == 0 && Z == 0 && S == 0) return G4Gamma::Gamma(); 120 << 116 else if(A == 2 && Z == 1 && S == 0) return G4Deuteron::Deuteron(); 121 G4Fragment anInitialState(A + Ap, Z + Zp, << 117 else if(A == 3 && Z == 1 && S == 0) return G4Triton::Triton(); 122 anInitialState.SetNumberOfExcitedParticle( << 118 else if(A == 3 && Z == 2 && S == 0) return G4He3::He3(); 123 anInitialState.SetNumberOfHoles(1, Zp); << 119 else if(A == 4 && Z == 2 && S == 0) return G4Alpha::Alpha(); 124 anInitialState.SetCreationTime(thePrimary. << 120 else if(A > 0 && Z > 0 && A > Z) { // Returns ground state ion definition. 125 anInitialState.SetCreatorModelID(secID); << 121 return G4IonTable::GetIonTable()->GetIon(Z, A, std::abs(S));//S is the number of lambdas 126 << 122 } else { // Error, unrecognized particle 127 G4ReactionProductVector* deExciteResult = << 123 G4cout << "Can't convert particle with A=" << A << ", Z=" << Z << ", S=" << S << " to G4ParticleDefinition, trouble ahead" << G4endl; 128 << 124 return 0; 129 applyYourselfResult.Clear(); << 125 } 130 applyYourselfResult.SetStatusChange(stopAn << 126 } 131 for (auto const& prod : *deExciteResult) << 127 132 { << 128 G4ReactionProduct *G4AblaInterface::toG4Particle(G4int A, G4int Z, G4int S, 133 G4DynamicParticle* aNewDP = << 129 G4double kinE, 134 new G4DynamicParticle(prod->GetDef << 130 G4double px, 135 G4HadSecondary aNew = G4HadSecondary(a << 131 G4double py, G4double pz) const { 136 G4double time = std::max(prod->GetForm << 132 G4ParticleDefinition *def = toG4ParticleDefinition(A, Z, S); 137 aNew.SetTime(timePrimary + time); << 133 if(def == 0) { // Check if we have a valid particle definition 138 aNew.SetCreatorModelID(prod->GetCreato << 134 return 0; 139 delete prod; << 135 } 140 applyYourselfResult.AddSecondary(aNew) << 136 141 } << 137 const G4double energy = kinE * MeV; 142 delete deExciteResult; << 138 const G4ThreeVector momentum(px, py, pz); 143 return &applyYourselfResult; << 139 const G4ThreeVector momentumDirection = momentum.unit(); 144 } << 140 G4DynamicParticle p(def, momentumDirection, energy); 145 << 141 G4ReactionProduct *r = new G4ReactionProduct(def); 146 G4ReactionProductVector* G4AblaInterface::DeEx << 142 (*r) = p; 147 { << 143 return r; 148 if (!isInitialised) << 144 } 149 InitialiseModel(); << 145 150 << 146 void G4AblaInterface::ModelDescription(std::ostream& outFile) const { 151 ablaResult->clear(); << 147 outFile << "ABLA++ does not provide an implementation of the ApplyYourself method!\n\n"; 152 << 148 } 153 const G4int ARem = aFragment.GetA_asInt(); << 149 154 const G4int ZRem = aFragment.GetZ_asInt(); << 150 void G4AblaInterface::DeExciteModelDescription(std::ostream& outFile) const { 155 const G4int SRem = -aFragment.GetNumberOfL << 151 outFile 156 const G4double eStarRem = aFragment.GetExc << 152 << "ABLA++ is a statistical model for nuclear de-excitation. It simulates\n" 157 const G4double jRem = aFragment.GetAngular << 153 << "the gamma emission and the evaporation of neutrons, light charged particles\n" 158 const G4LorentzVector& pRem = aFragment.Ge << 154 << "and IMFs, as well as fission where applicable. The code included in Geant4\n" 159 const G4double pxRem = pRem.x() / MeV; << 155 << "is a C++ translation of the original Fortran code ABLA07. Although the model\n" 160 const G4double pyRem = pRem.y() / MeV; << 156 << "has been recently extended to hypernuclei by including the evaporation of lambda\n" 161 const G4double pzRem = pRem.z() / MeV; << 157 << "particles. More details about the physics are available in the\n" 162 << 158 << "Geant4 Physics Reference Manual and in the reference articles.\n\n" 163 ++eventNumber; << 159 << "References:\n" 164 << 160 << "(1) A. Kelic, M. V. Ricciardi, and K. H. Schmidt, in Proceedings of Joint\n" 165 theABLAModel->DeexcitationAblaxx(ARem, ZRe << 161 << "ICTP-IAEA Advanced Workshop on Model Codes for Spallation Reactions,\n" 166 << 162 << "ICTP Trieste, Italy, 4–8 February 2008, edited by D. Filges, S. Leray, Y. Yariv,\n" 167 G4ReactionProductVector* result = new G4Re << 163 << "A. Mengoni, A. Stanculescu, and G. Mank (IAEA INDC(NDS)-530, Vienna, 2008), pp. 181–221.