Geant4 Cross Reference |
>> 1 // This code implementation is the intellectual property of >> 2 // the GEANT4 collaboration. 1 // 3 // 2 // ******************************************* << 4 // By copying, distributing or modifying the Program (or any work 3 // * License and Disclaimer << 5 // based on the Program) you indicate your acceptance of this statement, 4 // * << 6 // and all its terms. 5 // * The Geant4 software is copyright of th << 7 // 6 // * the Geant4 Collaboration. It is provided << 8 // $Id: G4HadronicProcess.cc,v 1.7.2.1 1999/12/07 20:51:31 gunter Exp $ 7 // * conditions of the Geant4 Software License << 9 // GEANT4 tag $Name: geant4-01-00 $ 8 // * LICENSE and available at http://cern.ch/ << 10 // 9 // * include a list of copyright holders. << 11 // HPW to implement the choosing of an element for scattering. 10 // * << 12 #include <fstream.h> 11 // * Neither the authors of this software syst << 13 #ifdef WIN32 12 // * institutes,nor the agencies providing fin << 14 #include <strstrea.h> 13 // * work make any representation or warran << 15 #else 14 // * regarding this software system or assum << 16 #include <strstream.h> 15 // * use. Please see the license in the file << 17 #endif 16 // * for the full disclaimer and the limitatio << 18 #include <stdlib.h> 17 // * << 18 // * This code implementation is the result << 19 // * technical work of the GEANT4 collaboratio << 20 // * By using, copying, modifying or distri << 21 // * any work based on the software) you ag << 22 // * use in resulting scientific publicati << 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* << 25 // << 26 // << 27 // ------------------------------------------- << 28 // << 29 // GEANT4 Class source file << 30 // << 31 // G4HadronicProcess << 32 // << 33 // original by H.P.Wellisch << 34 // J.L. Chuma, TRIUMF, 10-Mar-1997 << 35 // << 36 // Modifications: << 37 // 05-Jul-2010 V.Ivanchenko cleanup commented << 38 // 20-Jul-2011 M.Kelsey -- null-pointer checks << 39 // 24-Sep-2011 M.Kelsey -- Use envvar G4HADRON << 40 // engine state before each model call << 41 // 18-Oct-2011 M.Kelsey -- Handle final-state << 42 // 14-Mar-2012 G.Folger -- enhance checks for << 43 // 28-Jul-2012 M.Maire -- add function GetTar << 44 // 14-Sep-2012 Inherit from RestDiscrete, use << 45 // configure base-class << 46 // 28-Sep-2012 Restore inheritance from G4VDis << 47 // changing, remove warning message from or << 48 // 21-Aug-2019 V.Ivanchenko leave try/catch on << 49 << 50 #include "G4HadronicProcess.hh" 19 #include "G4HadronicProcess.hh" 51 << 20 //@@ add model name info, once typeinfo available #include <typeinfo.h> 52 #include "G4Types.hh" << 21 53 #include "G4SystemOfUnits.hh" << 22 G4IsoParticleChange * G4HadronicProcess::theIsoResult = NULL; 54 #include "G4HadProjectile.hh" << 23 G4IsoParticleChange * G4HadronicProcess::theOldIsoResult = NULL; 55 #include "G4ElementVector.hh" << 24 G4bool G4HadronicProcess::isoIsEnabled = true; 56 #include "G4Track.hh" << 25 void G4HadronicProcess::EnableIsotopeProductionGlobally() {isoIsEnabled = true;} 57 #include "G4Step.hh" << 26 void G4HadronicProcess::DisableIsotopeProductionGlobally() {isoIsEnabled = false;} 58 #include "G4Element.hh" << 27 59 #include "G4ParticleChange.hh" << 28 G4Element * G4HadronicProcess::ChooseAandZ( 60 #include "G4ProcessVector.hh" << 29 const G4DynamicParticle *aParticle, const G4Material *aMaterial ) 61 #include "G4ProcessManager.hh" << 62 #include "G4NucleiProperties.hh" << 63 << 64 #include "G4HadronicException.hh" << 65 #include "G4HadronicProcessStore.hh" << 66 #include "G4HadronicParameters.hh" << 67 #include "G4VCrossSectionDataSet.hh" << 68 << 69 #include "G4NistManager.hh" << 70 #include "G4VLeadingParticleBiasing.hh" << 71 #include "G4HadXSHelper.hh" << 72 #include "G4Threading.hh" << 73 #include "G4Exp.hh" << 74 << 75 #include <typeinfo> << 76 #include <sstream> << 77 #include <iostream> << 78 << 79 namespace << 80 { << 81 constexpr G4double lambdaFactor = 0.8; << 82 constexpr G4double invLambdaFactor = 1.0/lam << 83 } << 84 << 85 ////////////////////////////////////////////// << 86 << 87 G4HadronicProcess::G4HadronicProcess(const G4S << 88 G4Process << 89 : G4VDiscreteProcess(processName, procType) << 90 { << 91 SetProcessSubType(fHadronInelastic); // Def << 92 InitialiseLocal(); << 93 } << 94 << 95 G4HadronicProcess::G4HadronicProcess(const G4S << 96 G4Hadroni << 97 : G4VDiscreteProcess(processName, fHadronic) << 98 { << 99 SetProcessSubType(aHadSubType); << 100 InitialiseLocal(); << 101 } << 102 << 103 G4HadronicProcess::~G4HadronicProcess() << 104 { << 105 theProcessStore->DeRegister(this); << 106 delete theTotalResult; << 107 delete theCrossSectionDataStore; << 108 if(isMaster) { << 109 if (fXSpeaks != nullptr) { << 110 for (auto const& e : *fXSpeaks ) { << 111 delete e; << 112 } << 113 } << 114 delete fXSpeaks; << 115 delete theEnergyOfCrossSectionMax; << 116 } << 117 } << 118 << 119 void G4HadronicProcess::InitialiseLocal() { << 120 theTotalResult = new G4ParticleChange(); << 121 theTotalResult->SetSecondaryWeightByProcess( << 122 theCrossSectionDataStore = new G4CrossSectio << 123 theProcessStore = G4HadronicProcessStore::In << 124 theProcessStore->Register(this); << 125 minKinEnergy = 1*CLHEP::MeV; << 126 << 127 G4HadronicParameters* param = G4HadronicPara << 128 epReportLevel = param->GetEPReportLevel(); << 129 epCheckLevels.first = param->GetEPRelativeLe << 130 epCheckLevels.second = param->GetEPAbsoluteL << 131 << 132 unitVector.set(0.0, 0.0, 0.1); << 133 if(G4Threading::IsWorkerThread()) { isMaster << 134 } << 135 << 136 void G4HadronicProcess::RegisterMe( G4Hadronic << 137 { << 138 if(nullptr == a) { return; } << 139 theEnergyRangeManager.RegisterMe( a ); << 140 G4HadronicProcessStore::Instance()->Register << 141 } << 142 << 143 G4double << 144 G4HadronicProcess::GetElementCrossSection(cons << 145 const G4Element * elm, << 146 const G4Material* mat) << 147 { << 148 if(nullptr == mat) << 149 { 30 { 150 static const G4int nmax = 5; << 31 currentZ = 0; 151 if(nMatWarn < nmax) { << 32 currentN = 0; 152 ++nMatWarn; << 33 const G4int numberOfElements = aMaterial->GetNumberOfElements(); 153 G4ExceptionDescription ed; << 34 const G4ElementVector *theElementVector = aMaterial->GetElementVector(); 154 ed << "Cannot compute Element x-section << 35 155 << " because no material defined \n" << 36 if( numberOfElements == 1 ) 156 << " Please, specify material pointer or de << 37 { 157 << " for Z= " << elm->GetZasInt(); << 38 currentZ = G4double((*theElementVector)(0)->GetZ()); 158 G4Exception("G4HadronicProcess::GetEleme << 39 currentN = (*theElementVector)(0)->GetN(); 159 JustWarning, ed); << 40 targetNucleus.SetParameters(currentN, currentZ); 160 } << 41 return (*theElementVector)(0); 161 } << 42 } 162 return theCrossSectionDataStore->GetCrossSec << 43 163 } << 44 const G4double *theAtomicNumberDensity = aMaterial->GetAtomicNumDensityVector(); 164 << 45 G4double crossSectionTotal = 0; 165 void G4HadronicProcess::PreparePhysicsTable(co << 46 G4int i; 166 { << 47 for( i=0; i < numberOfElements; ++i ) 167 if(nullptr == firstParticle) { firstParticle << 48 crossSectionTotal += theAtomicNumberDensity[i] * 168 theProcessStore->RegisterParticle(this, &p); << 49 dispatch->GetMicroscopicCrossSection( aParticle, (*theElementVector)(i) ); 169 } << 50 170 << 51 G4double crossSectionSum= 0.; 171 void G4HadronicProcess::BuildPhysicsTable(cons << 52 G4double random = G4UniformRand()*crossSectionTotal; 172 { << 53 for( i=0; i < numberOfElements; ++i ) 173 if(firstParticle != &p) { return; } << 54 { 174 << 55 crossSectionSum += theAtomicNumberDensity[i] * 175 theCrossSectionDataStore->BuildPhysicsTable( << 56 dispatch->GetMicroscopicCrossSection( aParticle, (*theElementVector)(i) ); 176 theEnergyRangeManager.BuildPhysicsTable(p); << 57 if( random<=crossSectionSum ) 177 G4HadronicParameters* param = G4HadronicPara << 58 { 178 << 59 currentZ = G4double((*theElementVector)(i)->GetZ()); 179 G4int subtype = GetProcessSubType(); << 60 currentN = (*theElementVector)(i)->GetN(); 180 if(useIntegralXS) { << 61 targetNucleus.SetParameters(currentN, currentZ); 181 if(subtype == fHadronInelastic) { << 62 return (*theElementVector)(i); 182 useIntegralXS = param->EnableIntegralIne << 63 } 183 } else if(subtype == fHadronElastic) { << 64 } 184 useIntegralXS = param->EnableIntegralEla << 65 currentZ = G4double((*theElementVector)(numberOfElements-1)->GetZ()); 185 } << 66 currentN = (*theElementVector)(numberOfElements-1)->GetN(); 186 } << 67 targetNucleus.SetParameters(currentN, currentZ); 187 fXSType = fHadNoIntegral; << 68 return (*theElementVector)(numberOfElements-1); 188 << 189 if(nullptr == masterProcess) { << 190 masterProcess = dynamic_cast<const G4Hadro << 191 } << 192 if(nullptr == masterProcess) { << 193 if(1 < param->GetVerboseLevel()) { << 194 G4ExceptionDescription ed; << 195 ed << "G4HadronicProcess::BuildPhysicsTa << 196 << GetProcessName() << " for " << p.GetPart << 197 << " fail due to undefined pointer to the m << 198 << " ThreadID= " << G4Threading::G4GetThre << 199 << " initialisation of worker started befo << 200 G4Exception("G4HadronicProcess::BuildPhy << 201 JustWarning, ed); << 202 } << 203 } 69 } 204 << 70 205 // check particle for integral method << 71 G4VParticleChange *G4HadronicProcess::GeneralPostStepDoIt( 206 if(isMaster || nullptr == masterProcess) { << 72 const G4Track &aTrack, const G4Step &aStep ) 207 G4double charge = p.GetPDGCharge()/eplus; << 73 { 208 << 74 const G4DynamicParticle *aParticle = aTrack.GetDynamicParticle(); 209 // select cross section shape << 75 G4Material *aMaterial = aTrack.GetMaterial(); 210 if(charge != 0.0 && useIntegralXS) { << 76 G4double kineticEnergy = aParticle->GetKineticEnergy(); 211 G4double tmax = param->GetMaxEnergy(); << 77 G4Element * anElement = ChooseAandZ( aParticle, aMaterial ); 212 currentParticle = firstParticle; << 78 theInteraction = ChooseHadronicInteraction( kineticEnergy, 213 // initialisation in the master thread << 79 aMaterial, anElement ); 214 G4int pdg = p.GetPDGEncoding(); << 80 G4VParticleChange *result = 215 if (std::abs(pdg) == 211) { << 81 theInteraction->ApplyYourself( aTrack, targetNucleus); 216 fXSType = fHadTwoPeaks; << 82 ResetNumberOfInteractionLengthLeft(); 217 } else if (pdg == 321) { << 83 if(isoIsOnAnyway!