Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/cross_sections/src/G4KokoulinMuonNuclearXS.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/hadronic/cross_sections/src/G4KokoulinMuonNuclearXS.cc (Version 11.3.0) and /processes/hadronic/cross_sections/src/G4KokoulinMuonNuclearXS.cc (Version 9.5.p1)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
                                                   >>  26 // $Id: $
 26 //                                                 27 //
 27 // Author:      D.H. Wright                        28 // Author:      D.H. Wright
 28 // Date:        1 February 2011                    29 // Date:        1 February 2011
 29 //                                                 30 //
 30 // Modified:                                       31 // Modified:
 31 //                                                 32 //
 32 // 19 Aug 2011, V.Ivanchenko move to new desig     33 // 19 Aug 2011, V.Ivanchenko move to new design and make x-section per element
 33                                                    34 
 34 // Description: use Kokoulin's parameterized c     35 // Description: use Kokoulin's parameterized calculation of virtual 
 35 //              photon production cross sectio     36 //              photon production cross section and conversion to
 36 //              real photons.                      37 //              real photons.
 37                                                    38 
 38 #include "G4KokoulinMuonNuclearXS.hh"              39 #include "G4KokoulinMuonNuclearXS.hh"
 39                                                    40 
 40 #include "G4PhysicalConstants.hh"              <<  41 #include "G4PhysicsTable.hh"
 41 #include "G4SystemOfUnits.hh"                  << 
 42 #include "G4PhysicsLogVector.hh"                   42 #include "G4PhysicsLogVector.hh"
 43 #include "G4PhysicsVector.hh"                  << 
 44 #include "G4MuonMinus.hh"                      << 
 45 #include "G4MuonPlus.hh"                       << 
 46 #include "G4NucleiProperties.hh"               << 
 47 #include "G4NistManager.hh"                    << 
 48 #include "G4Log.hh"                            << 
 49 #include "G4Exp.hh"                            << 
 50                                                    43 
 51 // factory                                     << 
 52 #include "G4CrossSectionFactory.hh"            << 
 53 //                                             << 
 54 G4_DECLARE_XS_FACTORY(G4KokoulinMuonNuclearXS) << 
 55                                                << 
 56 G4PhysicsVector* G4KokoulinMuonNuclearXS::theC << 
 57                                                    44 
 58 G4KokoulinMuonNuclearXS::G4KokoulinMuonNuclear     45 G4KokoulinMuonNuclearXS::G4KokoulinMuonNuclearXS()
 59   :G4VCrossSectionDataSet(Default_Name()),     <<  46  :G4VCrossSectionDataSet("KokoulinMuonNuclearXS"), theCrossSectionTable(0),
 60   LowestKineticEnergy(1*GeV), HighestKineticEn     47   LowestKineticEnergy(1*GeV), HighestKineticEnergy(1*PeV),
 61   TotBin(60), CutFixed(0.2*GeV), isInitialized <<  48   TotBin(60), CutFixed(0.2*GeV)
 62 {}                                             << 
 63                                                << 
 64 G4KokoulinMuonNuclearXS::~G4KokoulinMuonNuclea << 
 65 {                                                  49 {
 66   if (isMaster) {                              <<  50   BuildCrossSectionTable();
 67     for(G4int i=0; i<MAXZMUN; ++i) {           << 
 68       delete theCrossSection[i];               << 
 69       theCrossSection[i] = 0;                  << 
 70     }                                          << 
 71   }                                            << 
 72 }                                                  51 }
 73                                                    52 
 74                                                <<  53 G4KokoulinMuonNuclearXS::~G4KokoulinMuonNuclearXS()
 75 void                                           << 
 76 G4KokoulinMuonNuclearXS::CrossSectionDescripti << 
 77 {                                                  54 {
 78     outFile << "G4KokoulinMuonNuclearXS provid <<  55   if (theCrossSectionTable) {
 79     << "cross section for mu- and mu+ interact <<  56     theCrossSectionTable->clearAndDestroy();
 80     << "R. Kokoulin's approximation of the Bor <<  57     delete theCrossSectionTable;
 81     << "differential cross section at high ene <<  58   }
 82     << "over the muon energy loss to get the t << 
 83     << "function of muon kinetic energy\n" ;   << 
