Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // author: V. Grichine 26 // author: V. Grichine 27 // 27 // 28 // 25.04.12 V. Grichine - first implementation 28 // 25.04.12 V. Grichine - first implementation 29 // << 30 // 04.09.18 V. Ivantchenko Major revision of i << 31 // 01.10.18 V. Grichine strange hyperon xsc << 32 // 27.05.19 V. Ivantchenko Removed obsolete me << 33 // << 34 29 35 #include "G4ComponentGGHadronNucleusXsc.hh" 30 #include "G4ComponentGGHadronNucleusXsc.hh" 36 31 37 #include "G4PhysicalConstants.hh" 32 #include "G4PhysicalConstants.hh" 38 #include "G4SystemOfUnits.hh" 33 #include "G4SystemOfUnits.hh" 39 #include "G4ParticleTable.hh" 34 #include "G4ParticleTable.hh" 40 #include "G4IonTable.hh" 35 #include "G4IonTable.hh" 41 #include "G4ParticleDefinition.hh" 36 #include "G4ParticleDefinition.hh" 42 #include "G4DynamicParticle.hh" 37 #include "G4DynamicParticle.hh" 43 #include "G4HadronNucleonXsc.hh" 38 #include "G4HadronNucleonXsc.hh" 44 #include "G4Log.hh" 39 #include "G4Log.hh" 45 #include "G4Lambda.hh" << 40 #include "G4Exp.hh" 46 #include "G4Pow.hh" 41 #include "G4Pow.hh" 47 #include "G4NuclearRadii.hh" << 48 42 49 ////////////////////////////////////////////// 43 ////////////////////////////////////////////////////////////////////////////// 50 // 44 // 51 45 52 G4ComponentGGHadronNucleusXsc::G4ComponentGGHa 46 G4ComponentGGHadronNucleusXsc::G4ComponentGGHadronNucleusXsc() 53 : G4VComponentCrossSection(Default_Name()), 47 : G4VComponentCrossSection(Default_Name()), 54 fTotalXsc(0.0),fElasticXsc(0.0),fInelasticX << 48 // fUpperLimit(100000*GeV), 55 fDiffractionXsc(0.0),fAxsc2piR2(0.0),fModel << 49 fLowerLimit(10.*MeV),// fLowerLimit(3*GeV), 56 fParticle(nullptr),fZ(0),fA(0), fL(0) << 50 fRadiusConst(1.08*fermi), // 1.1, 1.3 ? >> 51 fTotalXsc(0.0), fElasticXsc(0.0), fInelasticXsc(0.0), fProductionXsc(0.0), >> 52 fDiffractionXsc(0.0) >> 53 // , fHadronNucleonXsc(0.0) 57 { 54 { 58 theGamma = G4Gamma::Gamma(); 55 theGamma = G4Gamma::Gamma(); 59 theProton = G4Proton::Proton(); 56 theProton = G4Proton::Proton(); 60 theNeutron = G4Neutron::Neutron(); 57 theNeutron = G4Neutron::Neutron(); 61 theAProton = G4AntiProton::AntiProton(); 58 theAProton = G4AntiProton::AntiProton(); 62 theANeutron = G4AntiNeutron::AntiNeutron(); 59 theANeutron = G4AntiNeutron::AntiNeutron(); 63 thePiPlus = G4PionPlus::PionPlus(); 60 thePiPlus = G4PionPlus::PionPlus(); 64 thePiMinus = G4PionMinus::PionMinus(); 61 thePiMinus = G4PionMinus::PionMinus(); >> 62 thePiZero = G4PionZero::PionZero(); 65 theKPlus = G4KaonPlus::KaonPlus(); 63 theKPlus = G4KaonPlus::KaonPlus(); 66 theKMinus = G4KaonMinus::KaonMinus(); 64 theKMinus = G4KaonMinus::KaonMinus(); 67 theK0S = G4KaonZeroShort::KaonZeroShort 65 theK0S = G4KaonZeroShort::KaonZeroShort(); 68 theK0L = G4KaonZeroLong::KaonZeroLong() 66 theK0L = G4KaonZeroLong::KaonZeroLong(); 69 theLambda = G4Lambda::Lambda(); << 67 theL = G4Lambda::Lambda(); 70 << 68 theAntiL = G4AntiLambda::AntiLambda(); >> 69 theSPlus = G4SigmaPlus::SigmaPlus(); >> 70 theASPlus = G4AntiSigmaPlus::AntiSigmaPlus(); >> 71 theSMinus = G4SigmaMinus::SigmaMinus(); >> 72 theASMinus = G4AntiSigmaMinus::AntiSigmaMinus(); >> 73 theS0 = G4SigmaZero::SigmaZero(); >> 74 theAS0 = G4AntiSigmaZero::AntiSigmaZero(); >> 75 theXiMinus = G4XiMinus::XiMinus(); >> 76 theXi0 = G4XiZero::XiZero(); >> 77 theAXiMinus = G4AntiXiMinus::AntiXiMinus(); >> 78 theAXi0 = G4AntiXiZero::AntiXiZero(); >> 79 theOmega = G4OmegaMinus::OmegaMinus(); >> 80 theAOmega = G4AntiOmegaMinus::AntiOmegaMinus(); >> 81 theD = G4Deuteron::Deuteron(); >> 82 theT = G4Triton::Triton(); >> 83 theA = G4Alpha::Alpha(); >> 84 theHe3 = G4He3::He3(); >> 85 71 hnXsc = new G4HadronNucleonXsc(); 86 hnXsc = new G4HadronNucleonXsc(); 72 } 87 } 73 88 74 ////////////////////////////////////////////// << 89 /////////////////////////////////////////////////////////////////////////////////////// >> 90 // >> 91 // 75 92 76 G4ComponentGGHadronNucleusXsc::~G4ComponentGGH 93 G4ComponentGGHadronNucleusXsc::~G4ComponentGGHadronNucleusXsc() 77 { 94 { 78 delete hnXsc; << 95 if (hnXsc) delete hnXsc; 79 } 96 } 80 97 81 ////////////////////////////////////////////// << 98 //////////////////////////////////////////////////////////////////// >> 99 >> 100 G4double G4ComponentGGHadronNucleusXsc::GetTotalIsotopeCrossSection(const G4ParticleDefinition* aParticle, >> 101 G4double kinEnergy, >> 102 G4int Z, G4int A) >> 103 { >> 104 G4DynamicParticle* aDP = new G4DynamicParticle(aParticle,G4ParticleMomentum(1.,0.,0.), >> 105 kinEnergy); >> 106 fTotalXsc = GetIsoCrossSection(aDP, Z, A); >> 107 delete aDP; 82 108 83 G4double G4ComponentGGHadronNucleusXsc::GetTot << 84 const G4ParticleDefinition << 85 G4double kinEnergy, G4int << 86 { << 87 ComputeCrossSections(aParticle, kinEnergy, Z << 88 return fTotalXsc; 109 return fTotalXsc; 89 } 110 } 90 111 91 ////////////////////////////////////////////// << 112 ////////////////////////////////////////////////////////////////////// >> 113 >> 114 G4double G4ComponentGGHadronNucleusXsc::GetTotalElementCrossSection(const G4ParticleDefinition* aParticle, >> 115 G4double kinEnergy, >> 116 G4int Z, G4double A) >> 117 { >> 118 G4DynamicParticle* aDP = new G4DynamicParticle(aParticle,G4ParticleMomentum(1.,0.,0.), >> 119 kinEnergy); >> 120 fTotalXsc = GetIsoCrossSection(aDP, Z, G4int(A)); >> 121 delete aDP; 92 122 93 G4double G4ComponentGGHadronNucleusXsc::GetTot << 94 const G4ParticleDefinition << 95 G4double kinEnergy, G4int Z, G4int A) << 96 { << 97 ComputeCrossSections(aParticle, kinEnergy, Z << 98 return fTotalXsc; 123 return fTotalXsc; 99 } 124 } 100 125 101 ////////////////////////////////////////////// << 126 //////////////////////////////////////////////////////////////////// >> 127 >> 128 G4double G4ComponentGGHadronNucleusXsc::GetInelasticIsotopeCrossSection(const G4ParticleDefinition* aParticle, >> 129 G4double kinEnergy, >> 130 G4int Z, G4int A) >> 131 { >> 132 G4DynamicParticle* aDP = new G4DynamicParticle(aParticle,G4ParticleMomentum(1.,0.,0.), >> 133 kinEnergy); >> 134 fTotalXsc = GetIsoCrossSection(aDP, Z, A); >> 135 delete aDP; 102 136 103 G4double G4ComponentGGHadronNucleusXsc::GetIne << 104 const G4ParticleDefinition << 105 G4double kinEnergy, G4int Z, G4double << 106 { << 107 ComputeCrossSections(aParticle, kinEnergy, Z << 108 return fInelasticXsc; 137 return fInelasticXsc; 109 } 138 } 110 139 111 ////////////////////////////////////////////// 140 //////////////////////////////////////////////////////////////////// 112 141 113 G4double G4ComponentGGHadronNucleusXsc::GetIne << 142 G4double G4ComponentGGHadronNucleusXsc::GetProductionIsotopeCrossSection(const G4ParticleDefinition* aParticle, 114 const G4ParticleDefinition << 143 G4double kinEnergy, 115 G4double kinEnergy, G4int Z, G4int A) << 144 G4int Z, G4int A) 116 { << 145 { 117 ComputeCrossSections(aParticle, kinEnergy, Z << 146 G4DynamicParticle* aDP = new G4DynamicParticle(aParticle,G4ParticleMomentum(1.,0.,0.), >> 147 kinEnergy); >> 148 fTotalXsc = GetIsoCrossSection(aDP, Z, A); >> 149 delete aDP; >> 150 >> 151 return fProductionXsc; >> 152 } >> 153 >> 154 ///////////////////////////////////////////////////////////////////// >> 155 >> 156 G4double G4ComponentGGHadronNucleusXsc::GetInelasticElementCrossSection(const G4ParticleDefinition* aParticle, >> 157 G4double kinEnergy, >> 158 G4int Z, G4double A) >> 159 { >> 160 G4DynamicParticle* aDP = new G4DynamicParticle(aParticle,G4ParticleMomentum(1.,0.,0.), >> 161 kinEnergy); >> 162 fTotalXsc = GetIsoCrossSection(aDP, Z, G4int(A)); >> 163 delete aDP; >> 164 118 return fInelasticXsc; 165 return fInelasticXsc; 119 } 166 } 120 167 >> 168 ///////////////////////////////////////////////////////////////////// >> 169 >> 170 G4double G4ComponentGGHadronNucleusXsc::GetProductionElementCrossSection(const G4ParticleDefinition* aParticle, >> 171 G4double kinEnergy, >> 172 G4int Z, G4double A) >> 173 { >> 174 G4DynamicParticle* aDP = new G4DynamicParticle(aParticle,G4ParticleMomentum(1.,0.,0.), >> 175 kinEnergy); >> 176 fTotalXsc = GetIsoCrossSection(aDP, Z, G4int(A)); >> 177 delete aDP; >> 178 >> 179 return fProductionXsc; >> 180 } >> 181 121 ////////////////////////////////////////////// 182 ////////////////////////////////////////////////////////////////// 122 183 123 G4double G4ComponentGGHadronNucleusXsc::GetEla << 184 G4double