=-1) 218 fXSType = fHadOnePeak; << 84 { 219 } else if (pdg == -321) { << 85 if(isoIsEnabled||isoIsOnAnyway) 220 fXSType = fHadDecreasing; << 86 { 221 } else if (pdg == 2212) { << 87 result = DoIsotopeCounting(result, aTrack, targetNucleus); 222 fXSType = fHadTwoPeaks; << 223 } else if (pdg == -2212 || pdg == -10000 << 224 pdg == -1000020030 || pdg == -1000020040) << 225 fXSType = fHadDecreasing; << 226 } else if (charge > 0.0 || pdg == 11 || << 227 fXSType = fHadIncreasing; << 228 } << 229 << 230 delete theEnergyOfCrossSectionMax; << 231 theEnergyOfCrossSectionMax = nullptr; << 232 if(fXSType == fHadTwoPeaks) { << 233 if (fXSpeaks != nullptr) { << 234 for (auto const& e : *fXSpeaks ) { << 235 delete e; << 236 } << 237 } << 238 delete fXSpeaks; << 239 fXSpeaks = << 240 G4HadXSHelper::FillPeaksStructure(this, &p << 241 if(nullptr == fXSpeaks) { << 242 fXSType = fHadOnePeak; << 243 } << 244 } << 245 if(fXSType == fHadOnePeak) { << 246 theEnergyOfCrossSectionMax = << 247 G4HadXSHelper::FindCrossSectionMax(this, & << 248 if(nullptr == theEnergyOfCrossSectionMax) { << 249 fXSType = fHadIncreasing; << 250 } << 251 } 88 } 252 } 89 } 253 } else { << 90 return result; 254 // initialisation in worker threads << 255 fXSType = masterProcess->CrossSectionType( << 256 fXSpeaks = masterProcess->TwoPeaksXS(); << 257 theEnergyOfCrossSectionMax = masterProcess << 258 } << 259 if(isMaster && 1 < param->GetVerboseLevel()) << 260 G4cout << "G4HadronicProcess::BuildPhysics << 261 << GetProcessName() << " and " << p.GetPa << 262 << " typeXS=" << fXSType << G4endl; << 263 } << 264 G4HadronicProcessStore::Instance()->PrintInf << 265 } << 266 << 267 void G4HadronicProcess::StartTracking(G4Track* << 268 { << 269 currentMat = nullptr; << 270 currentParticle = track->GetDefinition(); << 271 fDynParticle = track->GetDynamicParticle(); << 272 theNumberOfInteractionLengthLeft = -1.0; << 273 } << 274 << 275 G4double G4HadronicProcess::PostStepGetPhysica << 276 const G4Track& tr << 277 G4double previousStepSize, << 278 G4ForceCondition* << 279 { << 280 *condition = NotForced; << 281 << 282 const G4Material* mat = track.GetMaterial(); << 283 if(mat != currentMat) { << 284 currentMat = mat; << 285 mfpKinEnergy = DBL_MAX; << 286 matIdx = (G4int)track.GetMaterial()->GetIn << 287 } << 288 UpdateCrossSectionAndMFP(track.GetKineticEne << 289 << 290 // zero cross section << 291 if(theLastCrossSection <= 0.0) { << 292 theNumberOfInteractionLengthLeft = -1.0; << 293 currentInteractionLength = DBL_MAX; << 294 return DBL_MAX; << 295 } << 296 << 297 // non-zero cross section << 298 if (theNumberOfInteractionLengthLeft < 0.0) << 299 theNumberOfInteractionLengthLeft = -G4Log( << 300 theInitialNumberOfInteractionLength = theN << 301 } else { << 302 theNumberOfInteractionLengthLeft -= << 303 previousStepSize/currentInteractionLengt << 304 theNumberOfInteractionLengthLeft = << 305 std::max(theNumberOfInteractionLengthLef << 306 } << 307 currentInteractionLength = theMFP; << 308 return theNumberOfInteractionLengthLeft*theM << 309 } << 310 << 311 G4double G4HadronicProcess::GetMeanFreePath( << 312 const G4Track &aTr << 313 G4ForceCondition*) << 314 { << 315 G4double xs = aScaleFactor*theCrossSectionDa << 316 ->ComputeCrossSection(aTrack.GetDynamicPa << 317 return (xs > 0.0) ? 1.0/xs : DBL_MAX; << 318 } << 319 << 320 G4VParticleChange* << 321 G4HadronicProcess::PostStepDoIt(const G4Track& << 322 { << 323 theNumberOfInteractionLengthLeft = -1.0; << 324 << 325 //G4cout << "PostStepDoIt " << aTrack.GetDef << 326 // << " Ekin= " << aTrack.GetKineticEnergy << 327 // if primary is not Alive then do nothing << 328 theTotalResult->Clear(); << 329 theTotalResult->Initialize(aTrack); << 330 fWeight = aTrack.GetWeight(); << 331 theTotalResult->ProposeWeight(fWeight); << 332 if(aTrack.GetTrackStatus() != fAlive) { retu << 333 << 334 // Find cross section at end of step and che << 335 // << 336 const G4DynamicParticle* aParticle = aTrack. << 337 const G4Material* aMaterial = aTrack.GetMate << 338 << 339 // check only for charged particles << 340 if(fXSType != fHadNoIntegral) { << 341 mfpKinEnergy = DBL_MAX; << 342 G4double xs = aScaleFactor* << 343 theCrossSectionDataStore->ComputeCrossSe << 344 //G4cout << "xs=" << xs << " xs0=" << theL << 345 // << " " << aMaterial->GetName() << << 346 if(xs < theLastCrossSection*G4UniformRand( << 347 // No interaction << 348 return theTotalResult; << 349 } << 350 } << 351 << 352 const G4Element* anElement = << 353 theCrossSectionDataStore->SampleZandA(aPar << 354 << 355 // Next check for illegal track status << 356 // << 357 if (aTrack.GetTrackStatus() != fAlive && << 358 aTrack.GetTrackStatus() != fSuspend) { << 359 if (aTrack.GetTrackStatus() == fStopAndKil << 360 aTrack.GetTrackStatus() == fKillTrackA << 361 aTrack.GetTrackStatus() == fPostponeTo << 362 G4ExceptionDescription ed; << 363 ed << "G4HadronicProcess: track in unusa << 364 << aTrack.GetTrackStatus() << G4endl; << 365 ed << "G4HadronicProcess: returning unch << 366 DumpState(aTrack,"PostStepDoIt",ed); << 367 G4Exception("G4HadronicProcess::PostStep << 368 } << 369 // No warning for fStopButAlive which is a << 370 return theTotalResult; << 371 } 91 } 372 92 373 // Initialize the hadronic projectile from t << 93 G4VParticleChange * G4HadronicProcess:: 374 thePro.Initialise(aTrack); << 94 DoIsotopeCounting(G4VParticleChange * aResult, 375 << 95 const G4Track & aTrack, 376 theInteraction = ChooseHadronicInteraction(t << 96 const G4Nucleus & aNucleus) 377 a << 378 if(nullptr == theInteraction) { << 379 G4ExceptionDescription ed; << 380 ed << "Target element "<<anElement->GetNam << 381 << targetNucleus.GetZ_asInt() << " A= << 382 << targetNucleus.GetA_asInt() << G4endl << 383 DumpState(aTrack,"ChooseHadronicInteractio << 384 ed << " No HadronicInteraction found out" << 385 G4Exception("G4HadronicProcess::PostStepDo << 386 FatalException, ed); << 387 return theTotalResult; << 388 } << 389 << 390 G4HadFinalState* result = nullptr; << 391 G4int reentryCount = 0; << 392 /* << 393 G4cout << "### " << aParticle->GetDefinition << 394 << " Ekin(MeV)= " << aParticle->GetKinetic << 395 << " Z= " << targetNucleus.GetZ_asInt() << 396 << " A= " << targetNucleus.GetA_asInt() << 397 << " by " << theInteraction->GetModelName( << 398 << G4endl; << 399 */ << 400 do << 401 { 97 { 402 try << 98 // get the PC from iso-production >> 99 if(theOldIsoResult) delete theOldIsoResult; >> 100 if(theIsoResult) delete theIsoResult; >> 101 theIsoResult = new G4IsoParticleChange; >> 102 G4bool done = false; >> 103 G4IsoResult * anIsoResult = NULL; >> 104 for(G4int i=0; i<theProductionModels.length(); i++) 403 { 105 { 404 // Call the interaction << 106 anIsoResult = theProductionModels(i)->GetIsotope(aTrack, aNucleus); 405 result = theInteraction->ApplyYourself( << 107 if(anIsoResult!=NULL) 406 ++reentryCount; << 108 { 407 } << 109 done = true; 408 catch(G4HadronicException & aR) << 110 break; >> 111 } >> 112 } >> 113 // if none in charge, use default iso production >> 114 if(!done) anIsoResult = ExtractResidualNucleus(aTrack, aNucleus, aResult); >> 115 >> 116 // Add all info explicitely and add typename from model called. >> 117 theIsoResult->SetIsotope(anIsoResult->GetIsotope()); >> 118 theIsoResult->SetProductionPosition(aTrack.GetPosition()); >> 119 theIsoResult->SetProductionTime(aTrack.GetGlobalTime()); >> 120 theIsoResult->SetParentParticle(*aTrack.GetDynamicParticle()); >> 121 theIsoResult->SetMotherNucleus(anIsoResult->GetMotherNucleus()); >> 122 // theIsoResult->SetProducer(typeid(*theInteraction).name()); @@@@@@@ >> 123 G4String aWorkaround("WaitingForTypeidToBeAvailableInCompilers"); // @@@@@ workaround for DEC. >> 124 theIsoResult->SetProducer(aWorkaround); >> 125 >> 126 delete anIsoResult; >> 127 >> 128 return aResult; >> 129 } >> 130 >> 131 G4IsoResult * G4HadronicProcess:: >> 132 ExtractResidualNucleus(const G4Track & aTrack, >> 133 const G4Nucleus & aNucleus, >> 134 G4VParticleChange * aResult) >> 135 { >> 136 G4double A = aNucleus.GetN(); >> 137 G4double Z = aNucleus.GetZ(); >> 138 G4double bufferA = 0; >> 139 G4double bufferZ = 0; >> 140 >> 141 // loop over aResult, and decrement A, Z accordingly >> 142 // cash the max >> 143 for(G4int i=0; i<aResult->GetNumberOfSecondaries(); i++) 409 { 144 { 410 G4ExceptionDescription ed; << 145 G4Track* aSecTrack = aResult->GetSecondary(i); 411 aR.Report(ed); << 146 if(bufferA<aSecTrack->GetDefinition()->GetBaryonNumber()) 412 ed << "Call for " << theInteraction->Get << 147 { 413 ed << "Target element "<<anElement->GetN << 148 bufferA = aSecTrack->GetDefinition()->GetBaryonNumber(); 414 << targetNucleus.GetZ_asInt() << 149 bufferZ = aSecTrack->GetDefinition()->GetPDGCharge(); 415 << " A= " << targetNucleus.GetA_asInt() << << 150 } 416 DumpState(aTrack,"ApplyYourself",ed); << 151 Z-=aSecTrack->GetDefinition()->GetPDGCharge(); 417 ed << " ApplyYourself failed" << G4endl; << 152 A-=aSecTrack->GetDefinition()->GetBaryonNumber(); 418 G4Exception("G4HadronicProcess::PostStep << 153 } 419 ed); << 154 420 } << 155 // if the fragment was part of the final state, it is 421 << 156 // assumed to be the heaviest secondary. 