Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/cross_sections/src/G4KokoulinMuonNuclearXS.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/hadronic/cross_sections/src/G4KokoulinMuonNuclearXS.cc (Version 11.3.0) and /processes/hadronic/cross_sections/src/G4KokoulinMuonNuclearXS.cc (Version 11.0.p4)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 //                                                 26 //
 27 // Author:      D.H. Wright                        27 // Author:      D.H. Wright
 28 // Date:        1 February 2011                    28 // Date:        1 February 2011
 29 //                                                 29 //
 30 // Modified:                                       30 // Modified:
 31 //                                                 31 //
 32 // 19 Aug 2011, V.Ivanchenko move to new desig     32 // 19 Aug 2011, V.Ivanchenko move to new design and make x-section per element
 33                                                    33 
 34 // Description: use Kokoulin's parameterized c     34 // Description: use Kokoulin's parameterized calculation of virtual 
 35 //              photon production cross sectio     35 //              photon production cross section and conversion to
 36 //              real photons.                      36 //              real photons.
 37                                                    37 
 38 #include "G4KokoulinMuonNuclearXS.hh"              38 #include "G4KokoulinMuonNuclearXS.hh"
 39                                                    39 
 40 #include "G4PhysicalConstants.hh"                  40 #include "G4PhysicalConstants.hh"
 41 #include "G4SystemOfUnits.hh"                      41 #include "G4SystemOfUnits.hh"
 42 #include "G4PhysicsLogVector.hh"                   42 #include "G4PhysicsLogVector.hh"
 43 #include "G4PhysicsVector.hh"                      43 #include "G4PhysicsVector.hh"
 44 #include "G4MuonMinus.hh"                          44 #include "G4MuonMinus.hh"
 45 #include "G4MuonPlus.hh"                           45 #include "G4MuonPlus.hh"
 46 #include "G4NucleiProperties.hh"                   46 #include "G4NucleiProperties.hh"
 47 #include "G4NistManager.hh"                        47 #include "G4NistManager.hh"
 48 #include "G4Log.hh"                                48 #include "G4Log.hh"
 49 #include "G4Exp.hh"                                49 #include "G4Exp.hh"
 50                                                    50 
 51 // factory                                         51 // factory
 52 #include "G4CrossSectionFactory.hh"                52 #include "G4CrossSectionFactory.hh"
 53 //                                                 53 //
 54 G4_DECLARE_XS_FACTORY(G4KokoulinMuonNuclearXS)     54 G4_DECLARE_XS_FACTORY(G4KokoulinMuonNuclearXS);
 55                                                    55 
 56 G4PhysicsVector* G4KokoulinMuonNuclearXS::theC     56 G4PhysicsVector* G4KokoulinMuonNuclearXS::theCrossSection[] = {0};
 57                                                    57 
 58 G4KokoulinMuonNuclearXS::G4KokoulinMuonNuclear     58 G4KokoulinMuonNuclearXS::G4KokoulinMuonNuclearXS()
 59   :G4VCrossSectionDataSet(Default_Name()),         59   :G4VCrossSectionDataSet(Default_Name()), 
 60   LowestKineticEnergy(1*GeV), HighestKineticEn     60   LowestKineticEnergy(1*GeV), HighestKineticEnergy(1*PeV),
 61   TotBin(60), CutFixed(0.2*GeV), isInitialized     61   TotBin(60), CutFixed(0.2*GeV), isInitialized(false), isMaster(false)
 62 {}                                                 62 {}
 63                                                    63 
 64 G4KokoulinMuonNuclearXS::~G4KokoulinMuonNuclea     64 G4KokoulinMuonNuclearXS::~G4KokoulinMuonNuclearXS()
 65 {                                                  65 {
 66   if (isMaster) {                                  66   if (isMaster) {
 67     for(G4int i=0; i<MAXZMUN; ++i) {               67     for(G4int i=0; i<MAXZMUN; ++i) {
 68       delete theCrossSection[i];                   68       delete theCrossSection[i];
 69       theCrossSection[i] = 0;                      69       theCrossSection[i] = 0;
 70     }                                              70     }
 71   }                                                71   }
 72 }                                                  72 }
 73                                                    73 
 74                                                    74 
 75 void                                               75 void
 76 G4KokoulinMuonNuclearXS::CrossSectionDescripti     76 G4KokoulinMuonNuclearXS::CrossSectionDescription(std::ostream& outFile) const
