Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 24.11.08 V. Grichine - first implementation 26 // 24.11.08 V. Grichine - first implementation 27 // 27 // 28 // 04.09.18 V. Ivantchenko Major revision of i 28 // 04.09.18 V. Ivantchenko Major revision of interfaces and implementation 29 // 27.05.19 V. Ivantchenko Removed obsolete me 29 // 27.05.19 V. Ivantchenko Removed obsolete methods and members 30 30 31 #include "G4ComponentGGNuclNuclXsc.hh" 31 #include "G4ComponentGGNuclNuclXsc.hh" 32 32 33 #include "G4PhysicalConstants.hh" 33 #include "G4PhysicalConstants.hh" 34 #include "G4SystemOfUnits.hh" 34 #include "G4SystemOfUnits.hh" 35 #include "G4NucleiProperties.hh" 35 #include "G4NucleiProperties.hh" 36 #include "G4ParticleDefinition.hh" 36 #include "G4ParticleDefinition.hh" 37 #include "G4HadronNucleonXsc.hh" 37 #include "G4HadronNucleonXsc.hh" 38 #include "G4ComponentGGHadronNucleusXsc.hh" 38 #include "G4ComponentGGHadronNucleusXsc.hh" 39 #include "G4NuclearRadii.hh" 39 #include "G4NuclearRadii.hh" 40 #include "G4Pow.hh" 40 #include "G4Pow.hh" 41 41 42 namespace << 42 static const G4double inve = 1./CLHEP::eplus; 43 { << 44 const G4double inve = 1./CLHEP::eplus; << 45 } << 46 43 47 G4ComponentGGNuclNuclXsc::G4ComponentGGNuclNuc 44 G4ComponentGGNuclNuclXsc::G4ComponentGGNuclNuclXsc() 48 : G4VComponentCrossSection("Glauber-Gribov Nu << 45 : G4VComponentCrossSection("Glauber-Gribov Nucl-nucl"), >> 46 fTotalXsc(0.0), fElasticXsc(0.0), fInelasticXsc(0.0), fProductionXsc(0.0), >> 47 fDiffractionXsc(0.0), fEnergy(0.0), fParticle(nullptr), fZ(0), fA(0) 49 { 48 { 50 theProton = G4Proton::Proton(); 49 theProton = G4Proton::Proton(); 51 theNeutron = G4Neutron::Neutron(); 50 theNeutron = G4Neutron::Neutron(); 52 theLambda = G4Lambda::Lambda(); 51 theLambda = G4Lambda::Lambda(); 53 fHNXsc = new G4HadronNucleonXsc(); 52 fHNXsc = new G4HadronNucleonXsc(); 54 fHadrNucl = new G4ComponentGGHadronNucleusXs 53 fHadrNucl = new G4ComponentGGHadronNucleusXsc(); 55 } 54 } 56 55 57 G4ComponentGGNuclNuclXsc::~G4ComponentGGNuclNu 56 G4ComponentGGNuclNuclXsc::~G4ComponentGGNuclNuclXsc() 58 { 57 { 59 delete fHNXsc; 58 delete fHNXsc; 60 } 59 } 61 60 62 ////////////////////////////////////////////// 61 ////////////////////////////////////////////////////////////////////// 63 62 64 G4double G4ComponentGGNuclNuclXsc::GetTotalEle 63 G4double G4ComponentGGNuclNuclXsc::GetTotalElementCrossSection( 65 const G4ParticleDefinition* aParticle 64 const G4ParticleDefinition* aParticle, G4double kinEnergy, 66 G4int Z, G4double A) 65 G4int Z, G4double A) 67 { 66 { 68 ComputeCrossSections(aParticle, kinEnergy, Z 67 ComputeCrossSections(aParticle, kinEnergy, Z, G4lrint(A)); 69 return fTotalXsc; 68 return fTotalXsc; 70 } 69 } 71 70 72 ////////////////////////////////////////////// 71 //////////////////////////////////////////////////////////////////// 73 72 74 G4double G4ComponentGGNuclNuclXsc::GetTotalIso 73 G4double G4ComponentGGNuclNuclXsc::GetTotalIsotopeCrossSection( 