G4ComponentGGHadronNucleusXsc::GetElasticElementCrossSection(const G4ParticleDefinition* aParticle, 124 const G4ParticleDefinition << 185 G4double kinEnergy, 125 G4double kinEnergy, G4int Z, G4double << 186 G4int Z, G4double A) 126 { << 187 { 127 ComputeCrossSections(aParticle, kinEnergy, Z << 188 G4DynamicParticle* aDP = new G4DynamicParticle(aParticle,G4ParticleMomentum(1.,0.,0.), >> 189 kinEnergy); >> 190 fTotalXsc = GetIsoCrossSection(aDP, Z, G4int(A)); >> 191 delete aDP; >> 192 128 return fElasticXsc; 193 return fElasticXsc; 129 } 194 } 130 195 131 ////////////////////////////////////////////// 196 /////////////////////////////////////////////////////////////////// 132 197 133 G4double G4ComponentGGHadronNucleusXsc::GetEla << 198 G4double G4ComponentGGHadronNucleusXsc::GetElasticIsotopeCrossSection(const G4ParticleDefinition* aParticle, 134 const G4ParticleDefinition << 199 G4double kinEnergy, 135 G4double kinEnergy, G4int Z, G4int A) << 200 G4int Z, G4int A) 136 { << 201 { 137 ComputeCrossSections(aParticle, kinEnergy, Z << 202 G4DynamicParticle* aDP = new G4DynamicParticle(aParticle,G4ParticleMomentum(1.,0.,0.), >> 203 kinEnergy); >> 204 fTotalXsc = GetIsoCrossSection(aDP, Z, A); >> 205 delete aDP; >> 206 138 return fElasticXsc; 207 return fElasticXsc; 139 } 208 } 140 209 141 ////////////////////////////////////////////// 210 //////////////////////////////////////////////////////////////// 142 211 143 G4double G4ComponentGGHadronNucleusXsc::Comput << 212 G4double G4ComponentGGHadronNucleusXsc::ComputeQuasiElasticRatio(const G4ParticleDefinition* aParticle, 144 const G4ParticleDefinition << 213 G4double kinEnergy, 145 G4double kinEnergy, G4int Z, G4int A) << 214 G4int Z, G4int A) 146 { << 215 { 147 ComputeCrossSections(aParticle, kinEnergy, Z << 216 G4DynamicParticle* aDP = new G4DynamicParticle(aParticle,G4ParticleMomentum(1.,0.,0.), 148 G4double ratio = (fInelasticXsc > 0.) << 217 kinEnergy); 149 ? (fInelasticXsc - fProductionXsc)/fInelas << 218 fTotalXsc = GetIsoCrossSection(aDP, Z, A); 150 ratio = std::max(ratio, 0.); << 219 delete aDP; >> 220 G4double ratio = 0.; >> 221 >> 222 if(fInelasticXsc > 0.) >> 223 { >> 224 ratio = (fInelasticXsc - fProductionXsc)/fInelasticXsc; >> 225 if(ratio < 0.) ratio = 0.; >> 226 } 151 return ratio; 227 return ratio; 152 } 228 } >> 229 153 230 154 ////////////////////////////////////////////// << 155 231 156 G4double G4ComponentGGHadronNucleusXsc::GetPro << 157 const G4ParticleDefinition << 158 G4double kinEnergy, G4int Z, G4double << 159 { << 160 ComputeCrossSections(aParticle, kinEnergy, Z << 161 return fProductionXsc; << 162 } << 163 232 164 ////////////////////////////////////////////// << 233 //////////////////////////////////////////////////////////////////////////////////////// 165 234 166 G4double G4ComponentGGHadronNucleusXsc::GetPro << 235 G4bool 167 const G4ParticleDefinition << 236 G4ComponentGGHadronNucleusXsc::IsIsoApplicable(const G4DynamicParticle* aDP, 168 G4double kinEnergy, G4int Z, G4int A) << 237 G4int Z, G4int /*A*/, 169 { << 238 const G4Element*, 170 ComputeCrossSections(aParticle, kinEnergy, Z << 239 const G4Material*) 171 return fProductionXsc; << 240 { >> 241 G4bool applicable = false; >> 242 // G4int baryonNumber = aDP->GetDefinition()->GetBaryonNumber(); >> 243 G4double kineticEnergy = aDP->GetKineticEnergy(); >> 244 >> 245 const G4ParticleDefinition* theParticle = aDP->GetDefinition(); >> 246 >> 247 if ( >> 248 Z >= 1 // >= H for kaons >> 249 && >> 250 ( >> 251 kineticEnergy >= fLowerLimit >> 252 && >> 253 // Z > 1 && // >= He >> 254 ( >> 255 theParticle == theAProton || >> 256 theParticle == theGamma || >> 257 theParticle == theSMinus || >> 258 theParticle == theProton || >> 259 theParticle == theNeutron || >> 260 theParticle == thePiPlus || >> 261 theParticle == thePiMinus >> 262 ) >> 263 ) >> 264 ) >> 265 applicable = true; >> 266 >> 267 if ( >> 268 Z >= 1 // >= H for kaons >> 269 && >> 270 ( >> 271 kineticEnergy >= 0.01*fLowerLimit >> 272 && >> 273 ( >> 274 theParticle == theKPlus || >> 275 theParticle == theKMinus || >> 276 theParticle == theK0L || >> 277 theParticle == theK0S >> 278 ) >> 279 ) >> 280 ) >> 281 applicable = true; >> 282 >> 283 return applicable; 