 77 {                                                  77 {
 78     outFile << "G4KokoulinMuonNuclearXS provid     78     outFile << "G4KokoulinMuonNuclearXS provides the total inelastic\n"
 79     << "cross section for mu- and mu+ interact     79     << "cross section for mu- and mu+ interactions with nuclei.\n"
 80     << "R. Kokoulin's approximation of the Bor     80     << "R. Kokoulin's approximation of the Borog and Petrukhin double\n"
 81     << "differential cross section at high ene     81     << "differential cross section at high energy and low Q**2 is integrated\n"
 82     << "over the muon energy loss to get the t     82     << "over the muon energy loss to get the total cross section as a\n"
 83     << "function of muon kinetic energy\n" ;       83     << "function of muon kinetic energy\n" ;
 84 }                                                  84 }
 85                                                    85 
 86                                                    86 
 87 G4bool                                             87 G4bool 
 88 G4KokoulinMuonNuclearXS::IsElementApplicable(c     88 G4KokoulinMuonNuclearXS::IsElementApplicable(const G4DynamicParticle*, 
 89                G4int, const G4Material*)           89                G4int, const G4Material*)
 90 {                                                  90 {
 91   return true;                                     91   return true;
 92 }                                                  92 }
 93                                                    93 
 94 void                                               94 void 
 95 G4KokoulinMuonNuclearXS::BuildPhysicsTable(con     95 G4KokoulinMuonNuclearXS::BuildPhysicsTable(const G4ParticleDefinition&)
 96 {                                                  96 {
 97   if(!isInitialized) {                             97   if(!isInitialized) { 
 98     isInitialized = true;                          98     isInitialized = true; 
 99     for(G4int i=0; i<MAXZMUN; ++i) {               99     for(G4int i=0; i<MAXZMUN; ++i) {
100       if(theCrossSection[i]) { return; }          100       if(theCrossSection[i]) { return; }
101     }                                             101     }
102     isMaster = true;                              102     isMaster = true; 
103   }                                               103   }
104   if(isMaster) { BuildCrossSectionTable(); }      104   if(isMaster) { BuildCrossSectionTable(); }
105 }                                                 105 }
106                                                   106 
107 void G4KokoulinMuonNuclearXS::BuildCrossSectio    107 void G4KokoulinMuonNuclearXS::BuildCrossSectionTable()
108 {                                                 108 {
109   G4double energy, A, Value;                      109   G4double energy, A, Value;
110   G4int Z;                                        110   G4int Z;
111                                                   111 
112   std::size_t nEl = G4Element::GetNumberOfElem << 112   G4int nEl = G4Element::GetNumberOfElements(); 
113   const G4ElementTable* theElementTable = G4El    113   const G4ElementTable* theElementTable = G4Element::GetElementTable();
114   G4NistManager* nistManager = G4NistManager::    114   G4NistManager* nistManager = G4NistManager::Instance();
115                                                   115 
116   for (std::size_t j = 0; j < nEl; ++j) {      << 116   for (G4int j = 0; j < nEl; j++) {
117     Z = G4lrint((*theElementTable)[j]->GetZ())    117     Z = G4lrint((*theElementTable)[j]->GetZ());
118                                                   118 
119     //AR-24Apr2018 Switch to treat transuranic    119     //AR-24Apr2018 Switch to treat transuranic elements as uranium  
120     const G4bool isHeavyElementAllowed = true;    120     const G4bool isHeavyElementAllowed = true; if ( isHeavyElementAllowed && Z>92 ) Z=92;
121                                                   121 
122     A  = nistManager->GetAtomicMassAmu(Z);        122     A  = nistManager->GetAtomicMassAmu(Z);
123     if(Z < MAXZMUN && !theCrossSection[Z]) {      123     if(Z < MAXZMUN && !theCrossSection[Z]) {
124       theCrossSection[Z] = new G4PhysicsLogVec    124       theCrossSection[Z] = new G4PhysicsLogVector(LowestKineticEnergy,
125               HighestKineticEnergy,               125               HighestKineticEnergy, 
126               TotBin);                            126               TotBin);
127       for (G4int i = 0; i <= TotBin; ++i) {       127       for (G4int i = 0; i <= TotBin; ++i) {