75 const G4ParticleDefinition* aParticle 74 const G4ParticleDefinition* aParticle, G4double kinEnergy, 76 G4int Z, G4int A) 75 G4int Z, G4int A) 77 { 76 { 78 ComputeCrossSections(aParticle, kinEnergy, Z 77 ComputeCrossSections(aParticle, kinEnergy, Z, A); 79 return fTotalXsc; 78 return fTotalXsc; 80 } 79 } 81 80 82 ////////////////////////////////////////////// 81 ///////////////////////////////////////////////////////////////////// 83 82 84 G4double G4ComponentGGNuclNuclXsc::GetInelasti 83 G4double G4ComponentGGNuclNuclXsc::GetInelasticElementCrossSection( 85 const G4ParticleDefinition* aParticle 84 const G4ParticleDefinition* aParticle, G4double kinEnergy, 86 G4int Z, G4double A) 85 G4int Z, G4double A) 87 { 86 { 88 ComputeCrossSections(aParticle, kinEnergy, Z 87 ComputeCrossSections(aParticle, kinEnergy, Z, G4lrint(A)); 89 return fInelasticXsc; 88 return fInelasticXsc; 90 } 89 } 91 90 92 ////////////////////////////////////////////// 91 //////////////////////////////////////////////////////////////////// 93 92 94 G4double G4ComponentGGNuclNuclXsc::GetInelasti 93 G4double G4ComponentGGNuclNuclXsc::GetInelasticIsotopeCrossSection( 95 const G4ParticleDefinition* aParticle 94 const G4ParticleDefinition* aParticle, G4double kinEnergy, 96 G4int Z, G4int A) 95 G4int Z, G4int A) 97 { 96 { 98 ComputeCrossSections(aParticle, kinEnergy, Z 97 ComputeCrossSections(aParticle, kinEnergy, Z, A); 99 return fInelasticXsc; 98 return fInelasticXsc; 100 } 99 } 101 100 102 ////////////////////////////////////////////// 101 ////////////////////////////////////////////////////////////////// 103 102 104 G4double G4ComponentGGNuclNuclXsc::GetElasticE 103 G4double G4ComponentGGNuclNuclXsc::GetElasticElementCrossSection( 105 const G4ParticleDefinition* aParticle 104 const G4ParticleDefinition* aParticle, G4double kinEnergy, 106 G4int Z, G4double A) 105 G4int Z, G4double A) 107 { 106 { 108 ComputeCrossSections(aParticle, kinEnergy, Z 107 ComputeCrossSections(aParticle, kinEnergy, Z, G4lrint(A)); 109 return fElasticXsc; 108 return fElasticXsc; 110 } 109 } 111 110 112 ////////////////////////////////////////////// 111 /////////////////////////////////////////////////////////////////// 113 112 114 G4double G4ComponentGGNuclNuclXsc::GetElasticI 113 G4double G4ComponentGGNuclNuclXsc::GetElasticIsotopeCrossSection( 115 const G4ParticleDefinition* aParticle 114 const G4ParticleDefinition* aParticle, G4double kinEnergy, 116 G4int Z, G4int A) 115 G4int Z, G4int A) 117 { 116 { 118 ComputeCrossSections(aParticle, kinEnergy, Z 117 ComputeCrossSections(aParticle, kinEnergy, Z, A); 119 return fElasticXsc; 118 return fElasticXsc; 120 } 119 } 121 120 122 ////////////////////////////////////////////// 121 //////////////////////////////////////////////////////////////// 123 122 124 G4double G4ComponentGGNuclNuclXsc::ComputeQuas 123 G4double G4ComponentGGNuclNuclXsc::ComputeQuasiElasticRatio( 125 const G4ParticleDefinition* aParticle 124 const