172 } 284 } 173 285 174 ////////////////////////////////////////////// << 286 //////////////////////////////////////////////////////////////////////////////////////// 175 // 287 // 176 // Calculates total and inelastic Xsc, derives << 288 // Calculates total and inelastic Xsc, derives elastic as total - inelastic accordong to 177 // inelastic accordong to Glauber model with G << 289 // Glauber model with Gribov correction calculated in the dipole approximation on 178 // in the dipole approximation on light cone. << 290 // light cone. Gaussian density of point-like nucleons helps to calculate rest integrals of the model. 179 // nucleons helps to calculate rest integrals << 180 // [1] B.Z. Kopeliovich, nucl-th/0306044 + sim 291 // [1] B.Z. Kopeliovich, nucl-th/0306044 + simplification above 181 292 182 void G4ComponentGGHadronNucleusXsc::ComputeCro << 293 G4double 183 const G4ParticleDefinition* aP << 294 G4ComponentGGHadronNucleusXsc::GetIsoCrossSection(const G4DynamicParticle* aParticle, 184 G4double kinEnergy, G4int Z, G << 295 G4int Z, G4int A, 185 { << 296 const G4Isotope*, 186 // check cache << 297 const G4Element*, 187 if(aParticle == fParticle && fZ == Z && fA = << 298 const G4Material*) 188 { return; } << 299 { 189 fParticle = aParticle; << 300 G4double xsection, sigma, cofInelastic, cofTotal, nucleusSquare, ratio; 190 fZ = Z; << 301 G4double hpInXsc(0.), hnInXsc(0.); 191 fA = A; << 302 G4double R = GetNucleusRadius(A); 192 fL = nL; << 193 fEnergy = kinEnergy; << 194 G4Pow* pG4Pow=G4Pow::GetInstance(); << 195 // << 196 G4double cofInelastic = 2.4; << 197 static const G4double cofTotal = 2.0; << 198 G4double sigma(0.0), hpInXsc(0.0), hnInXsc(0 << 199 303 200 G4int N = std::max(A - Z, 0); // number of << 304 G4int N = A - Z; // number of neutrons >> 305 if (N < 0) N = 0; 201 306 202 if( aParticle == theKPlus || aParticle == th << 307 const G4ParticleDefinition* theParticle = aParticle->GetDefinition(); 203 aParticle == theK0S || aParticle == th << 308 >> 309 if( theParticle == theProton || >> 310 theParticle == theNeutron || >> 311 theParticle == thePiPlus || >> 312 theParticle == thePiMinus ) 204 { 313 { 205 sigma = (1 == Z) << 314 // sigma = GetHadronNucleonXscNS(aParticle, A, Z); 206 ? hnXsc->KaonNucleonXscNS(aParticle, the << 315 207 : Z*hnXsc->KaonNucleonXscGG(aParticle, t << 316 sigma = Z*hnXsc->GetHadronNucleonXscNS(aParticle, theProton); >> 317 208 hpInXsc = hnXsc->GetInelasticHadronNucleon 318 hpInXsc = hnXsc->GetInelasticHadronNucleonXsc(); 209 319 210 if(N > 0) { << 320 sigma += N*hnXsc->GetHadronNucleonXscNS(aParticle, theNeutron); 211 sigma += N*hnXsc->KaonNucleonXscGG(aPart << 321 212 hnInXsc = hnXsc->GetInelasticHadronNucle << 322 hnInXsc = hnXsc->GetInelasticHadronNucleonXsc(); 213 } << 323 214 R = G4NuclearRadii::RadiusKNGG(A); << 324 cofInelastic = 2.4; 215 cofInelastic = 2.2; << 325 cofTotal = 2.0; 216 } 326 } 217 else << 327 else if( theParticle == theKPlus || >> 328 theParticle == theKMinus || >> 329 theParticle == theK0S || >> 330 theParticle == theK0L ) 218 { 331 { 219 sigma = Z*hnXsc->HadronNucleonXsc(aParticl << 332 // sigma = GetKaonNucleonXscVector(aParticle, A, Z); >> 333 >> 334 sigma = Z*hnXsc->GetKaonNucleonXscGG(aParticle, theProton); >> 335 220 hpInXsc = hnXsc->GetInelasticHadronNucleon 336 hpInXsc = hnXsc->GetInelasticHadronNucleonXsc(); 221 337 222 if(N > 0) { << 338 sigma += N*hnXsc->GetKaonNucleonXscGG(aParticle, theNeutron); 223 sigma += N*hnXsc->HadronNucleonXsc(aPart << 224 hnInXsc = hnXsc->GetInelasticHadronNucle << 225 } << 226 R = G4NuclearRadii::RadiusHNGG(A); << 227 if( nL > 0 ) { << 228 G4double mp = theProton->GetPDGMass(); << 229 G4double ml = theLambda->GetPDGMass(); << 230 G4double kinCof = ml/mp; // moving hyper << 231 G4double cHN(0.88); << 232 sigma += nL*hnXsc->HadronNucleonXsc(theL << 233 R *= std::sqrt( pG4Pow->Z23( A - nL ) + << 234 } << 235 } << 236 339 237 G4double nucleusSquare = cofTotal*pi*R*R; << 340 hnInXsc = hnXsc->GetInelasticHadronNucleonXsc(); 238 G4double ratio = sigma/nucleusSquare; << 341 239 G4double difratio = ratio/(1.