Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // 27 // Author: D.H. Wright 27 // Author: D.H. Wright 28 // Date: 1 February 2011 28 // Date: 1 February 2011 29 // 29 // 30 // Modified: 30 // Modified: 31 // 31 // 32 // 19 Aug 2011, V.Ivanchenko move to new desig 32 // 19 Aug 2011, V.Ivanchenko move to new design and make x-section per element 33 33 34 // Description: use Kokoulin's parameterized c 34 // Description: use Kokoulin's parameterized calculation of virtual 35 // photon production cross sectio 35 // photon production cross section and conversion to 36 // real photons. 36 // real photons. 37 37 38 #include "G4KokoulinMuonNuclearXS.hh" 38 #include "G4KokoulinMuonNuclearXS.hh" 39 39 40 #include "G4PhysicalConstants.hh" 40 #include "G4PhysicalConstants.hh" 41 #include "G4SystemOfUnits.hh" 41 #include "G4SystemOfUnits.hh" 42 #include "G4PhysicsLogVector.hh" 42 #include "G4PhysicsLogVector.hh" 43 #include "G4PhysicsVector.hh" 43 #include "G4PhysicsVector.hh" 44 #include "G4MuonMinus.hh" 44 #include "G4MuonMinus.hh" 45 #include "G4MuonPlus.hh" 45 #include "G4MuonPlus.hh" 46 #include "G4NucleiProperties.hh" 46 #include "G4NucleiProperties.hh" 47 #include "G4NistManager.hh" 47 #include "G4NistManager.hh" 48 #include "G4Log.hh" 48 #include "G4Log.hh" 49 #include "G4Exp.hh" 49 #include "G4Exp.hh" 50 50 51 // factory 51 // factory 52 #include "G4CrossSectionFactory.hh" 52 #include "G4CrossSectionFactory.hh" 53 // 53 // 54 G4_DECLARE_XS_FACTORY(G4KokoulinMuonNuclearXS) 54 G4_DECLARE_XS_FACTORY(G4KokoulinMuonNuclearXS); 55 55 56 G4PhysicsVector* G4KokoulinMuonNuclearXS::theC 56 G4PhysicsVector* G4KokoulinMuonNuclearXS::theCrossSection[] = {0}; 57 57 58 G4KokoulinMuonNuclearXS::G4KokoulinMuonNuclear 58 G4KokoulinMuonNuclearXS::G4KokoulinMuonNuclearXS() 59 :G4VCrossSectionDataSet(Default_Name()), 59 :G4VCrossSectionDataSet(Default_Name()), 60 LowestKineticEnergy(1*GeV), HighestKineticEn 60 LowestKineticEnergy(1*GeV), HighestKineticEnergy(1*PeV), 61 TotBin(60), CutFixed(0.2*GeV), isInitialized 61 TotBin(60), CutFixed(0.2*GeV), isInitialized(false), isMaster(false) 62 {} 62 {} 63 63 64 G4KokoulinMuonNuclearXS::~G4KokoulinMuonNuclea 64 G4KokoulinMuonNuclearXS::~G4KokoulinMuonNuclearXS() 65 { 65 { 66 if (isMaster) { 66 if (isMaster) { 67 for(G4int i=0; i<MAXZMUN; ++i) { 67 for(G4int i=0; i<MAXZMUN; ++i) { 68 delete theCrossSection[i]; 68 delete theCrossSection[i]; 69 theCrossSection[i] = 0; 69 theCrossSection[i] = 0; 70 } 70 } 71 } 71 } 72 } 72 } 73 73 74 74 75 void 75 void 76 G4KokoulinMuonNuclearXS::CrossSectionDescripti 76 G4KokoulinMuonNuclearXS::CrossSectionDescription(std::ostream& outFile) const 77 { 77 { 78 outFile << "G4KokoulinMuonNuclearXS provid 78 outFile << "G4KokoulinMuonNuclearXS provides the total inelastic\n" 79 << "cross section for mu- and mu+ interact 79 << "cross section for mu- and mu+ interactions with nuclei.