 84 }                                                  59 }
 85                                                    60 
 86                                                << 
 87 G4bool                                             61 G4bool 
 88 G4KokoulinMuonNuclearXS::IsElementApplicable(c     62 G4KokoulinMuonNuclearXS::IsElementApplicable(const G4DynamicParticle*, 
 89                G4int, const G4Material*)           63                G4int, const G4Material*)
 90 {                                                  64 {
 91   return true;                                     65   return true;
 92 }                                                  66 }
 93                                                    67 
 94 void                                           << 
 95 G4KokoulinMuonNuclearXS::BuildPhysicsTable(con << 
 96 {                                              << 
 97   if(!isInitialized) {                         << 
 98     isInitialized = true;                      << 
 99     for(G4int i=0; i<MAXZMUN; ++i) {           << 
100       if(theCrossSection[i]) { return; }       << 
101     }                                          << 
102     isMaster = true;                           << 
103   }                                            << 
104   if(isMaster) { BuildCrossSectionTable(); }   << 
105 }                                              << 
106                                                    68 
107 void G4KokoulinMuonNuclearXS::BuildCrossSectio     69 void G4KokoulinMuonNuclearXS::BuildCrossSectionTable()
108 {                                                  70 {
109   G4double energy, A, Value;                   <<  71   G4double lowEdgeEnergy;
110   G4int Z;                                     <<  72   G4PhysicsLogVector* ptrVector;
111                                                    73 
112   std::size_t nEl = G4Element::GetNumberOfElem <<  74   G4int nEl = G4Element::GetNumberOfElements(); 
113   const G4ElementTable* theElementTable = G4El     75   const G4ElementTable* theElementTable = G4Element::GetElementTable();
114   G4NistManager* nistManager = G4NistManager:: << 
115                                                    76 
116   for (std::size_t j = 0; j < nEl; ++j) {      <<  77   theCrossSectionTable = new G4PhysicsTable(nEl);
117     Z = G4lrint((*theElementTable)[j]->GetZ()) << 
118                                                    78 
119     //AR-24Apr2018 Switch to treat transuranic <<  79   G4double AtomicNumber;
120     const G4bool isHeavyElementAllowed = true; <<  80   G4double AtomicWeight;
121                                                <<  81   G4double Value;
122     A  = nistManager->GetAtomicMassAmu(Z);     <<  82 
123     if(Z < MAXZMUN && !theCrossSection[Z]) {   <<  83   for (G4int j = 0; j < nEl; j++) {
124       theCrossSection[Z] = new G4PhysicsLogVec <<  84     ptrVector = new G4PhysicsLogVector(LowestKineticEnergy,
125               HighestKineticEnergy,            <<  85                                        HighestKineticEnergy, TotBin);
126               TotBin);                         <<  86     AtomicNumber = (*theElementTable)[j]->GetZ();
127       for (G4int i = 0; i <= TotBin; ++i) {    <<  87     AtomicWeight = (*theElementTable)[j]->GetA();
128   energy = theCrossSection[Z]->Energy(i);      <<  88 
129   Value = ComputeMicroscopicCrossSection(energ <<  89     for (G4int i = 0; i <= TotBin; ++i) {
130   theCrossSection[Z]->PutValue(i,Value);       <<  90       lowEdgeEnergy = ptrVector->Energy(i);
131       }                                        <<  91       Value = ComputeMicroscopicCrossSection(lowEdgeEnergy,
                                                   >>  92                                              AtomicNumber, AtomicWeight);
                                                   >>  93       ptrVector->PutValue(i,Value);
132     }                                              94     }
                                                   >>  95 
                                                   >>  96     theCrossSectionTable->insertAt(j, ptrVector);
                                                   >>  97   }
                                                   >>  98 
                                                   >>  99   // Build (Z,element) look-up table (for use in GetZandACrossSection) 
                                                   >> 100   for (G4int j = 0; j < nEl; j++) {
                                                   >> 101     G4int ZZ = G4int((*theElementTable)[j]->GetZ());
                                                   >> 102     zelMap[ZZ] = j;