+ratio); << 342 cofInelastic = 2.2; 240 fDiffractionXsc = 0.5*nucleusSquare*( difrat << 343 cofTotal = 2.0; >> 344 R = 1.3*fermi; >> 345 R *= G4Pow::GetInstance()->powA(G4double(A), 0.3333); >> 346 } >> 347 else >> 348 { >> 349 sigma = GetHadronNucleonXscNS(aParticle, A, Z); >> 350 cofInelastic = 2.2; >> 351 cofTotal = 2.0; >> 352 } >> 353 // cofInelastic = 2.0; 241 354 242 if( A > 1 ) 355 if( A > 1 ) 243 { 356 { 244 fTotalXsc = nucleusSquare*G4Log( 1. + rati << 357 nucleusSquare = cofTotal*pi*R*R; // basically 2piRR 245 *GetParticleBarCorTot(aParticle, Z); << 358 ratio = sigma/nucleusSquare; 246 359 247 // inelastic xsc << 360 xsection = nucleusSquare*G4Log( 1. + ratio ); 248 fAxsc2piR2 = cofInelastic*ratio; << 361 249 fModelInLog = G4Log( 1. + fAxsc2piR2 ); << 362 xsection *= GetParticleBarCorTot(theParticle, Z); 250 fInelasticXsc = nucleusSquare*fModelInLog/ << 363 251 G4double barcorr = GetParticleBarCorIn(aPa << 364 fTotalXsc = xsection; 252 fInelasticXsc *= barcorr; << 365 253 fElasticXsc = std::max(fTotalXsc - fInelas << 366 254 << 367 255 G4double xratio = (Z*hpInXsc + N*hnInXsc)/ << 368 fInelasticXsc = nucleusSquare*G4Log( 1. + cofInelastic*ratio )/cofInelastic; 256 fProductionXsc = << 369 257 nucleusSquare*G4Log(1. + cofInelastic*xr << 370 fInelasticXsc *= GetParticleBarCorIn(theParticle, Z); 258 fProductionXsc = std::min(fProductionXsc, << 371 >> 372 fElasticXsc = fTotalXsc - fInelasticXsc; >> 373 >> 374 if(fElasticXsc < 0.) fElasticXsc = 0.; >> 375 >> 376 G4double difratio = ratio/(1.+ratio); >> 377 >> 378 fDiffractionXsc = 0.5*nucleusSquare*( difratio - G4Log( 1. + difratio ) ); >> 379 >> 380 >> 381 // sigma = GetHNinelasticXsc(aParticle, A, Z); >> 382 >> 383 sigma = Z*hpInXsc + N*hnInXsc; >> 384 >> 385 ratio = sigma/nucleusSquare; >> 386 >> 387 fProductionXsc = nucleusSquare*G4Log( 1. + cofInelastic*ratio )/cofInelastic; >> 388 >> 389 fProductionXsc *= GetParticleBarCorIn(theParticle, Z); >> 390 >> 391 if (fElasticXsc < 0.) fElasticXsc = 0.; 259 } 392 } 260 else // H 393 else // H 261 { 394 { 262 fTotalXsc = sigma; 395 fTotalXsc = sigma; 263 fInelasticXsc = hpInXsc; << 396 xsection = sigma; 264 fElasticXsc = std::max(fTotalXsc - fInel << 397 265 fProductionXsc = fInelasticXsc; << 398 fInelasticXsc = hnXsc->GetInelasticHadronNucleonXsc(); 266 fDiffractionXsc = 0.2*fInelasticXsc; << 399 267 // G4double xratio = hpInXsc/nucleusSquare << 400 if ( theParticle != theAProton ) 268 // fProductionXsc = nucleusSquare*G4Log(1. << 401 { 269 // fProductionXsc = std::min(fProductionXs << 402 fElasticXsc = hnXsc->GetElasticHadronNucleonXsc(); >> 403 >> 404 // sigma = GetHNinelasticXsc(aParticle, A, Z); >> 405 // fInelasticXsc = sigma; >> 406 // fElasticXsc = fTotalXsc - fInelasticXsc; >> 407 } >> 408 else if( theParticle == theKPlus || >> 409 theParticle == theKMinus || >> 410 theParticle == theK0S || >> 411 theParticle == theK0L ) >> 412 { >> 413 fInelasticXsc = hpInXsc; >> 414 fElasticXsc = fTotalXsc - fInelasticXsc; >> 415 } >> 416 else >> 417 { >> 418 fInelasticXsc = hpInXsc; >> 419 fElasticXsc = fTotalXsc - fInelasticXsc; >> 420 } >> 421 if (fElasticXsc < 0.) fElasticXsc = 0.; >> 422 270 } 423 } 271 /* << 424 return xsection; 272 G4cout << "GGXsc: Z= " << Z << " A= " << A < << 273 << " xtot(b)= " << fTotalXsc/barn << 274 << " xel(b)= " << fElasticXsc/barn << " xi << 275 << G4endl; << 276 */ << 277 } 425 } 278 426 279 ////////////////////////////////////////////// 427 ////////////////////////////////////////////////////////////////////////// 280 // 428 // 281 // Return single-diffraction/inelastic cross-s 429 // Return single-diffraction/inelastic cross-section ratio 282 430 283 G4double G4ComponentGGHadronNucleusXsc::GetRat << 431 G4double G4ComponentGGHadronNucleusXsc:: 284 const G4DynamicParticle* aParticle, G << 432 GetRatioSD(const G4DynamicParticle* aParticle, G4int A, G4int Z) 285 { 433 { 286 ComputeCrossSections(aParticle->GetDefinitio << 434 G4double sigma, cofInelastic, cofTotal, nucleusSquare, ratio; 287 aParticle->GetKineticEnergy(), Z, A << 435 G4double R = GetNucleusRadius(A); 288 436 289 return (fInelasticXsc > 0.0) ? fDiffractionX << 437 const G4ParticleDefinition* theParticle = aParticle->GetDefinition(); >> 438 >> 439 if( theParticle == theProton || >> 440 theParticle == theNeutron || >> 441 theParticle == thePiPlus || >> 442 theParticle == thePiMinus ) >> 443 { >> 444 sigma = GetHadronNucleonXscNS(aParticle, A, Z); >> 445 cofInelastic = 2.4; >> 446 cofTotal = 2.0; >> 447 } >> 448 else >> 449 { >> 450 sigma = GetHadronNucleonXscNS(aParticle, A, Z); >> 451 cofInelastic = 2.2; >> 452 cofTotal = 2.0; >> 453 } >> 454 nucleusSquare = cofTotal*pi*R*R; // basically 2piRR >> 455 ratio = sigma/nucleusSquare; >> 456 >> 457 fInelasticXsc = nucleusSquare*G4Log( 1. + cofInelastic*ratio )/cofInelastic; >> 458 >> 459 G4double difratio = ratio/(1.