\n" 80 << "R. Kokoulin's approximation of the Bor 80 << "R. Kokoulin's approximation of the Borog and Petrukhin double\n" 81 << "differential cross section at high ene 81 << "differential cross section at high energy and low Q**2 is integrated\n" 82 << "over the muon energy loss to get the t 82 << "over the muon energy loss to get the total cross section as a\n" 83 << "function of muon kinetic energy\n" ; 83 << "function of muon kinetic energy\n" ; 84 } 84 } 85 85 86 86 87 G4bool 87 G4bool 88 G4KokoulinMuonNuclearXS::IsElementApplicable(c 88 G4KokoulinMuonNuclearXS::IsElementApplicable(const G4DynamicParticle*, 89 G4int, const G4Material*) 89 G4int, const G4Material*) 90 { 90 { 91 return true; 91 return true; 92 } 92 } 93 93 94 void 94 void 95 G4KokoulinMuonNuclearXS::BuildPhysicsTable(con 95 G4KokoulinMuonNuclearXS::BuildPhysicsTable(const G4ParticleDefinition&) 96 { 96 { 97 if(!isInitialized) { 97 if(!isInitialized) { 98 isInitialized = true; 98 isInitialized = true; 99 for(G4int i=0; i<MAXZMUN; ++i) { 99 for(G4int i=0; i<MAXZMUN; ++i) { 100 if(theCrossSection[i]) { return; } 100 if(theCrossSection[i]) { return; } 101 } 101 } 102 isMaster = true; 102 isMaster = true; 103 } 103 } 104 if(isMaster) { BuildCrossSectionTable(); } 104 if(isMaster) { BuildCrossSectionTable(); } 105 } 105 } 106 106 107 void G4KokoulinMuonNuclearXS::BuildCrossSectio 107 void G4KokoulinMuonNuclearXS::BuildCrossSectionTable() 108 { 108 { 109 G4double energy, A, Value; 109 G4double energy, A, Value; 110 G4int Z; 110 G4int Z; 111 111 112 std::size_t nEl = G4Element::GetNumberOfElem << 112 G4int nEl = G4Element::GetNumberOfElements(); 113 const G4ElementTable* theElementTable = G4El 113 const G4ElementTable* theElementTable = G4Element::GetElementTable(); 114 G4NistManager* nistManager = G4NistManager:: 114 G4NistManager* nistManager = G4NistManager::Instance(); 115 115 116 for (std::size_t j = 0; j < nEl; ++j) { << 116 for (G4int j = 0; j < nEl; j++) { 117 Z = G4lrint((*theElementTable)[j]->GetZ()) 117 Z = G4lrint((*theElementTable)[j]->GetZ()); 118 118 119 //AR-24Apr2018 Switch to treat transuranic 119 //AR-24Apr2018 Switch to treat transuranic elements as uranium 120 const G4bool isHeavyElementAllowed = true; 120 const G4bool isHeavyElementAllowed = true; if ( isHeavyElementAllowed && Z>92 ) Z=92; 121 121 122 A = nistManager->GetAtomicMassAmu(Z); 122 A = nistManager->GetAtomicMassAmu(Z); 123 if(Z < MAXZMUN && !theCrossSection[Z]) { 123 if(Z < MAXZMUN && !theCrossSection[Z]) { 124 theCrossSection[Z] = new G4PhysicsLogVec 124 theCrossSection[Z] = new G4PhysicsLogVector(LowestKineticEnergy, 125 HighestKineticEnergy, 125 HighestKineticEnergy, 126 TotBin); 126 TotBin); 127 for (G4int i = 0; i <= TotBin; ++i) { 127 for (G4int i = 0; i <= TotBin; ++i) { 128 energy = theCrossSection[Z]->Energy(i); 128 energy = theCrossSection[Z]->Energy(i); 129 Value = ComputeMicroscopicCrossSection(energ 129 Value = ComputeMicroscopicCrossSection(energy, A); 130 theCrossSection[Z]->PutValue(i,Value); 130 theCrossSection[Z]->PutValue(i,Value); 131 } 131 } 132 } 132 } 133 } 133 } 134 } 134 } 135 135 136 G4double