\n\n" 168 << 164 << "(2) J.L. Rodriguez-Sanchez, J.-C. David et al., Phys. Rev. C 98, 021602 (2018)\n\n"; 169 for (G4int j = 0; j < ablaResult->ntrack; << 170 { // Copy ABLA result to the EventInfo << 171 G4ReactionProduct* product = toG4Parti << 172 << 173 << 174 << 175 << 176 << 177 << 178 if (product) << 179 { << 180 product->SetCreatorModelID(secID); << 181 result->push_back(product); << 182 } << 183 } << 184 return result; << 185 } << 186 << 187 G4ParticleDefinition* G4AblaInterface::toG4Par << 188 { << 189 if (A == 1 && Z == 1 && S == 0) << 190 return G4Proton::Proton(); << 191 else if (A == 1 && Z == 0 && S == 0) << 192 return G4Neutron::Neutron(); << 193 else if (A == 1 && Z == 0 && S == -1) << 194 return G4Lambda::Lambda(); << 195 else if (A == -1 && Z == 1 && S == 0) << 196 return G4PionPlus::PionPlus(); << 197 else if (A == -1 && Z == -1 && S == 0) << 198 return G4PionMinus::PionMinus(); << 199 else if (A == -1 && Z == 0 && S == 0) << 200 return G4PionZero::PionZero(); << 201 else if (A == 0 && Z == 0 && S == 0) << 202 return G4Gamma::Gamma(); << 203 else if (A == 2 && Z == 1 && S == 0) << 204 return G4Deuteron::Deuteron(); << 205 else if (A == 3 && Z == 1 && S == 0) << 206 return G4Triton::Triton(); << 207 else if (A == 3 && Z == 2 && S == 0) << 208 return G4He3::He3(); << 209 else if (A == 3 && Z == 1 && S == -1) << 210 return G4HyperTriton::Definition(); << 211 else if (A == 4 && Z == 2 && S == 0) << 212 return G4Alpha::Alpha(); << 213 else if (A == 4 && Z == 1 && S == -1) << 214 return G4HyperH4::Definition(); << 215 else if (A == 4 && Z == 2 && S == -1) << 216 return G4HyperAlpha::Definition(); << 217 else if (A == 4 && Z == 1 && S == -2) << 218 return G4DoubleHyperH4::Definition(); << 219 else if (A == 4 && Z == 0 && S == -2) << 220 return G4DoubleHyperDoubleNeutron::Def << 221 else if (A == 5 && Z == 2 && S == -1) << 222 return G4HyperHe5::Definition(); << 223 else if (A > 0 && Z > 0 && A > Z) << 224 { // Returns ground state ion definition. << 225 auto ionfromtable = G4IonTable::GetIon << 226 if (ionfromtable) << 227 return ionfromtable; << 228 else << 229 { << 230 G4cout << "Can't convert particle << 231 << " to G4ParticleDefinitio << 232 return 0; << 233 } << 234 } << 235 else << 236 { // Error, unrecognized particle << 237 G4cout << "Can't convert particle with << 238 << " to G4ParticleDefinition, t << 239 return 0; << 240 } << 241 } << 242 << 243 G4ReactionProduct* << 244 G4AblaInterface::toG4Particle(G4int A, G4i << 245 { << 246 G4ParticleDefinition* def = toG4ParticleDe << 247 if (def == 0) << 248 { // Check if we have a valid particle def << 249 return 0; << 250 } << 251 << 252 const G4double energy = kinE * MeV; << 253 const G4ThreeVector momentum(px, py, pz); << 254 const G4ThreeVector momentumDirection = mo << 255 G4DynamicParticle p(def, momentumDirection << 256 G4ReactionProduct* r = new G4ReactionProdu << 257 (*r) = p; << 258 return r; << 259 } << 260 << 261 void G4AblaInterface::ModelDescription(std::os << 262 { << 263 outFile << "ABLA++ does not provide an imp << 264 "method!\n\n"; << 265 } 165 } 266 166 267 void G4AblaInterface::DeExciteModelDescription << 167 #endif // ABLAXX_IN_GEANT4_MODE 268 { << 269 outFile << "ABLA++ is a statistical model << 270 << "the gamma emission and the eva << 271 << "particles and IMFs, as well as << 272 << "included in Geant4 is a C++ tr << 273 << "code ABLA07. Although the mode << 274 << "hypernuclei by including the e << 275 << "More details about the physics << 276 << "Physics Reference Manual and i << 277 << "References:\n" << 278 << "(1) A. Kelic, M. V. Ricciardi, << 279 << "ICTP-IAEA Advanced Workshop on << 280 << "ICTP Trieste, Italy, 4–8 Feb << 281 "Leray, Y. Yariv, A. Mengoni, A << 282 "INDC(NDS)-530, Vienna, 2008), << 283 << "(2) J.L. Rodriguez-Sanchez, J. << 284 << "(3) J.L. Rodriguez-Sanchez et << 285 << "(4) J.L. Rodriguez-Sanchez et << 286 } << 287 168