+ratio); >> 460 >> 461 fDiffractionXsc = 0.5*nucleusSquare*( difratio - G4Log( 1. + difratio ) ); >> 462 >> 463 if (fInelasticXsc > 0.) ratio = fDiffractionXsc/fInelasticXsc; >> 464 else ratio = 0.; >> 465 >> 466 return ratio; 290 } 467 } 291 468 292 ////////////////////////////////////////////// 469 ////////////////////////////////////////////////////////////////////////// 293 // 470 // 294 // Return quasi-elastic/inelastic cross-sectio << 471 // Return suasi-elastic/inelastic cross-section ratio 295 472 296 G4double G4ComponentGGHadronNucleusXsc:: 473 G4double G4ComponentGGHadronNucleusXsc:: 297 GetRatioQE(const G4DynamicParticle* aParticle, 474 GetRatioQE(const G4DynamicParticle* aParticle, G4int A, G4int Z) 298 { 475 { 299 ComputeCrossSections(aParticle->GetDefinitio << 476 G4double sigma, cofInelastic, cofTotal, nucleusSquare, ratio; 300 aParticle->GetKineticEnergy(), Z, A << 477 G4double R = GetNucleusRadius(A); >> 478 >> 479 const G4ParticleDefinition* theParticle = aParticle->GetDefinition(); >> 480 >> 481 if( theParticle == theProton || >> 482 theParticle == theNeutron || >> 483 theParticle == thePiPlus || >> 484 theParticle == thePiMinus ) >> 485 { >> 486 sigma = GetHadronNucleonXscNS(aParticle, A, Z); >> 487 cofInelastic = 2.4; >> 488 cofTotal = 2.0; >> 489 } >> 490 else >> 491 { >> 492 sigma = GetHadronNucleonXscNS(aParticle, A, Z); >> 493 cofInelastic = 2.2; >> 494 cofTotal = 2.0; >> 495 } >> 496 nucleusSquare = cofTotal*pi*R*R; // basically 2piRR >> 497 ratio = sigma/nucleusSquare; >> 498 >> 499 fInelasticXsc = nucleusSquare*G4Log( 1. + cofInelastic*ratio )/cofInelastic; >> 500 >> 501 sigma = GetHNinelasticXsc(aParticle, A, Z); >> 502 ratio = sigma/nucleusSquare; >> 503 >> 504 fProductionXsc = nucleusSquare*G4Log( 1. + cofInelastic*ratio )/cofInelastic; 301 505 302 return (fInelasticXsc > std::max(fProduction << 506 if (fInelasticXsc > fProductionXsc) ratio = (fInelasticXsc-fProductionXsc)/fInelasticXsc; 303 ? 1.0 - fProductionXsc/fInelasticXsc : 0.0 << 507 else ratio = 0.; >> 508 if ( ratio < 0. ) ratio = 0.; >> 509 >> 510 return ratio; 304 } 511 } 305 512 306 ////////////////////////////////////////////// 513 ///////////////////////////////////////////////////////////////////////////////////// 307 // 514 // 308 // Returns hadron-nucleon total Xsc according << 515 // Returns hadron-nucleon Xsc according to differnt parametrisations: >> 516 // [2] E. Levin, hep-ph/9710546 >> 517 // [3] U. Dersch, et al, hep-ex/9910052 >> 518 // [4] M.J. Longo, et al, Phys.Rev.Lett. 33 (1974) 725 309 519 310 G4double G4ComponentGGHadronNucleusXsc::GetHad << 520 G4double 311 const G4DynamicParticle* aParticle, c << 521 G4ComponentGGHadronNucleusXsc::GetHadronNucleonXsc(const G4DynamicParticle* aParticle, >> 522 const G4Element* anElement) 312 { 523 { 313 G4int At = G4lrint(anElement->GetN()); // n 524 G4int At = G4lrint(anElement->GetN()); // number of nucleons 314 G4int Zt = anElement->GetZasInt(); // numbe << 525 G4int Zt = G4lrint(anElement->GetZ()); // number of protons 315 526 316 return GetHadronNucleonXsc(aParticle, At, Zt 527 return GetHadronNucleonXsc(aParticle, At, Zt); 317 } 528 } 318 529 319 ////////////////////////////////////////////// 530 ///////////////////////////////////////////////////////////////////////////////////// 320 // 531 // 321 // Returns hadron-nucleon total Xsc according << 532 // Returns hadron-nucleon Xsc according to differnt parametrisations: >> 533 // [2] E. Levin, hep-ph/9710546 >> 534 // [3] U. Dersch, et al, hep-ex/9910052 >> 535 // [4] M.J. Longo, et al, Phys.Rev.Lett. 33 (1974) 725 322 536 323 G4double G4ComponentGGHadronNucleusXsc::GetHad << 537 