G4KokoulinMuonNuclearXS:: 136 G4double G4KokoulinMuonNuclearXS:: 137 ComputeMicroscopicCrossSection(G4double Kineti 137 ComputeMicroscopicCrossSection(G4double KineticEnergy, G4double A) 138 { 138 { 139 // Calculate cross section (differential in 139 // Calculate cross section (differential in muon incident kinetic energy) by 140 // integrating the double differential cross 140 // integrating the double differential cross section over the energy loss 141 141 142 static const G4double xgi[] = 142 static const G4double xgi[] = 143 {0.0199,0.1017,0.2372,0.4083,0.5917,0.7628 143 {0.0199,0.1017,0.2372,0.4083,0.5917,0.7628,0.8983,0.9801}; 144 static const G4double wgi[] = 144 static const G4double wgi[] = 145 {0.0506,0.1112,0.1569,0.1813,0.1813,0.1569 145 {0.0506,0.1112,0.1569,0.1813,0.1813,0.1569,0.1112,0.0506}; 146 static const G4double ak1 = 6.9; 146 static const G4double ak1 = 6.9; 147 static const G4double ak2 = 1.0; 147 static const G4double ak2 = 1.0; 148 148 149 G4double Mass = G4MuonMinus::MuonMinus()->Ge 149 G4double Mass = G4MuonMinus::MuonMinus()->GetPDGMass(); 150 150 151 G4double CrossSection = 0.0; 151 G4double CrossSection = 0.0; 152 if (KineticEnergy <= CutFixed) return CrossS 152 if (KineticEnergy <= CutFixed) return CrossSection; 153 153 154 G4double epmin = CutFixed; 154 G4double epmin = CutFixed; 155 G4double epmax = KineticEnergy + Mass - 0.5* 155 G4double epmax = KineticEnergy + Mass - 0.5*proton_mass_c2; 156 if (epmax <= epmin) return CrossSection; // 156 if (epmax <= epmin) return CrossSection; // NaN bug correction 157 157 158 G4double aaa = G4Log(epmin); 158 G4double aaa = G4Log(epmin); 159 G4double bbb = G4Log(epmax); 159 G4double bbb = G4Log(epmax); 160 G4int kkk = std::max(1,G4int((bbb-aaa)/ak1 + 160 G4int kkk = std::max(1,G4int((bbb-aaa)/ak1 +ak2)); 161 G4double hhh = (bbb-aaa)/kkk ; 161 G4double hhh = (bbb-aaa)/kkk ; 162 G4double epln; 162 G4double epln; 163 G4double ep; 163 G4double ep; 164 G4double x; 164 G4double x; 165 165 166 for (G4int l = 0; l < kkk; ++l) { 166 for (G4int l = 0; l < kkk; ++l) { 167 x = aaa + hhh*l; 167 x = aaa + hhh*l; 168 for (G4int ll = 0; ll < 8; ++ll) { 168 for (G4int ll = 0; ll < 8; ++ll) { 169 epln=x+xgi[ll]*hhh; 169 epln=x+xgi[ll]*hhh; 170 ep = G4Exp(epln); 170 ep = G4Exp(epln); 171 CrossSection += 171 CrossSection += 172 ep*wgi[ll]*ComputeDDMicroscopicCrossSection( 172 ep*wgi[ll]*ComputeDDMicroscopicCrossSection(KineticEnergy, 0, A, ep); 173 } 173 } 174 } 174 } 175 175 176 CrossSection *= hhh ; 176 CrossSection *= hhh ; 177 if (CrossSection < 0.) { CrossSection = 0.; 177 if (CrossSection < 0.) { CrossSection = 0.; } 178 return CrossSection; 178 return CrossSection; 179 } 179 } 180 180 181 G4double G4KokoulinMuonNuclearXS:: 181 G4double G4KokoulinMuonNuclearXS:: 182 ComputeDDMicroscopicCrossSection(G4double Kine 182 ComputeDDMicroscopicCrossSection(G4double KineticEnergy, G4double, 183 G4double A, G 183 G4double A, G4double epsilon) 184 { 184 { 185 // Calculate the double-differential microsc 185 // Calculate the double-differential microscopic cross section (in muon 186 // incident kinetic energy and energy loss) 186 // incident kinetic energy and energy loss) using the cross section formula 187 // of R.P. Kokoulin (18/01/98) 187 // of R.P. Kokoulin (18/01/98) 188 188 189 static const G4double alam2 = 0.400*GeV*GeV; 189 static const G4double alam2 = 0.400*GeV*GeV; 190 static const G4double alam = 0.632456*GeV; 190 static const G4double alam = 0.632456*GeV; 191 static const G4double coeffn = fine_structur 191 static const G4double coeffn = fine_structure_const/pi; 192 192 193 G4double ParticleMass = G4MuonMinus::MuonMin 193 G4double ParticleMass = G4MuonMinus::MuonMinus()->GetPDGMass(); 194 G4double TotalEnergy = KineticEnergy + Parti 194 G4double TotalEnergy = KineticEnergy + ParticleMass; 195 195 196 G4double DCrossSection = 0.; 196 G4double DCrossSection = 0.; 197 197 198 if ((epsilon >= TotalEnergy - 0.5*proton_mas 198 if ((epsilon >= TotalEnergy - 0.5*proton_mass_c2) || 199 (epsilon <= CutFixed) ) { return DCrossS 199 (epsilon <= CutFixed) ) { return DCrossSection; } 200 200 201 G4double ep = epsilon/GeV; 201 G4double ep = epsilon/GeV; 202 G4double aeff = 0.22*A+0.78*G4Exp(0.89*G4Log 202 G4double aeff = 0.22*A+0.78*G4Exp(0.89*G4Log(A)); //shadowing 203 G4double sigph = (49.2+11.1*G4Log(ep)+151.8/ 203 G4double sigph = (49.2+11.1*G4Log(ep)+151.8/std::sqrt(ep))*microbarn; 204 204 205 G4double v = epsilon/TotalEnergy; 205 G4double v = epsilon/TotalEnergy; 206 G4double v1 = 1.-v; 206 G4double v1 = 1.-v; 207 G4double v2 = v*v; 207 G4double v2 = v*v; 208 G4double mass2 = ParticleMass*ParticleMass; 208 G4double mass2 = ParticleMass*ParticleMass; 209 209 210 G4double up = TotalEnergy*TotalEnergy*v1/mas 210 G4double up = TotalEnergy*TotalEnergy*v1/mass2*(1.+mass2*v2/(alam2*v1)); 211 G4double down = 1.+epsilon/alam*(1.+alam/(2. 211 G4double down = 1.+epsilon/alam*(1.+alam/(2.*proton_mass_c2)+epsilon/alam); 212 212 213 DCrossSection = coeffn*aeff*sigph/epsilon* 213 DCrossSection = coeffn*aeff*sigph/epsilon* 214 (-v1+(v1+0.5*v2*(1.+2.*mass2 214 (-v1+(v1+0.5*v2*(1.+2.*mass2/alam2))*G4Log(up/down)); 215 215 216 if (DCrossSection < 0.) { DCrossSection = 0. 216 if (DCrossSection < 0.) { DCrossSection = 0.; } 217 return DCrossSection; 217 return DCrossSection; 218 } 218 } 219 219 220 G4double G4KokoulinMuonNuclearXS:: 220 G4double G4KokoulinMuonNuclearXS:: 221 GetElementCrossSection(const G4DynamicParticle 221 GetElementCrossSection(const G4DynamicParticle* aPart, 222 G4int ZZ, const G4Material*) << 222 G4int Z, const G4Material*) 223 { 223 { 224 //AR-24Apr2018 Switch to treat transuranic e 224 //AR-24Apr2018 Switch to treat transuranic elements as uranium 225 G4int Z = std::min(ZZ, 92); << 225 const G4bool isHeavyElementAllowed = true; if ( isHeavyElementAllowed && Z>92 ) Z=92; 226 return theCrossSection[Z]->LogVectorValue(aP << 226 227 aPart->GetLogKineticEnergy()); << 227 return theCrossSection[Z]->Value(aPart->GetKineticEnergy()); 228 } 228 } 229 229 230 230