G4ParticleDefinition* aParticle, G4double kinEnergy, 126 G4int Z, G4int A) 125 G4int Z, G4int A) 127 { 126 { 128 ComputeCrossSections(aParticle, kinEnergy, Z 127 ComputeCrossSections(aParticle, kinEnergy, Z, A); 129 return (fInelasticXsc > fProductionXsc) 128 return (fInelasticXsc > fProductionXsc) 130 ? (fInelasticXsc - fProductionXsc)/fInelas 129 ? (fInelasticXsc - fProductionXsc)/fInelasticXsc : 0.0; 131 } 130 } 132 131 133 ////////////////////////////////////////////// 132 ////////////////////////////////////////////////////////////////////// 134 133 135 void G4ComponentGGNuclNuclXsc::BuildPhysicsTab 134 void G4ComponentGGNuclNuclXsc::BuildPhysicsTable(const G4ParticleDefinition&) 136 {} 135 {} 137 136 138 ////////////////////////////////////////////// 137 ////////////////////////////////////////////////////////////////////// 139 138 140 void G4ComponentGGNuclNuclXsc::DumpPhysicsTabl 139 void G4ComponentGGNuclNuclXsc::DumpPhysicsTable(const G4ParticleDefinition&) 141 { 140 { 142 G4cout << "G4ComponentGGNuclNuclXsc: uses Gl 141 G4cout << "G4ComponentGGNuclNuclXsc: uses Glauber-Gribov formula" << G4endl; 143 } 142 } 144 143 145 ////////////////////////////////////////////// 144 ////////////////////////////////////////////////////////////////////// 146 145 147 void G4ComponentGGNuclNuclXsc::Description(std 146 void G4ComponentGGNuclNuclXsc::Description(std::ostream& outFile) const 148 { 147 { 149 outFile << "G4ComponentGGNuclNuclXsc calcula 148 outFile << "G4ComponentGGNuclNuclXsc calculates total, inelastic and\n" 150 << "elastic cross sections for nucle 149 << "elastic cross sections for nucleus-nucleus collisions using\n" 151 << "the Glauber model with Gribov co 150 << "the Glauber model with Gribov corrections. It is valid for\n" 152 << "all incident energies above 100 151 << "all incident energies above 100 keV./n" 153 << "For the hydrogen target G4HadronNucleo 152 << "For the hydrogen target G4HadronNucleonXsc class is used.\n"; 154 } 153 } 155 154 156 ////////////////////////////////////////////// 155 /////////////////////////////////////////////////////////////////////////////// 157 // 156 // 158 // Calculates total and inelastic Xsc, derives 157 // Calculates total and inelastic Xsc, derives elastic as total - inelastic 159 // accordong to Glauber model with Gribov corr 158 // accordong to Glauber model with Gribov correction calculated in the dipole 160 // approximation on light cone. Gaussian densi 159 // approximation on light cone. Gaussian density of point-like nucleons helps 161 // to calculate rest integrals of the model. [ 160 // to calculate rest integrals of the model. [1] B.Z. Kopeliovich, 162 // nucl-th/0306044 + simplification above 161 // nucl-th/0306044 + simplification above 163 162 164 void G4ComponentGGNuclNuclXsc::ComputeCrossSec 163 void G4ComponentGGNuclNuclXsc::ComputeCrossSections( 165 const G4ParticleDefinition* aParticle, G4 164 const G4ParticleDefinition* aParticle, G4double kinEnergy, 166 