133   }                                               103   }
134 }                                                 104 }
135                                                   105 
136 G4double G4KokoulinMuonNuclearXS::                106 G4double G4KokoulinMuonNuclearXS::
137 ComputeMicroscopicCrossSection(G4double Kineti << 107 ComputeMicroscopicCrossSection(G4double KineticEnergy,
                                                   >> 108                                G4double AtomicNumber, G4double AtomicWeight)
138 {                                                 109 {
139   // Calculate cross section (differential in     110   // Calculate cross section (differential in muon incident kinetic energy) by 
140   // integrating the double differential cross    111   // integrating the double differential cross section over the energy loss
141                                                   112 
142   static const G4double xgi[] =                << 113   const G4double xgi[] = {0.0199,0.1017,0.2372,0.4083,0.5917,0.7628,0.8983,0.9801};
143     {0.0199,0.1017,0.2372,0.4083,0.5917,0.7628 << 114   const G4double wgi[] = {0.0506,0.1112,0.1569,0.1813,0.1813,0.1569,0.1112,0.0506};
144   static const G4double wgi[] =                << 115   const G4double ak1 = 6.9;
145     {0.0506,0.1112,0.1569,0.1813,0.1813,0.1569 << 116   const G4double ak2 = 1.0;
146   static const G4double ak1 = 6.9;             << 
147   static const G4double ak2 = 1.0;             << 
148                                                   117 
149   G4double Mass = G4MuonMinus::MuonMinus()->Ge    118   G4double Mass = G4MuonMinus::MuonMinus()->GetPDGMass();
150                                                   119 
151   G4double CrossSection = 0.0;                    120   G4double CrossSection = 0.0;
                                                   >> 121   if (AtomicNumber < 1.) return CrossSection;
152   if (KineticEnergy <= CutFixed) return CrossS    122   if (KineticEnergy <= CutFixed) return CrossSection; 
153                                                   123 
154   G4double epmin = CutFixed;                      124   G4double epmin = CutFixed;
155   G4double epmax = KineticEnergy + Mass - 0.5*    125   G4double epmax = KineticEnergy + Mass - 0.5*proton_mass_c2;
156   if (epmax <= epmin) return CrossSection; //     126   if (epmax <= epmin) return CrossSection; // NaN bug correction
157                                                   127 
158   G4double aaa = G4Log(epmin);                 << 128   G4double aaa = std::log(epmin) ;
159   G4double bbb = G4Log(epmax);                 << 129   G4double bbb = std::log(epmax) ;
160   G4int kkk = std::max(1,G4int((bbb-aaa)/ak1 + << 130   G4int kkk = G4int((bbb-aaa)/ak1 +ak2) ;
161   G4double hhh = (bbb-aaa)/kkk ;                  131   G4double hhh = (bbb-aaa)/kkk ;
162   G4double epln;                                  132   G4double epln;
163   G4double ep;                                    133   G4double ep;
164   G4double x;                                     134   G4double x;
165                                                   135 
166   for (G4int l = 0; l < kkk; ++l) {            << 136   for (G4int l = 0; l < kkk; l++) {
167     x = aaa + hhh*l;                              137     x = aaa + hhh*l;
168     for (G4int ll = 0; ll < 8; ++ll) {         << 138     for (G4int ll = 0; ll < 8; ll++) {
169       epln=x+xgi[ll]*hhh;                         139       epln=x+xgi[ll]*hhh;
170       ep = G4Exp(epln);                        << 140       ep = std::exp(epln);
171       CrossSection +=                          << 141       CrossSection += ep*wgi[ll]*ComputeDDMicroscopicCrossSection(KineticEnergy,  
172   ep*wgi[ll]*ComputeDDMicroscopicCrossSection( << 142                                                 AtomicNumber, AtomicWeight, ep);
173     }                                             143     }
174   }                                               144   }
175                                                   145 
176   CrossSection *= hhh ;                           146   CrossSection *= hhh ;
177   if (CrossSection < 0.) { CrossSection = 0.;  << 147   if (CrossSection < 0.) CrossSection = 0.;
178   return CrossSection;                            148   return CrossSection;
179 }                                                 149 }
180                                                   150 
181 G4double G4KokoulinMuonNuclearXS::                151 G4double G4KokoulinMuonNuclearXS::