422 // Check the result for catastrophic energ << 157 if(A<0.1) 423 result = CheckResult(thePro, targetNucleus << 158 { 424 << 159 A = bufferA; 425 if(reentryCount>100) { << 160 Z = bufferZ; 426 G4ExceptionDescription ed; << 427 ed << "Call for " << theInteraction->Get << 428 ed << "Target element "<<anElement->GetN << 429 << targetNucleus.GetZ_asInt() << 430 << " A= " << targetNucleus.GetA_asInt() << << 431 DumpState(aTrack,"ApplyYourself",ed); << 432 ed << " ApplyYourself does not completed << 433 G4Exception("G4HadronicProcess::PostStep << 434 ed); << 435 } << 436 } << 437 while(!result); /* Loop checking, 30-Oct-20 << 438 << 439 // Check whether kaon0 or anti_kaon0 are pre << 440 // if this is the case, transform them into << 441 // with equal, 50% probability, keeping thei << 442 // the other kinematical properties). << 443 // When this happens - very rarely - a "Just << 444 // Because Fluka-Cern produces kaon0 and ant << 445 // of warnings to max 1 per thread. << 446 G4int nSec = (G4int)result->GetNumberOfSecon << 447 if ( nSec > 0 ) { << 448 for ( G4int i = 0; i < nSec; ++i ) { << 449 auto dynamicParticle = result->GetSecond << 450 auto part = dynamicParticle->GetParticle << 451 if ( part == G4KaonZero::Definition() || << 452 part == G4AntiKaonZero::Definition( << 453 G4ParticleDefinition* newPart; << 454 if ( G4UniformRand() > 0.5 ) { newPart << 455 else { newPart = G4KaonZeroLong::Defin << 456 dynamicParticle->SetDefinition( newPar << 457 if ( nKaonWarn < 1 ) { << 458 ++nKaonWarn; << 459 G4ExceptionDescription ed; << 460 ed << " Hadronic model " << theInteraction << 461 ed << " created " << part->GetParticleName << 462 ed << " -> forced to be " << newPart->GetP << 463 G4Exception( "G4HadronicProcess::PostStepD << 464 } << 465 } << 466 } << 467 } << 468 << 469 result->SetTrafoToLab(thePro.GetTrafoToLab() << 470 FillResult(result, aTrack); << 471 << 472 if (epReportLevel != 0) { << 473 CheckEnergyMomentumConservation(aTrack, ta << 474 } << 475 //G4cout << "PostStepDoIt done nICelectrons= << 476 return theTotalResult; << 477 } << 478 << 479 void G4HadronicProcess::ProcessDescription(std << 480 { << 481 outFile << "The description for this process << 482 } << 483 << 484 G4double G4HadronicProcess::XBiasSurvivalProba << 485 { << 486 G4double nLTraversed = GetTotalNumberOfInter << 487 G4double biasedProbability = 1.-G4Exp(-nLTra << 488 G4double realProbability = 1-G4Exp(-nLTraver << 489 G4double result = (biasedProbability-realPro << 490 return result; << 491 } << 492 << 493 G4double G4HadronicProcess::XBiasSecondaryWeig << 494 { << 495 G4double nLTraversed = GetTotalNumberOfInter << 496 G4double result = << 497 1./aScaleFactor*G4Exp(-nLTraversed/aScale << 498 return result; << 499 } << 500 << 501 void << 502 G4HadronicProcess::FillResult(G4HadFinalState << 503 { << 504 theTotalResult->ProposeLocalEnergyDeposit(aR << 505 const G4ThreeVector& dir = aT.GetMomentumDir << 506 << 507 G4double efinal = std::max(aR->GetEnergyChan << 508 << 509 // check status of primary << 510 if(aR->GetStatusChange() == stopAndKill) { << 511 theTotalResult->ProposeTrackStatus(fStopAn << 512 theTotalResult->ProposeEnergy( 0.0 ); << 513 << 514 // check its final energy << 515 } else if(0.0 == efinal) { << 516 theTotalResult->ProposeEnergy( 0.0 ); << 517 if(aT.GetParticleDefinition()->GetProcessM << 518 ->GetAtRestProcessVector()->size() > 0) << 519 { theTotalResult->ProposeTrackStatus( << 520 else { theTotalResult->ProposeTrackStatus( << 521 << 522 // primary is not killed apply rotation an << 523 } else { << 524 theTotalResult->ProposeTrackStatus(fAlive) << 525 G4ThreeVector newDir = aR->GetMomentumChan << 526 newDir.rotateUz(dir); << 527 theTotalResult->ProposeMomentumDirection(n << 528 theTotalResult->ProposeEnergy(efinal); << 529 } << 530 //G4cout << "FillResult: Efinal= " << efinal << 531 // << theTotalResult->GetTrackStatus() << 532 // << " fKill= " << fStopAndKill << G4end << 533 << 534 // check secondaries << 535 nICelectrons = 0; << 536 G4int nSec = (G4int)aR->GetNumberOfSecondari << 537 theTotalResult->SetNumberOfSecondaries(nSec) << 538 G4double time0 = aT.GetGlobalTime(); << 539 << 540 for (G4int i = 0; i < nSec; ++i) { << 541 G4DynamicParticle* dynParticle = aR->GetSe << 542 << 543 // apply rotation << 544 G4ThreeVector newDir = dynParticle->GetMom << 545 newDir.rotateUz(dir); << 546 dynParticle->SetMomentumDirection(newDir); << 547 << 548 // check if secondary is on the mass shell << 549 const G4ParticleDefinition* part = dynPart << 550 G4double mass = part->GetPDGMass(); << 551 G4double dmass= dynParticle->GetMass(); << 552 const G4double delta_mass_lim = 1.0*CLHEP: << 553 const G4double delta_ekin = 0.001*CLHEP::e << 554 if(std::abs(dmass - mass) > delta_mass_lim << 555 G4double e = << 556 std::max(dynParticle->GetKineticEnergy << 557 if(verboseLevel > 1) { << 558 G4ExceptionDescription ed; << 559 ed << "TrackID= "<< aT.GetTrackID() << 560 << " " << aT.GetParticleDefinition()->Ge << 561 << " Target Z= " << targetNucleus.GetZ_as << 562 << targetNucleus.GetA_asInt() << 563 << " Ekin(GeV)= " << aT.GetKineticEnergy( << 564 << "\n Secondary is out of mass shell: " << 565 << " EkinNew(MeV)= " << e << 566 << " DeltaMass(MeV)= " << dmass - mass << << 567 G4Exception("G4HadronicProcess::FillResults" << 568 } << 569 dynParticle->SetKineticEnergy(e); << 570 dynParticle->SetMass(mass); << 571 } << 572 G4int idModel = aR->GetSecondary(i)->GetCr << 573 if(part->GetPDGEncoding() == 11) { ++nICel << 574 << 575 // time of interaction starts from zero + << 576 G4double time = std::max(aR->GetSecondary( << 577 << 578 G4Track* track = new G4Track(dynParticle, << 579 track->SetCreatorModelID(idModel); << 580 track->SetParentResonanceDef(aR->GetSecond << 581 track->SetParentResonanceID(aR->GetSeconda << 582 G4double newWeight = fWeight*aR->GetSecond << 583 track->SetWeight(newWeight); << 584 track->SetTouchableHandle(aT.GetTouchableH << 585 theTotalResult->AddSecondary(track); << 586 } << 587 aR->Clear(); << 588 // G4cout << "FillResults done nICe= " << nI << 589 } << 590 << 591 void G4HadronicProcess::MultiplyCrossSectionBy << 592 { << 593 BiasCrossSectionByFactor(factor); << 594 } << 595 << 596 void G4HadronicProcess::BiasCrossSectionByFact << 597 { << 598 if (aScale <= 0.0) { << 599 G4ExceptionDescription ed; << 600 ed << " Wrong biasing factor " << aScale < << 601 G4Exception("G4HadronicProcess::BiasCrossS << 602 JustWarning, ed, "Cross-sectio << 603 } else { << 604 aScaleFactor = aScale; << 605 } << 606 } << 607 << 608 G4HadFinalState* G4HadronicProcess::CheckResul << 609 const G4Nucleus &aNucleus, << 610 G4HadFinalState * result) << 611 { << 612 // check for catastrophic energy non-conserv << 613 // to re-sample the interaction << 614 G4HadronicInteraction * theModel = GetHadron << 615 G4double nuclearMass(0); << 616 if (nullptr != theModel) { << 617 << 618 // Compute final-state total energy << 619 G4double finalE(0.); << 620 G4int nSec = (G4int)result->GetNumberOfSec << 621 << 622 nuclearMass = G4NucleiProperties::GetNucle << 623 aNucleus.GetZ_asInt()); << 624 if (result->GetStatusChange() != stopAndKi << 625 // Interaction didn't complete, returned << 626 // and reset nucleus or the primary surv << 627 // (e.g. electro-nuclear ) => keep nucl << 628 finalE=result->GetLocalEnergyDeposit() + << 629 aPro.GetDefinition()->GetPDGMass( << 630 if( nSec == 0 ){ << 631 // Since there are no secondaries, th << 632 // To check energy balance we must ne << 633 nuclearMass=0.0; << 634 } << 635 } << 636 for (G4int i = 0; i < nSec; ++i) { << 637 G4DynamicParticle *pdyn=result->GetSecon << 638 finalE += pdyn->GetTotalEnergy(); << 639 G4double mass_pdg=pdyn->GetDefinition()- << 640 G4double mass_dyn=pdyn->GetMass(); << 641 if ( std::abs(mass_pdg - mass_dyn) > 0.1 << 642 // If it is shortlived, then a differe << 643 if ( pdyn->GetDefinition()->IsShortLiv << 644 std::abs(mass_pdg - mass_dyn) < 3 << 645 continue; << 646 } << 647 result->Clear(); << 648 result = nullptr; << 649 G4ExceptionDescription desc; << 650 desc << "Warning: Secondary with off-shell d << 651 << G4endl << 652 << " " << pdyn->GetDefinition()->GetPar << 653 << ", PDG mass: " << mass_pdg << ", dyn << 654 << mass_dyn << G4endl << 655 << (epReportLevel<0 ? "abort the event" << 656 : "re-sample the interaction") << G4endl << 657 << " Process / Model: " << GetProcessN << 658 << theModel->GetModelName() << G4endl << 659 << " Primary: " << aPro.GetDefinition() << 660 << " (" << aPro.GetDefinition()->GetPDG << 661 << " E= " << aPro.Get4Momentum().e() << 662 << ", target nucleus (" << aNucleus.Get << 663 << aNucleus.GetA_asInt() << ")" << G4en << 664 G4Exception("G4HadronicProcess:CheckResult() << 665 epReportLevel<0 ? EventMustBeAborted : << 666 // must return here..... << 667 return result; << 668 } << 669 } << 670 G4double deltaE= nuclearMass + aPro.GetTo << 671 << 672 std::pair<G4double, G4double> checkLevels << 673 theModel->GetFatalEnergyCheckLevels(); << 674 if (std::abs(deltaE) > checkLevels.second << 675 std::abs(deltaE) > checkLevels.first*a << 676 // do not delete result, this is a point << 677 result->Clear(); << 678 result = nullptr; << 679 G4ExceptionDescription desc; << 680 desc << "Warning: Bad energy non-conserv << 681 << (epReportLevel<0 ? "abort the event" << 682 : "re-sample the interaction") << G4 << 683 << " Process / Model: " << GetProcessNam << 684 << theModel->GetModelName() << G4endl << 685 << " Primary: " << aPro.GetDefinition()-> << 686 << " (" << aPro.GetDefinition()->GetPDGEn << 687 << " E= " << aPro.Get4Momentum().e() << 688 << ", target nucleus (" << aNucleus.GetZ_ << 689 << aNucleus.GetA_asInt() << ")" << G4endl << 690 << " E(initial - final) = " << deltaE << << 691 G4Exception("G4HadronicProcess:CheckResu << 692 epReportLevel<0 ? EventMustBeAborted : J << 693 } << 694 } << 695 return result; << 696 } << 697 << 698 void << 699 G4HadronicProcess::CheckEnergyMomentumConserva << 700 << 701 { << 702 G4int target_A=aNucleus.GetA_asInt(); << 703 G4int target_Z=aNucleus.GetZ_asInt(); << 704 G4double targetMass = G4NucleiProperties::Ge << 705 