128   energy = theCrossSection[Z]->Energy(i);         128   energy = theCrossSection[Z]->Energy(i);
129   Value = ComputeMicroscopicCrossSection(energ    129   Value = ComputeMicroscopicCrossSection(energy, A);
130   theCrossSection[Z]->PutValue(i,Value);          130   theCrossSection[Z]->PutValue(i,Value);
131       }                                           131       }
132     }                                             132     }
133   }                                               133   }
134 }                                                 134 }
135                                                   135 
136 G4double G4KokoulinMuonNuclearXS::                136 G4double G4KokoulinMuonNuclearXS::
137 ComputeMicroscopicCrossSection(G4double Kineti    137 ComputeMicroscopicCrossSection(G4double KineticEnergy, G4double A)
138 {                                                 138 {
139   // Calculate cross section (differential in     139   // Calculate cross section (differential in muon incident kinetic energy) by 
140   // integrating the double differential cross    140   // integrating the double differential cross section over the energy loss
141                                                   141 
142   static const G4double xgi[] =                   142   static const G4double xgi[] = 
143     {0.0199,0.1017,0.2372,0.4083,0.5917,0.7628    143     {0.0199,0.1017,0.2372,0.4083,0.5917,0.7628,0.8983,0.9801};
144   static const G4double wgi[] =                   144   static const G4double wgi[] = 
145     {0.0506,0.1112,0.1569,0.1813,0.1813,0.1569    145     {0.0506,0.1112,0.1569,0.1813,0.1813,0.1569,0.1112,0.0506};
146   static const G4double ak1 = 6.9;                146   static const G4double ak1 = 6.9;
147   static const G4double ak2 = 1.0;                147   static const G4double ak2 = 1.0;
148                                                   148 
149   G4double Mass = G4MuonMinus::MuonMinus()->Ge    149   G4double Mass = G4MuonMinus::MuonMinus()->GetPDGMass();
150                                                   150 
151   G4double CrossSection = 0.0;                    151   G4double CrossSection = 0.0;
152   if (KineticEnergy <= CutFixed) return CrossS    152   if (KineticEnergy <= CutFixed) return CrossSection; 
153                                                   153 
154   G4double epmin = CutFixed;                      154   G4double epmin = CutFixed;
155   G4double epmax = KineticEnergy + Mass - 0.5*    155   G4double epmax = KineticEnergy + Mass - 0.5*proton_mass_c2;
156   if (epmax <= epmin) return CrossSection; //     156   if (epmax <= epmin) return CrossSection; // NaN bug correction
157                                                   157 
158   G4double aaa = G4Log(epmin);                    158   G4double aaa = G4Log(epmin);
159   G4double bbb = G4Log(epmax);                    159   G4double bbb = G4Log(epmax);
160   G4int kkk = std::max(1,G4int((bbb-aaa)/ak1 +    160   G4int kkk = std::max(1,G4int((bbb-aaa)/ak1 +ak2));
161   G4double hhh = (bbb-aaa)/kkk ;                  161   G4double hhh = (bbb-aaa)/kkk ;
162   G4double epln;                                  162   G4double epln;
163   G4double ep;                                    163   G4double ep;
164   G4double x;                                     164   G4double x;
165                                                   165 
166   for (G4int l = 0; l < kkk; ++l) {               166   for (G4int l = 0; l < kkk; ++l) {
167     x = aaa + hhh*l;                              167     x = aaa + hhh*l;
168     for (G4int ll = 0; ll < 8; ++ll) {            168     for (G4int ll = 0; ll < 8; ++ll) {
169       epln=x+xgi[ll]*hhh;                         169       epln=x+xgi[ll]*hhh;
170       ep = G4Exp(epln);                           170       ep = G4Exp(epln);
171       CrossSection +=                             171       CrossSection += 
172   ep*wgi[ll]*ComputeDDMicroscopicCrossSection(    172   ep*wgi[ll]*ComputeDDMicroscopicCrossSection(KineticEnergy, 0, A, ep);
173     }                                             173     }
174   }                                               174   }
175                                                   175 
176   CrossSection *= hhh ;                           176   CrossSection *= hhh ;
177   if (CrossSection < 0.) { CrossSection = 0.;     177   if (CrossSection < 0.) { CrossSection = 0.; }
178   return CrossSection;                            178   return CrossSection;
179 }                                                 179 }
180                                                   180 
181 G4double G4KokoulinMuonNuclearXS::                181 G4double G4KokoulinMuonNuclearXS::