182 ComputeDDMicroscopicCrossSection(G4double Kine << 152 ComputeDDMicroscopicCrossSection(G4double KineticEnergy,
183                                  G4double A, G << 153                                  G4double, G4double AtomicWeight,
                                                   >> 154                                  G4double epsilon)
184 {                                                 155 {
185   // Calculate the double-differential microsc    156   // Calculate the double-differential microscopic cross section (in muon
186   // incident kinetic energy and energy loss)     157   // incident kinetic energy and energy loss) using the cross section formula
187   // of R.P. Kokoulin (18/01/98)                  158   // of R.P. Kokoulin (18/01/98)
188                                                   159 
189   static const G4double alam2 = 0.400*GeV*GeV; << 160   const G4double alam2 = 0.400*GeV*GeV;
190   static const G4double alam  = 0.632456*GeV;  << 161   const G4double alam  = 0.632456*GeV;
191   static const G4double coeffn = fine_structur << 162   const G4double coeffn = fine_structure_const/pi;   
192                                                   163 
193   G4double ParticleMass = G4MuonMinus::MuonMin    164   G4double ParticleMass = G4MuonMinus::MuonMinus()->GetPDGMass();
194   G4double TotalEnergy = KineticEnergy + Parti    165   G4double TotalEnergy = KineticEnergy + ParticleMass;
195                                                   166 
196   G4double DCrossSection = 0.;                    167   G4double DCrossSection = 0.;
197                                                   168 
198   if ((epsilon >= TotalEnergy - 0.5*proton_mas    169   if ((epsilon >= TotalEnergy - 0.5*proton_mass_c2) ||
199       (epsilon <= CutFixed) ) { return DCrossS << 170       (epsilon <= CutFixed) ) return DCrossSection;
200                                                   171 
201   G4double ep = epsilon/GeV;                      172   G4double ep = epsilon/GeV;
202   G4double aeff = 0.22*A+0.78*G4Exp(0.89*G4Log << 173   G4double a = AtomicWeight/(g/mole);
203   G4double sigph = (49.2+11.1*G4Log(ep)+151.8/ << 174   G4double aeff = 0.22*a+0.78*std::exp(0.89*std::log(a));       //shadowing 
                                                   >> 175   G4double sigph = (49.2+11.1*std::log(ep)+151.8/std::sqrt(ep))*microbarn; 
204                                                   176   
205   G4double v = epsilon/TotalEnergy;               177   G4double v = epsilon/TotalEnergy;
206   G4double v1 = 1.-v;                             178   G4double v1 = 1.-v;
207   G4double v2 = v*v;                              179   G4double v2 = v*v;
208   G4double mass2 = ParticleMass*ParticleMass;     180   G4double mass2 = ParticleMass*ParticleMass;
209                                                   181 
210   G4double up = TotalEnergy*TotalEnergy*v1/mas    182   G4double up = TotalEnergy*TotalEnergy*v1/mass2*(1.+mass2*v2/(alam2*v1));
211   G4double down = 1.+epsilon/alam*(1.+alam/(2.    183   G4double down = 1.+epsilon/alam*(1.+alam/(2.*proton_mass_c2)+epsilon/alam);
212                                                   184 
213   DCrossSection = coeffn*aeff*sigph/epsilon*      185   DCrossSection = coeffn*aeff*sigph/epsilon*
214                   (-v1+(v1+0.5*v2*(1.+2.*mass2 << 186                   (-v1+(v1+0.5*v2*(1.+2.*mass2/alam2))*std::log(up/down));
215                                                   187 
216   if (DCrossSection < 0.) { DCrossSection = 0. << 188   if (DCrossSection < 0.) DCrossSection = 0.; 
217   return DCrossSection;                           189   return DCrossSection;
218 }                                                 190 }
219                                                   191 
220 G4double G4KokoulinMuonNuclearXS::                192 G4double G4KokoulinMuonNuclearXS::
221 GetElementCrossSection(const G4DynamicParticle    193 GetElementCrossSection(const G4DynamicParticle* aPart,
222            G4int ZZ, const G4Material*)           194            G4int ZZ, const G4Material*)
223 {                                                 195 {
224   //AR-24Apr2018 Switch to treat transuranic e << 196   G4int j = zelMap[ZZ];
225   G4int Z = std::min(ZZ, 92);                  << 197   return (*theCrossSectionTable)[j]->Value(aPart->GetKineticEnergy());
226   return theCrossSection[Z]->LogVectorValue(aP << 
227               aPart->GetLogKineticEnergy());   << 
228 }                                                 198 }
229                                                   199 
230                                                   200