G4int Z, G4int A) 165 G4int Z, G4int A) 167 { 166 { 168 // check cache 167 // check cache 169 if(aParticle == fParticle && fZ == Z && fA = 168 if(aParticle == fParticle && fZ == Z && fA == A && kinEnergy == fEnergy) 170 { return; } 169 { return; } 171 fParticle = aParticle; 170 fParticle = aParticle; 172 fZ = Z; 171 fZ = Z; 173 fA = A; 172 fA = A; 174 fEnergy = kinEnergy; 173 fEnergy = kinEnergy; 175 G4Pow* pG4Pow = G4Pow::GetInstance(); << 174 G4Pow* pG4Pow=G4Pow::GetInstance(); 176 175 177 G4int pZ = G4lrint(aParticle->GetPDGCharge() 176 G4int pZ = G4lrint(aParticle->GetPDGCharge()*inve); 178 G4int pA = aParticle->GetBaryonNumber(); 177 G4int pA = aParticle->GetBaryonNumber(); 179 G4int pL = aParticle->GetNumberOfLambdasInHy 178 G4int pL = aParticle->GetNumberOfLambdasInHypernucleus(); 180 G4bool pHN = aParticle->IsHypernucleus(); 179 G4bool pHN = aParticle->IsHypernucleus(); 181 G4double cHN(0.88); 180 G4double cHN(0.88); 182 181 183 // hydrogen 182 // hydrogen 184 if(1 == Z && 1 == A) { 183 if(1 == Z && 1 == A) { 185 G4double e = kinEnergy*CLHEP::proton_mass_ 184 G4double e = kinEnergy*CLHEP::proton_mass_c2/aParticle->GetPDGMass(); 186 fHadrNucl->ComputeCrossSections( theProton 185 fHadrNucl->ComputeCrossSections( theProton, e, pZ, pA, pL ); 187 fTotalXsc = fHadrNucl->GetTotalGlauberGrib 186 fTotalXsc = fHadrNucl->GetTotalGlauberGribovXsc(); 188 fElasticXsc = fHadrNucl->GetElasticGlauber 187 fElasticXsc = fHadrNucl->GetElasticGlauberGribovXsc(); 189 fInelasticXsc = fHadrNucl->GetInelasticGla 188 fInelasticXsc = fHadrNucl->GetInelasticGlauberGribovXsc(); 190 fProductionXsc = fHadrNucl->GetProductionG 189 fProductionXsc = fHadrNucl->GetProductionGlauberGribovXsc(); 191 fDiffractionXsc = fHadrNucl->GetDiffractio 190 fDiffractionXsc = fHadrNucl->GetDiffractionGlauberGribovXsc(); 192 return; 191 return; 193 } 192 } 194 static const G4double cofInelastic = 2.4; 193 static const G4double cofInelastic = 2.4; 195 static const G4double cofTotal = 2.0; 194 static const G4double cofTotal = 2.0; 196 195 197 G4double pTkin = kinEnergy/(G4double)pA; 196 G4double pTkin = kinEnergy/(G4double)pA; 198 197 199 G4int pN = pA - pZ; 198 G4int pN = pA - pZ; 200 G4int tN = A - Z; 199 G4int tN = A - Z; 201 200 202 G4double tR = G4NuclearRadii::Radius(Z, A); 201 G4double tR = G4NuclearRadii::Radius(Z, A); 203 G4double pR = G4NuclearRadii::Radius(pZ, pA) 202 G4double pR = G4NuclearRadii::Radius(pZ, pA); 204 203 205 if(pHN) << 204 if(pHN) pR *= std::sqrt( pG4Pow->Z23( pA - pL ) + cHN*pG4Pow->Z23( pL ) )/pG4Pow->Z13(pA); 206 pR *= std::sqrt( pG4Pow->Z23( pA - pL ) + << 207 205 208 G4double cB = ComputeCoulombBarier(aParticle 206 G4double cB = ComputeCoulombBarier(aParticle, kinEnergy, Z, A, pR, tR); 209 207 210 if ( cB > 0. ) 208 if ( cB > 0. ) 211 { 209 { 212 G4double sigma = (pZ*Z+pN*tN)*fHNXsc->Hadr 210 G4double sigma = (pZ*Z+pN*tN)*fHNXsc->HadronNucleonXscNS(theProton, theProton, pTkin); 213 if(pHN) sigma += pL*A*fHNXsc->HadronNucleo 211 