182 ComputeDDMicroscopicCrossSection(G4double Kine    182 ComputeDDMicroscopicCrossSection(G4double KineticEnergy, G4double,
183                                  G4double A, G    183                                  G4double A, G4double epsilon)
184 {                                                 184 {
185   // Calculate the double-differential microsc    185   // Calculate the double-differential microscopic cross section (in muon
186   // incident kinetic energy and energy loss)     186   // incident kinetic energy and energy loss) using the cross section formula
187   // of R.P. Kokoulin (18/01/98)                  187   // of R.P. Kokoulin (18/01/98)
188                                                   188 
189   static const G4double alam2 = 0.400*GeV*GeV;    189   static const G4double alam2 = 0.400*GeV*GeV;
190   static const G4double alam  = 0.632456*GeV;     190   static const G4double alam  = 0.632456*GeV;
191   static const G4double coeffn = fine_structur    191   static const G4double coeffn = fine_structure_const/pi;   
192                                                   192 
193   G4double ParticleMass = G4MuonMinus::MuonMin    193   G4double ParticleMass = G4MuonMinus::MuonMinus()->GetPDGMass();
194   G4double TotalEnergy = KineticEnergy + Parti    194   G4double TotalEnergy = KineticEnergy + ParticleMass;
195                                                   195 
196   G4double DCrossSection = 0.;                    196   G4double DCrossSection = 0.;
197                                                   197 
198   if ((epsilon >= TotalEnergy - 0.5*proton_mas    198   if ((epsilon >= TotalEnergy - 0.5*proton_mass_c2) ||
199       (epsilon <= CutFixed) ) { return DCrossS    199       (epsilon <= CutFixed) ) { return DCrossSection; }
200                                                   200 
201   G4double ep = epsilon/GeV;                      201   G4double ep = epsilon/GeV;
202   G4double aeff = 0.22*A+0.78*G4Exp(0.89*G4Log    202   G4double aeff = 0.22*A+0.78*G4Exp(0.89*G4Log(A));       //shadowing 
203   G4double sigph = (49.2+11.1*G4Log(ep)+151.8/    203   G4double sigph = (49.2+11.1*G4Log(ep)+151.8/std::sqrt(ep))*microbarn; 
204                                                   204   
205   G4double v = epsilon/TotalEnergy;               205   G4double v = epsilon/TotalEnergy;
206   G4double v1 = 1.-v;                             206   G4double v1 = 1.-v;
207   G4double v2 = v*v;                              207   G4double v2 = v*v;
208   G4double mass2 = ParticleMass*ParticleMass;     208   G4double mass2 = ParticleMass*ParticleMass;
209                                                   209 
210   G4double up = TotalEnergy*TotalEnergy*v1/mas    210   G4double up = TotalEnergy*TotalEnergy*v1/mass2*(1.+mass2*v2/(alam2*v1));
211   G4double down = 1.+epsilon/alam*(1.+alam/(2.    211   G4double down = 1.+epsilon/alam*(1.+alam/(2.*proton_mass_c2)+epsilon/alam);
212                                                   212 
213   DCrossSection = coeffn*aeff*sigph/epsilon*      213   DCrossSection = coeffn*aeff*sigph/epsilon*
214                   (-v1+(v1+0.5*v2*(1.+2.*mass2    214                   (-v1+(v1+0.5*v2*(1.+2.*mass2/alam2))*G4Log(up/down));
215                                                   215 
216   if (DCrossSection < 0.) { DCrossSection = 0.    216   if (DCrossSection < 0.) { DCrossSection = 0.; }
217   return DCrossSection;                           217   return DCrossSection;
218 }                                                 218 }
219                                                   219 
220 G4double G4KokoulinMuonNuclearXS::                220 G4double G4KokoulinMuonNuclearXS::
221 GetElementCrossSection(const G4DynamicParticle    221 GetElementCrossSection(const G4DynamicParticle* aPart,
222            G4int ZZ, const G4Material*)        << 222            G4int Z, const G4Material*)
223 {                                                 223 {
224   //AR-24Apr2018 Switch to treat transuranic e    224   //AR-24Apr2018 Switch to treat transuranic elements as uranium  
225   G4int Z = std::min(ZZ, 92);                  << 225   const G4bool isHeavyElementAllowed = true; if ( isHeavyElementAllowed && Z>92 ) Z=92;
226   return theCrossSection[Z]->LogVectorValue(aP << 226 
227               aPart->GetLogKineticEnergy());   << 227   return theCrossSection[Z]->Value(aPart->GetKineticEnergy());
228 }                                                 228 }
229                                                   229 
230                                                   230