G4LorentzVector target4mom(0, 0, 0, targetMa << 706 + nICelectrons*CLHEP::electron_mass << 707 << 708 G4LorentzVector projectile4mom = aTrack.GetD << 709 G4int track_A = aTrack.GetDefinition()->GetB << 710 G4int track_Z = G4lrint(aTrack.GetDefinition << 711 << 712 G4int initial_A = target_A + track_A; << 713 G4int initial_Z = target_Z + track_Z - nICel << 714 << 715 G4LorentzVector initial4mom = projectile4mom << 716 << 717 // Compute final-state momentum for scatteri << 718 G4LorentzVector final4mom; << 719 G4int final_A(0), final_Z(0); << 720 << 721 G4int nSec = theTotalResult->GetNumberOfSeco << 722 if (theTotalResult->GetTrackStatus() != fSto << 723 // Either interaction didn't complete, ret << 724 // or the primary survived the interac << 725 << 726 // Interaction didn't complete, returned " << 727 // - or suppressed recoil (e.g. Neutron << 728 final4mom = initial4mom; << 729 final_A = initial_A; << 730 final_Z = initial_Z; << 731 if (nSec > 0) { << 732 // The primary remains in final state (e << 733 // Use the final energy / momentum << 734 const G4ThreeVector& v = *theTotalResult << 735 G4double ekin = theTotalResult->GetEnerg << 736 G4double mass = aTrack.GetDefinition()-> << 737 G4double ptot = std::sqrt(ekin*(ekin + 2 << 738 final4mom.set(ptot*v.x(), ptot*v.y(), pt << 739 final_A = track_A; << 740 final_Z = track_Z; << 741 // Expect that the target nucleus will h << 742 // and its products, including recoil, << 743 } << 744 } << 745 if( nSec > 0 ) { << 746 G4Track* sec; << 747 << 748 for (G4int i = 0; i < nSec; i++) { << 749 sec = theTotalResult->GetSecondary(i); << 750 final4mom += sec->GetDynamicParticle()-> << 751 final_A += sec->GetDefinition()->GetBary << 752 final_Z += G4lrint(sec->GetDefinition()- << 753 } 161 } >> 162 >> 163 // prepare the IsoResult. >> 164 char the1[100] = {""}; >> 165 ostrstream ost1(the1, 100, ios::out); >> 166 ost1 <<Z<<"_"<<A; >> 167 G4String * biff = new G4String(the1); >> 168 G4IsoResult * theResult = new G4IsoResult(*biff, aNucleus); >> 169 >> 170 // cleaning up. >> 171 delete biff; >> 172 >> 173 return theResult; 754 } 174 } 755 175 756 // Get level-checking information (used to c << 757 G4String processName = GetProcessName(); << 758 G4HadronicInteraction* theModel = GetHadroni << 759 G4String modelName("none"); << 760 if (theModel) modelName = theModel->GetModel << 761 std::pair<G4double, G4double> checkLevels = << 762 if (!levelsSetByProcess) { << 763 if (theModel) checkLevels = theModel->GetE << 764 checkLevels.first= std::min(checkLevels.fi << 765 checkLevels.second=std::min(checkLevels.se << 766 } << 767 << 768 // Compute absolute total-energy difference, << 769 G4bool checkRelative = (aTrack.GetKineticEne << 770 << 771 G4LorentzVector diff = initial4mom - final4m << 772 G4double absolute = diff.e(); << 773 G4double relative = checkRelative ? absolute << 774 << 775 G4double absolute_mom = diff.vect().mag(); << 776 G4double relative_mom = checkRelative ? abso << 777 << 778 // Evaluate relative and absolute conservati << 779 G4bool relPass = true; << 780 G4String relResult = "pass"; << 781 if ( std::abs(relative) > checkLevels.first << 782 || std::abs(relative_mom) > checkLevels.fir << 783 relPass = false; << 784 relResult = checkRelative ? "fail" : "N/A" << 785 } << 786 << 787 G4bool absPass = true; << 788 G4String absResult = "pass"; << 789 if ( std::abs(absolute) > checkLevels.seco << 790 || std::abs(absolute_mom) > checkLevels. << 791 absPass = false ; << 792 absResult = "fail"; << 793 } << 794 << 795 G4bool chargePass = true; << 796 G4String chargeResult = "pass"; << 797 if ( (initial_A-final_A)!=0 << 798 || (initial_Z-final_Z)!=0 ) { << 799 chargePass = checkLevels.second < DBL_MAX << 800 chargeResult = "fail"; << 801 } << 802 << 803 G4bool conservationPass = (relPass || absPas << 804 << 805 std::stringstream Myout; << 806 G4bool Myout_notempty(false); << 807 // Options for level of reporting detail: << 808 // 0. off << 809 // 1. report only when E/p not conserved << 810 // 2. report regardless of E/p conservation << 811 // 3. report only when E/p not conserved, w << 812 // 4. report regardless of E/p conservation << 813 // negative -1.., as above, but send output << 814 << 815 if( std::abs(epReportLevel) == 4 << 816 || ( std::abs(epReportLevel) == 3 && ! cons << 817 Myout << " Process: " << processName << << 818 Myout << " Primary: " << aTrack.GetParti << 819 << " (" << aTrack.GetParticleDefin << 820 << " E= " << aTrack.GetDynamicPar << 821 << ", target nucleus (" << aNucleus.GetZ << 822 << aNucleus.GetA_asInt() << ")" << G4end << 823 Myout_notempty=true; << 824 } << 825 if ( std::abs(epReportLevel) == 4 << 826 || std::abs(epReportLevel) == 2 << 827 || ! conservationPass ){ << 828 << 829 Myout << " "<< relResult <<" relative << 830 << relative << " p/p(0)= " << rel << 831 Myout << " "<< absResult << " absolute << 832 << absolute/MeV << " / " << absol << 833 Myout << " "<< chargeResult << " charg << 834 Myout_notempty=true; << 835 << 836 } << 837 Myout.flush(); << 838 if ( Myout_notempty ) { << 839 if (epReportLevel > 0) G4cout << Myo << 840 else if (epReportLevel < 0) G4cerr << Myo << 841 } << 842 } << 843 << 844 void G4HadronicProcess::DumpState(const G4Trac << 845 const G4String& method, << 846 G4ExceptionDescription& ed) << 847 { << 848 ed << "Unrecoverable error in the method " < << 849 << GetProcessName() << G4endl; << 850 ed << "TrackID= "<< aTrack.GetTrackID() << " << 851 << aTrack.GetParentID() << 852 << " " << aTrack.GetParticleDefinition() << 853 << G4endl; << 854 ed << "Ekin(GeV)= " << aTrack.GetKineticEner << 855 << "; direction= " << aTrack.GetMomentum << 856 ed << "Position(mm)= " << aTrack.GetPosition << 857 << 858 if (aTrack.GetMaterial()) { << 859 ed << " material " << aTrack.GetMaterial( << 860 } << 861 ed << G4endl; << 862 << 863 if (aTrack.GetVolume()) { << 864 ed << "PhysicalVolume <" << aTrack.GetVol << 865 << ">" << G4endl; << 866 } << 867 } << 868 << 869 void G4HadronicProcess::DumpPhysicsTable(const << 870 { << 871 theCrossSectionDataStore->DumpPhysicsTable(p << 872 } << 873 << 874 void G4HadronicProcess::AddDataSet(G4VCrossSec << 875 { << 876 theCrossSectionDataStore->AddDataSet(aDataSe << 877 } << 878 << 879 std::vector<G4HadronicInteraction*>& << 880 G4HadronicProcess::GetHadronicInteractionList( << 881 { << 882 return theEnergyRangeManager.GetHadronicInte << 883 } << 884 << 885 G4HadronicInteraction* << 886 G4HadronicProcess::GetHadronicModel(const G4St << 887 { << 888 std::vector<G4HadronicInteraction*>& list << 889 = theEnergyRangeManager.GetHadronicInt << 890 for (auto & mod : list) { << 891 if (mod->GetModelName() == modelName) retu << 892 } << 893 return nullptr; << 894 } << 895 << 896 G4double << 897 G4HadronicProcess::ComputeCrossSection(const G << 898 const G4Material* mat, << 899 const G4double kinEnergy) << 900 { << 901 auto dp = new G4DynamicParticle(part, unitVe << 902 G4double xs = theCrossSectionDataStore->Comp << 903 delete dp; << 904 return xs; << 905 } << 906 << 907 void G4HadronicProcess::RecomputeXSandMFP(cons << 908 { << 909 auto dp = new G4DynamicParticle(currentParti << 910 theLastCrossSection = aScaleFactor* << 911 theCrossSectionDataStore->ComputeCrossSect << 912 theMFP = (theLastCrossSection > 0.0) ? 1.0/t << 913 delete dp; << 914 } << 915 << 916 void G4HadronicProcess::UpdateCrossSectionAndM << 917 { << 918 if(fXSType == fHadNoIntegral) { << 919 DefineXSandMFP(); << 920 << 921 } else if(fXSType == fHadIncreasing) { << 922 if(e*invLambdaFactor < mfpKinEnergy) { << 923 mfpKinEnergy = e; << 924 ComputeXSandMFP(); << 925 } << 926 << 927 } else if(fXSType == fHadDecreasing) { << 928 if(e < mfpKinEnergy && mfpKinEnergy > minK << 929 G4double e1 = std::max(e*lambdaFactor, m << 930 mfpKinEnergy = e1; << 931 RecomputeXSandMFP(e1); << 932 } << 933 << 934 } else if(fXSType == fHadOnePeak) { << 935 G4double epeak = (*theEnergyOfCrossSection << 936 if(e <= epeak) { << 937 if(e*invLambdaFactor < mfpKinEnergy) { << 938 mfpKinEnergy = e; << 939 ComputeXSandMFP(); << 940 } << 941 } else if(e < mfpKinEnergy) { << 942 G4double e1 = std::max(epeak, e*lambdaFa << 943 mfpKinEnergy = e1; << 944 RecomputeXSandMFP(e1); << 945 } << 946 << 947 } else if(fXSType == fHadTwoPeaks) { << 948 G4TwoPeaksHadXS* xs = (*fXSpeaks)[matIdx]; << 949 const G4double e1peak = xs->e1peak; << 950 << 951 // below the 1st peak << 952 if(e <= e1peak) { << 953 if(e*invLambdaFactor < mfpKinEnergy) { << 954 mfpKinEnergy = e; << 955 ComputeXSandMFP(); << 956 } << 957 return; << 958 } << 959 const G4double e1deep = xs->e1deep; << 960 // above the 1st peak, below the deep << 961 if(e <= e1deep) { << 962 if(mfpKinEnergy >= e1deep || e <= mfpKin << 963 const G4double e1 = std::max(e1peak, e << 964 mfpKinEnergy = e1; << 965 RecomputeXSandMFP(e1); << 966 } << 967 return; << 968 } << 969 const G4double e2peak = xs->e2peak; << 970 // above the deep, below 2nd peak << 971 if(e <= e2peak) { << 972 if(e*invLambdaFactor < mfpKinEnergy) { << 973 mfpKinEnergy = e; << 974 ComputeXSandMFP(); << 975 } << 976 return; << 977 } << 978 const G4double e2deep = xs->e2deep; << 979 // above the 2nd peak, below the deep << 980 if(e <= e2deep) { << 981 if(mfpKinEnergy >= e2deep || e <= mfpKin << 982 const G4double e1 = std::max(e2peak, e << 983 mfpKinEnergy = e1; << 984 RecomputeXSandMFP(e1); << 985 } << 986 return; << 987 } << 988 const G4double e3peak = xs->e3peak; << 989 // above the deep, below 3d peak << 990 if(e <= e3peak) { << 991 if(e*invLambdaFactor < mfpKinEnergy) { << 992 mfpKinEnergy = e; << 993 ComputeXSandMFP(); << 994 } << 995 return; << 996 } << 997 // above 3d peak << 998 if(e <= mfpKinEnergy) { << 999 const G4double e1 = std::max(e3peak, e*l << 1000 mfpKinEnergy = e1; << 1001 RecomputeXSandMFP(e1); << 1002 } << 1003 176 1004 } else { << 177 /* end of file */ 1005 DefineXSandMFP(); << 1006 } << 1007 } << 1008 178