Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: $ 26 // 27 // 27 // Author: D.H. Wright 28 // Author: D.H. Wright 28 // Date: 1 February 2011 29 // Date: 1 February 2011 29 // 30 // 30 // Modified: 31 // Modified: 31 // 32 // 32 // 19 Aug 2011, V.Ivanchenko move to new desig 33 // 19 Aug 2011, V.Ivanchenko move to new design and make x-section per element 33 34 34 // Description: use Kokoulin's parameterized c 35 // Description: use Kokoulin's parameterized calculation of virtual 35 // photon production cross sectio 36 // photon production cross section and conversion to 36 // real photons. 37 // real photons. 37 38 38 #include "G4KokoulinMuonNuclearXS.hh" 39 #include "G4KokoulinMuonNuclearXS.hh" 39 40 40 #include "G4PhysicalConstants.hh" 41 #include "G4PhysicalConstants.hh" 41 #include "G4SystemOfUnits.hh" 42 #include "G4SystemOfUnits.hh" 42 #include "G4PhysicsLogVector.hh" 43 #include "G4PhysicsLogVector.hh" 43 #include "G4PhysicsVector.hh" 44 #include "G4PhysicsVector.hh" 44 #include "G4MuonMinus.hh" 45 #include "G4MuonMinus.hh" 45 #include "G4MuonPlus.hh" 46 #include "G4MuonPlus.hh" 46 #include "G4NucleiProperties.hh" 47 #include "G4NucleiProperties.hh" 47 #include "G4NistManager.hh" 48 #include "G4NistManager.hh" 48 #include "G4Log.hh" 49 #include "G4Log.hh" 49 #include "G4Exp.hh" 50 #include "G4Exp.hh" 50 51 51 // factory << 52 #include "G4CrossSectionFactory.hh" << 53 // << 54 G4_DECLARE_XS_FACTORY(G4KokoulinMuonNuclearXS) << 55 << 56 G4PhysicsVector* G4KokoulinMuonNuclearXS::theC 52 G4PhysicsVector* G4KokoulinMuonNuclearXS::theCrossSection[] = {0}; 57 53 58 G4KokoulinMuonNuclearXS::G4KokoulinMuonNuclear 54 G4KokoulinMuonNuclearXS::G4KokoulinMuonNuclearXS() 59 :G4VCrossSectionDataSet(Default_Name()), << 55 :G4VCrossSectionDataSet("KokoulinMuonNuclearXS"), 60 LowestKineticEnergy(1*GeV), HighestKineticEn 56 LowestKineticEnergy(1*GeV), HighestKineticEnergy(1*PeV), 61 TotBin(60), CutFixed(0.2*GeV), isInitialized 57 TotBin(60), CutFixed(0.2*GeV), isInitialized(false), isMaster(false) 62 {} 58 {} 63 59 64 G4KokoulinMuonNuclearXS::~G4KokoulinMuonNuclea 60 G4KokoulinMuonNuclearXS::~G4KokoulinMuonNuclearXS() 65 { 61 { 66 if (isMaster) { 62 if (isMaster) { 67 for(G4int i=0; i<MAXZMUN; ++i) { 63 for(G4int i=0; i<MAXZMUN; ++i) { 68 delete theCrossSection[i]; 64 delete theCrossSection[i]; 69 theCrossSection[i] = 0; 65 theCrossSection[i] = 0; 70 } 66 } 71 } 67 } 72 } 68 } 73 69 74 << 75 void << 76 G4KokoulinMuonNuclearXS::CrossSectionDescripti << 77 { << 78 outFile << "G4KokoulinMuonNuclearXS provid << 79 << "cross section for mu- and mu+ interact << 80 << "R. Kokoulin's approximation of the Bor << 81 << "differential cross section at high ene << 82 << "over the muon energy loss to get the t << 83 << "function of muon kinetic energy\n" ; << 84 } << 85 << 86 << 87 G4bool 70 G4bool 88 G4KokoulinMuonNuclearXS::IsElementApplicable(c 71 G4KokoulinMuonNuclearXS::IsElementApplicable(const G4DynamicParticle*, 89 G4int, const G4Material*) 72 G4int, const G4Material*) 90 { 73 { 91 return true; 74 return true; 92 } 75 } 93 76 94 void 77 void 95 G4KokoulinMuonNuclearXS::BuildPhysicsTable(con 78 G4KokoulinMuonNuclearXS::BuildPhysicsTable(const G4ParticleDefinition&) 96 { 79 { 97 if(!isInitialized) { 80 if(!isInitialized) { 98 isInitialized = true; << 99 for(G4int i=0; i<MAXZMUN; ++i) { << 100 if(theCrossSection[i]) { return; } << 101 } << 102 isMaster = true; 81 isMaster = true; >> 82 isInitialized = true; 103 } 83 } 104 if(isMaster) { BuildCrossSectionTable(); } 84 if(isMaster) { BuildCrossSectionTable(); } 105 } 85 } 106 86 107 void G4KokoulinMuonNuclearXS::BuildCrossSectio 87 void G4KokoulinMuonNuclearXS::BuildCrossSectionTable() 108 { 88 { 109 G4double energy, A, Value; 89 G4double energy, A, Value; 110 G4int Z; 90 G4int Z; 111 91 112 std::size_t nEl = G4Element::GetNumberOfElem << 92 G4int nEl = G4Element::GetNumberOfElements(); 113 const G4ElementTable* theElementTable = G4El 93 const G4ElementTable* theElementTable = G4Element::GetElementTable(); 114 G4NistManager* nistManager = G4NistManager:: 94 G4NistManager* nistManager = G4NistManager::Instance(); 115 95 116 for (std::size_t j = 0; j < nEl; ++j) { << 96 for (G4int j = 0; j < nEl; j++) { 117 Z = G4lrint((*theElementTable)[j]->GetZ()) 97 Z = G4lrint((*theElementTable)[j]->GetZ()); 118 << 119 //AR-24Apr2018 Switch to treat transuranic << 120 const G4bool isHeavyElementAllowed = true; << 121 << 122 A = nistManager->GetAtomicMassAmu(Z); 98 A = nistManager->GetAtomicMassAmu(Z); 123 if(Z < MAXZMUN && !theCrossSection[Z]) { 99 if(Z < MAXZMUN && !theCrossSection[Z]) { 124 theCrossSection[Z] = new G4PhysicsLogVec 100 theCrossSection[Z] = new G4PhysicsLogVector(LowestKineticEnergy, 125 HighestKineticEnergy, 101 HighestKineticEnergy, 126 TotBin); 102 TotBin); 127 for (G4int i = 0; i <= TotBin; ++i) { 103 for (G4int i = 0; i <= TotBin; ++i) { 128 energy = theCrossSection[Z]->Energy(i); 104 energy = theCrossSection[Z]->Energy(i); 129 Value = ComputeMicroscopicCrossSection(energ 105 Value = ComputeMicroscopicCrossSection(energy, A); 130 theCrossSection[Z]->PutValue(i,Value); 106 theCrossSection[Z]->PutValue(i,Value); 131 } 107 } 132 } 108 } 133 } 109 } 134 } 110 } 135 111 136 G4double G4KokoulinMuonNuclearXS:: 112 G4double G4KokoulinMuonNuclearXS:: 137 ComputeMicroscopicCrossSection(G4double Kineti 113 ComputeMicroscopicCrossSection(G4double KineticEnergy, G4double A) 138 { 114 { 139 // Calculate cross section (differential in 115 // Calculate cross section (differential in muon incident kinetic energy) by 140 // integrating the double differential cross 116 // integrating the double differential cross section over the energy loss 141 117 142 static const G4double xgi[] = 118 static const G4double xgi[] = 143 {0.0199,0.1017,0.2372,0.4083,0.5917,0.7628 119 {0.0199,0.1017,0.2372,0.4083,0.5917,0.7628,0.8983,0.9801}; 144 static const G4double wgi[] = 120 static const G4double wgi[] = 145 {0.0506,0.1112,0.1569,0.1813,0.1813,0.1569 121 {0.0506,0.1112,0.1569,0.1813,0.1813,0.1569,0.1112,0.0506}; 146 static const G4double ak1 = 6.9; 122 static const G4double ak1 = 6.9; 147 static const G4double ak2 = 1.0; 123 static const G4double ak2 = 1.0; 148 124 149 G4double Mass = G4MuonMinus::MuonMinus()->Ge 125 G4double Mass = G4MuonMinus::MuonMinus()->GetPDGMass(); 150 126 151 G4double CrossSection = 0.0; 127 G4double CrossSection = 0.0; 152 if (KineticEnergy <= CutFixed) return CrossS 128 if (KineticEnergy <= CutFixed) return CrossSection; 153 129 154 G4double epmin = CutFixed; 130 G4double epmin = CutFixed; 155 G4double epmax = KineticEnergy + Mass - 0.5* 131 G4double epmax = KineticEnergy + Mass - 0.5*proton_mass_c2; 156 if (epmax <= epmin) return CrossSection; // 132 if (epmax <= epmin) return CrossSection; // NaN bug correction 157 133 158 G4double aaa = G4Log(epmin); 134 G4double aaa = G4Log(epmin); 159 G4double bbb = G4Log(epmax); 135 G4double bbb = G4Log(epmax); 160 G4int kkk = std::max(1,G4int((bbb-aaa)/ak1 + 136 G4int kkk = std::max(1,G4int((bbb-aaa)/ak1 +ak2)); 161 G4double hhh = (bbb-aaa)/kkk ; 137 G4double hhh = (bbb-aaa)/kkk ; 162 G4double epln; 138 G4double epln; 163 G4double ep; 139 G4double ep; 164 G4double x; 140 G4double x; 165 141 166 for (G4int l = 0; l < kkk; ++l) { 142 for (G4int l = 0; l < kkk; ++l) { 167 x = aaa + hhh*l; 143 x = aaa + hhh*l; 168 for (G4int ll = 0; ll < 8; ++ll) { 144 for (G4int ll = 0; ll < 8; ++ll) { 169 epln=x+xgi[ll]*hhh; 145 epln=x+xgi[ll]*hhh; 170 ep = G4Exp(epln); 146 ep = G4Exp(epln); 171 CrossSection += 147 CrossSection += 172 ep*wgi[ll]*ComputeDDMicroscopicCrossSection( 148 ep*wgi[ll]*ComputeDDMicroscopicCrossSection(KineticEnergy, 0, A, ep); 173 } 149 } 174 } 150 } 175 151 176 CrossSection *= hhh ; 152 CrossSection *= hhh ; 177 if (CrossSection < 0.) { CrossSection = 0.; 153 if (CrossSection < 0.) { CrossSection = 0.; } 178 return CrossSection; 154 return CrossSection; 179 } 155 } 180 156 181 G4double G4KokoulinMuonNuclearXS:: 157 G4double G4KokoulinMuonNuclearXS:: 182 ComputeDDMicroscopicCrossSection(G4double Kine 158 ComputeDDMicroscopicCrossSection(G4double KineticEnergy, G4double, 183 G4double A, G 159 G4double A, G4double epsilon) 184 { 160 { 185 // Calculate the double-differential microsc 161 // Calculate the double-differential microscopic cross section (in muon 186 // incident kinetic energy and energy loss) 162 // incident kinetic energy and energy loss) using the cross section formula 187 // of R.P. Kokoulin (18/01/98) 163 // of R.P. Kokoulin (18/01/98) 188 164 189 static const G4double alam2 = 0.400*GeV*GeV; 165 static const G4double alam2 = 0.400*GeV*GeV; 190 static const G4double alam = 0.632456*GeV; 166 static const G4double alam = 0.632456*GeV; 191 static const G4double coeffn = fine_structur 167 static const G4double coeffn = fine_structure_const/pi; 192 168 193 G4double ParticleMass = G4MuonMinus::MuonMin 169 G4double ParticleMass = G4MuonMinus::MuonMinus()->GetPDGMass(); 194 G4double TotalEnergy = KineticEnergy + Parti 170 G4double TotalEnergy = KineticEnergy + ParticleMass; 195 171 196 G4double DCrossSection = 0.; 172 G4double DCrossSection = 0.; 197 173 198 if ((epsilon >= TotalEnergy - 0.5*proton_mas 174 if ((epsilon >= TotalEnergy - 0.5*proton_mass_c2) || 199 (epsilon <= CutFixed) ) { return DCrossS 175 (epsilon <= CutFixed) ) { return DCrossSection; } 200 176 201 G4double ep = epsilon/GeV; 177 G4double ep = epsilon/GeV; 202 G4double aeff = 0.22*A+0.78*G4Exp(0.89*G4Log 178 G4double aeff = 0.22*A+0.78*G4Exp(0.89*G4Log(A)); //shadowing 203 G4double sigph = (49.2+11.1*G4Log(ep)+151.8/ 179 G4double sigph = (49.2+11.1*G4Log(ep)+151.8/std::sqrt(ep))*microbarn; 204 180 205 G4double v = epsilon/TotalEnergy; 181 G4double v = epsilon/TotalEnergy; 206 G4double v1 = 1.-v; 182 G4double v1 = 1.-v; 207 G4double v2 = v*v; 183 G4double v2 = v*v; 208 G4double mass2 = ParticleMass*ParticleMass; 184 G4double mass2 = ParticleMass*ParticleMass; 209 185 210 G4double up = TotalEnergy*TotalEnergy*v1/mas 186 G4double up = TotalEnergy*TotalEnergy*v1/mass2*(1.+mass2*v2/(alam2*v1)); 211 G4double down = 1.+epsilon/alam*(1.+alam/(2. 187 G4double down = 1.+epsilon/alam*(1.+alam/(2.*proton_mass_c2)+epsilon/alam); 212 188 213 DCrossSection = coeffn*aeff*sigph/epsilon* 189 DCrossSection = coeffn*aeff*sigph/epsilon* 214 (-v1+(v1+0.5*v2*(1.+2.*mass2 190 (-v1+(v1+0.5*v2*(1.+2.*mass2/alam2))*G4Log(up/down)); 215 191 216 if (DCrossSection < 0.) { DCrossSection = 0. 192 if (DCrossSection < 0.) { DCrossSection = 0.; } 217 return DCrossSection; 193 return DCrossSection; 218 } 194 } 219 195 220 G4double G4KokoulinMuonNuclearXS:: 196 G4double G4KokoulinMuonNuclearXS:: 221 GetElementCrossSection(const G4DynamicParticle 197 GetElementCrossSection(const G4DynamicParticle* aPart, 222 G4int ZZ, const G4Material*) << 198 G4int Z, const G4Material*) 223 { 199 { 224 //AR-24Apr2018 Switch to treat transuranic e << 200 return theCrossSection[Z]->Value(aPart->GetKineticEnergy()); 225 G4int Z = std::min(ZZ, 92); << 226 return theCrossSection[Z]->LogVectorValue(aP << 227 aPart->GetLogKineticEnergy()); << 228 } 201 } 229 202 230 203