if(pHN) sigma += pL*A*fHNXsc->HadronNucleonXsc(theLambda, theProton, pTkin); 214 G4double ppInXsc = fHNXsc->GetInelasticHad 212 G4double ppInXsc = fHNXsc->GetInelasticHadronNucleonXsc(); 215 213 216 sigma += (pZ*tN+pN*Z)*fHNXsc->HadronNucleo 214 sigma += (pZ*tN+pN*Z)*fHNXsc->HadronNucleonXscNS(theNeutron, theProton, pTkin); 217 G4double npInXsc = fHNXsc->GetInelasticHad 215 G4double npInXsc = fHNXsc->GetInelasticHadronNucleonXsc(); 218 216 >> 217 // G4cout<<"ppInXsc = "<<ppInXsc/millibarn<<"; npInXsc = "<<npInXsc/millibarn<<G4endl; >> 218 // G4cout<<"npTotXsc = "<<fHNXsc->GetTotalHadronNucleonXsc()/millibarn<<"; npElXsc = " >> 219 // <<fHNXsc->GetElasticHadronNucleonXsc()/millibarn<<G4endl; >> 220 219 G4double nucleusSquare = cofTotal*CLHEP::p 221 G4double nucleusSquare = cofTotal*CLHEP::pi*( pR*pR + tR*tR ); // basically 2piRR 220 222 221 G4double ratio= sigma/nucleusSquare; 223 G4double ratio= sigma/nucleusSquare; 222 fTotalXsc = nucleusSquare*G4Log( 1. + 224 fTotalXsc = nucleusSquare*G4Log( 1. + ratio )*cB; 223 fInelasticXsc = nucleusSquare*G4Log( 1. + 225 fInelasticXsc = nucleusSquare*G4Log( 1. + cofInelastic*ratio )*cB/cofInelastic; 224 fElasticXsc = std::max(fTotalXsc - fInel 226 fElasticXsc = std::max(fTotalXsc - fInelasticXsc, 0.0); 225 227 226 G4double difratio = ratio/(1.+ratio); 228 G4double difratio = ratio/(1.+ratio); 227 fDiffractionXsc = 0.5*nucleusSquare*( difr 229 fDiffractionXsc = 0.5*nucleusSquare*( difratio - G4Log( 1. + difratio ) ); 228 230 229 G4double xratio= ((pZ*Z+pN*tN)*ppInXsc + ( 231 G4double xratio= ((pZ*Z+pN*tN)*ppInXsc + (pZ*tN+pN*Z)*npInXsc)/nucleusSquare; 230 fProductionXsc = nucleusSquare*G4Log( 1. + 232 fProductionXsc = nucleusSquare*G4Log( 1. + cofInelastic*xratio)*cB/cofInelastic; 231 fProductionXsc = std::min(fProductionXsc, 233 fProductionXsc = std::min(fProductionXsc, fInelasticXsc); 232 } 234 } 233 else 235 else 234 { 236 { 235 fInelasticXsc = fTotalXsc = fElasticXsc = << 237 fInelasticXsc = 0.; >> 238 fTotalXsc = 0.; >> 239 fElasticXsc = 0.; >> 240 fProductionXsc = 0.; >> 241 fDiffractionXsc= 0.; 236 } 242 } 237 } 243 } 238 244 239 ////////////////////////////////////////////// 245 /////////////////////////////////////////////////////////////////////////////// 240 246 241 G4double G4ComponentGGNuclNuclXsc::ComputeCoul 247 G4double G4ComponentGGNuclNuclXsc::ComputeCoulombBarier( 242 const G4ParticleDefinitio 248 const G4ParticleDefinition* aParticle, 243 G4double pTkin, G4int Z, G4int A, 249 G4double pTkin, G4int Z, G4int A, 244 G4double pR, G4double tR) 250 G4double pR, G4double tR) 245 { 251 { 246 G4int pZ = aParticle->GetPDGCharge()*inve; 252 G4int pZ = aParticle->GetPDGCharge()*inve; 247 G4double pM = aParticle->GetPDGMass(); 253 G4double pM = aParticle->GetPDGMass(); 248 G4double tM = G4NucleiProperties::GetNuclear 254 G4double tM = G4NucleiProperties::GetNuclearMass(A, Z); 249 G4double pElab = pTkin + pM; 255 G4double pElab = pTkin + pM; 250 G4double totEcm = std::sqrt(pM*pM + tM*tM + 256 G4double totEcm = std::sqrt(pM*pM + tM*tM + 2.*pElab*tM); 251 G4double totTcm = totEcm - pM -tM; 257 G4double totTcm = totEcm - pM -tM; 252 258 253 // 0.5 defines shape of Cross section correc << 259 static const G4double qfact = CLHEP::fine_structure_const*CLHEP::hbarc; 254 // at cB = totTcm it become zero << 260 G4double bC = qfact*pZ*Z*0.5/(pR + tR); 255 static const G4double qfact = 0.5*CLHEP::elm << 261 256 G4double bC = qfact*pZ*Z/(pR + tR); << 262 G4double ratio = (totTcm <= bC ) ? 0. : 1. - bC/totTcm; 257 << 263 // G4cout<<"G4ComponentGGNuclNuclXsc::ComputeCoulombBarier= "<<ratio 258 G4double ratio = (totTcm <= bC) ? 0. : 1. - << 264 // <<"; pTkin(GeV)= " <<pTkin/GeV<<"; 259 << 265 // " pPlab = "<<pPlab/GeV<<"; bC = "<<bC/GeV<<"; pTcm = " 260 #ifdef G4VERBOSE << 266 // <<pTcm/GeV<<G4endl; 261 if (GetVerboseLevel() > 1) { << 262 G4cout << "G4ComponentGGNuclNuclXsc::Compu << 263 << "; pTkin(GeV)=" << pTkin/CLHEP::MeV << 264 << " totTcm= " << totTcm/CLHEP::MeV<< "; << 265 << G4endl; << 266 } << 267 #endif << 268 return ratio; 267 return ratio; 269 } 268 } 270 269 271 ////////////////////////////////////////////// 270 ////////////////////////////////////////////////////////////////////////// 272 // 271 // 273 // Return single-diffraction/inelastic cross-s 272 // Return single-diffraction/inelastic cross-section ratio 274 273 275 G4double G4ComponentGGNuclNuclXsc::GetRatioSD( 274 G4double G4ComponentGGNuclNuclXsc::GetRatioSD( 276 const G4DynamicParticle* aParticle, G 275 const G4DynamicParticle* aParticle, G4double tA, G4double tZ) 277 { 276 { 278 ComputeCrossSections(aParticle->GetDefinitio 277 ComputeCrossSections(aParticle->GetDefinition(), 279 aParticle->GetKineticEn 278 aParticle->GetKineticEnergy(), 280 G4lrint(tZ), G4lrint(tA)); 279 G4lrint(tZ), G4lrint(tA)); 281 280 282 return (fInelasticXsc > 0.0) ? fDiffractionX 281 return (fInelasticXsc > 0.0) ? fDiffractionXsc/fInelasticXsc : 0.0; 283 } 282 } 284 283 285 ////////////////////////////////////////////// 284 ////////////////////////////////////////////////////////////////////////// 286 // 285 // 287 // Return quasi-elastic/inelastic cross-sectio 286 // Return quasi-elastic/inelastic cross-section ratio 288 287 289 G4double G4ComponentGGNuclNuclXsc::GetRatioQE( 288 G4double G4ComponentGGNuclNuclXsc::GetRatioQE( 290 const G4DynamicParticle* aParticle, G 289 const G4DynamicParticle* aParticle, G4double tA, G4double tZ) 291 { 290 { 292 ComputeCrossSections(aParticle->GetDefinitio 291 ComputeCrossSections(aParticle->GetDefinition(), 293 aParticle->GetKineticEn 292 aParticle->GetKineticEnergy(), 294 G4lrint(tZ), G4lrint(tA)); 293 G4lrint(tZ), G4lrint(tA)); 295 294 296 return (fInelasticXsc > 0.0) ? 1.0 - fProduc 295 return (fInelasticXsc > 0.0) ? 1.0 - fProductionXsc/fInelasticXsc : 0.0; 297 } 296 } 298 297 299 ////////////////////////////////////////////// 298 /////////////////////////////////////////////////////////////////////////////// 300 299