G4double 324 const G4DynamicParticle* aParticle, G << 538 G4ComponentGGHadronNucleusXsc::GetHadronNucleonXsc(const G4DynamicParticle* aParticle, >> 539 G4int At, G4int /*Zt*/) 325 { 540 { 326 return hnXsc->HadronNucleonXscEL(aParticle-> << 541 G4double xsection; 327 aParticle->GetKineticEnergy()); << 542 >> 543 //G4double targ_mass = G4NucleiProperties::GetNuclearMass(At, Zt); >> 544 >> 545 G4double targ_mass = 0.939*GeV; // ~mean neutron and proton ??? >> 546 >> 547 G4double proj_mass = aParticle->GetMass(); >> 548 G4double proj_momentum = aParticle->GetMomentum().mag(); >> 549 G4double sMand = CalcMandelstamS ( proj_mass , targ_mass , proj_momentum ); >> 550 >> 551 sMand /= GeV*GeV; // in GeV for parametrisation >> 552 proj_momentum /= GeV; >> 553 >> 554 const G4ParticleDefinition* theParticle = aParticle->GetDefinition(); >> 555 >> 556 G4double aa = At; >> 557 >> 558 if(theParticle == theGamma) >> 559 { >> 560 xsection = aa*(0.0677*G4Pow::GetInstance()->powA(sMand,0.0808) + 0.129*G4Pow::GetInstance()->powA(sMand,-0.4525)); >> 561 } >> 562 else if(theParticle == theNeutron) // as proton ??? >> 563 { >> 564 xsection = aa*(21.70*G4Pow::GetInstance()->powA(sMand,0.0808) + 56.08*G4Pow::GetInstance()->powA(sMand,-0.4525)); >> 565 } >> 566 else if(theParticle == theProton) >> 567 { >> 568 xsection = aa*(21.70*G4Pow::GetInstance()->powA(sMand,0.0808) + 56.08*G4Pow::GetInstance()->powA(sMand,-0.4525)); >> 569 // xsection = At*( 49.51*G4Pow::GetInstance()->powA(sMand,-0.097) + 0.314*G4Log(sMand)*G4Log(sMand) ); >> 570 // xsection = At*( 38.4 + 0.85*std::abs(G4Pow::GetInstance()->powA(log(sMand),1.47)) ); >> 571 } >> 572 else if(theParticle == theAProton) >> 573 { >> 574 xsection = aa*( 21.70*G4Pow::GetInstance()->powA(sMand,0.0808) + 98.39*G4Pow::GetInstance()->powA(sMand,-0.4525)); >> 575 } >> 576 else if(theParticle == thePiPlus) >> 577 { >> 578 xsection = aa*(13.63*G4Pow::GetInstance()->powA(sMand,0.0808) + 27.56*G4Pow::GetInstance()->powA(sMand,-0.4525)); >> 579 } >> 580 else if(theParticle == thePiMinus) >> 581 { >> 582 // xsection = At*( 55.2*G4Pow::GetInstance()->powA(sMand,-0.255) + 0.346*G4Log(sMand)*G4Log(sMand) ); >> 583 xsection = aa*(13.63*G4Pow::GetInstance()->powA(sMand,0.0808) + 36.02*G4Pow::GetInstance()->powA(sMand,-0.4525)); >> 584 } >> 585 else if(theParticle == theKPlus) >> 586 { >> 587 xsection = aa*(11.82*G4Pow::GetInstance()->powA(sMand,0.0808) + 8.15*G4Pow::GetInstance()->powA(sMand,-0.4525)); >> 588 } >> 589 else if(theParticle == theKMinus) >> 590 { >> 591 xsection = aa*(11.82*G4Pow::GetInstance()->powA(sMand,0.0808) + 26.36*G4Pow::GetInstance()->powA(sMand,-0.4525)); >> 592 } >> 593 else // as proton ??? >> 594 { >> 595 xsection = aa*(21.70*G4Pow::GetInstance()->powA(sMand,0.0808) + 56.08*G4Pow::GetInstance()->powA(sMand,-0.4525)); >> 596 } >> 597 xsection *= millibarn; >> 598 return xsection; 328 } 599 } 329 600 >> 601 330 ////////////////////////////////////////////// 602 ///////////////////////////////////////////////////////////////////////////////////// 331 // 603 // 332 // Returns hadron-nucleon total Xsc according << 604 // Returns hadron-nucleon Xsc according to PDG parametrisation (2005): 333 // << 605 // http://pdg.lbl.gov/2006/reviews/hadronicrpp.pdf 334 606 335 G4double G4ComponentGGHadronNucleusXsc::GetHad << 607 G4double 336 const G4DynamicParticle* aParticle, c << 608 G4ComponentGGHadronNucleusXsc::GetHadronNucleonXscPDG(const G4DynamicParticle* aParticle, >> 609 const G4Element* anElement) 337 { 610 { 338 G4int At = G4lrint(anElement->GetN()); // n 611 G4int At = G4lrint(anElement->GetN()); // number of nucleons 339 G4int Zt = anElement->GetZasInt(); // n << 612 G4int Zt = G4lrint(anElement->GetZ()); // number of protons 340 613 341 return GetHadronNucleonXscPDG(aParticle, At, 614 return GetHadronNucleonXscPDG(aParticle, At, Zt); 342 } 615 } 343 616 >> 617 >> 618 >> 619 344 ////////////////////////////////////////////// 620 ///////////////////////////////////////////////////////////////////////////////////// 345 // 621 // 346 // Returns hadron-nucleon total Xsc according << 622 // Returns hadron-nucleon Xsc according to PDG parametrisation (2005): 347 // << 623 // http://pdg.lbl.gov/2006/reviews/hadronicrpp.pdf >> 624 // At = number of nucleons, Zt = number of protons 348 625 349 G4double G4ComponentGGHadronNucleusXsc::GetHad << 626 G4double 350 const G4DynamicParticle* aParticle, G << 627 G4ComponentGGHadronNucleusXsc::GetHadronNucleonXscPDG(const G4DynamicParticle* aParticle, >> 628 G4int At, G4int Zt) 351 { 629 { 352 G4double res = 0.0; << 630 G4double xsection; 353 if(1 == At && 1 == Zt) { << 631 354 res = hnXsc->HadronNucleonXscPDG(aParticle << 632 G4int Nt = At-Zt; // number of neutrons 355 aParticle->GetKineticEnergy()); << 633 if (Nt < 0) Nt = 0; 356 } else if(1 == At && 0 == Zt) { << 634 357 res = hnXsc->HadronNucleonXscPDG(aParticle << 635 G4double zz = Zt; 358 aParticle->GetKineticEnergy()); << 636 G4double aa = At; 359 } else { << 637 G4double nn = Nt; 360 ComputeCrossSections(aParticle->GetDefinit << 638 361 aParticle->GetKineticEnergy(), Zt, At); << 639 G4double targ_mass = G4ParticleTable::GetParticleTable()-> 362 res = fTotalXsc; << 640 GetIonTable()->GetIonMass(Zt, At); >> 641 >> 642 targ_mass = 0.939*GeV; // ~mean neutron and proton ??? >> 643 >> 644 G4double proj_mass = aParticle->GetMass(); >> 645 G4double proj_momentum = aParticle->GetMomentum().mag(); >> 646 >> 647 G4double sMand = CalcMandelstamS ( proj_mass , targ_mass , proj_momentum ); >> 648 >> 649 sMand /= GeV*GeV; // in GeV for parametrisation >> 650 >> 651 // General PDG fit constants >> 652 >> 653 G4double s0 = 5.38*5.38; // in Gev^2 >> 654 G4double eta1 = 0.458; >> 655 G4double eta2 = 0.458; >> 656 G4double B = 0.308; >> 657 >> 658 >> 659 const G4ParticleDefinition* theParticle = aParticle->GetDefinition(); >> 660 >> 661 >> 662 if(theParticle == theNeutron) // proton-neutron fit >> 663 { >> 664 xsection = zz*( 35.80 + B*G4Pow::GetInstance()->powA(G4Log(sMand/s0),2.) >> 665 + 40.15*G4Pow::GetInstance()->powA(sMand,-eta1) - 30.*G4Pow::GetInstance()->powA(sMand,-eta2)); >> 666 xsection += nn*( 35.45 + B*G4Pow::GetInstance()->powA(G4Log(sMand/s0),2.) >> 667 + 42.53*G4Pow::GetInstance()->powA(sMand,-eta1) - 33.34*G4Pow::GetInstance()->powA(sMand,-eta2)); // pp for nn >> 668 } >> 669 else if(theParticle == theProton) >> 670 { >> 671 >> 672 xsection = zz*( 35.45 + B*G4Pow::GetInstance()->powA(G4Log(sMand/s0),2.) >> 673 + 42.53*G4Pow::GetInstance()->powA(sMand,-eta1) - 33.34*G4Pow::GetInstance()->powA(sMand,-eta2)); >> 674 >> 675 xsection += nn*( 35.80 + B*G4Pow::GetInstance()->powA(G4Log(sMand/s0),2.) >> 676 + 40.15*G4Pow::GetInstance()->powA(sMand,-eta1) - 30.*G4Pow::GetInstance()->powA(sMand,-eta2)); >> 677 } >> 678 else if(theParticle == theAProton) >> 679 { >> 680 xsection = zz*( 35.45 + B*G4Pow::GetInstance()->powA(G4Log(sMand/s0),2.) >> 681 + 42.53*G4Pow::GetInstance()->powA(sMand,-eta1) + 33.34*G4Pow::GetInstance()->powA(sMand,-eta2)); >> 682 >> 683 xsection += nn*( 35.80 + B*G4Pow::GetInstance()->powA(G4Log(sMand/s0),2.) >> 684 + 40.15*G4Pow::GetInstance()->powA(sMand,-eta1) + 30.*G4Pow::GetInstance()->powA(sMand,-eta2)); >> 685 } >> 686 else if(theParticle == thePiPlus) >> 687 { >> 688 xsection = aa*( 20.86 + B*G4Pow::GetInstance()->powA(G4Log(sMand/s0),2.) >> 689 + 19.24*G4Pow::GetInstance()->powA(sMand,-eta1) - 6.03*G4Pow::GetInstance()->powA(sMand,-eta2)); >> 690 } >> 691 else if(theParticle == thePiMinus) >> 692 { >> 693 xsection = aa*( 20.86 + B*G4Pow::GetInstance()->powA(G4Log(sMand/s0),2.) >> 694 + 19.24*G4Pow::GetInstance()->powA(sMand,-eta1) + 6.03*G4Pow::GetInstance()->powA(sMand,-eta2)); >> 695 } >> 696 else if(theParticle == theKPlus || theParticle == theK0L ) >> 697 { >> 698 xsection = zz*( 17.91 + B*G4Pow::GetInstance()->powA(G4Log(sMand/s0),2.) >> 699 + 7.14*G4Pow::GetInstance()->powA(sMand,-eta1) - 13.45*G4Pow::GetInstance()->powA(sMand,-eta2)); >> 700 >> 701 xsection += nn*( 17.87 + B*G4Pow::GetInstance()->powA(G4Log(sMand/s0),2.) >> 702 + 5.17*G4Pow::GetInstance()->powA(sMand,-eta1) - 7.23*G4Pow::GetInstance()->powA(sMand,-eta2)); >> 703 } >> 704 else if(theParticle == theKMinus || theParticle == theK0S ) >> 705 { >> 706 xsection = zz*( 17.91 + B*G4Pow::GetInstance()->powA(G4Log(sMand/s0),2.) >> 707 + 7.14*G4Pow::GetInstance()->powA(sMand,-eta1) + 13.45*G4Pow::GetInstance()->powA(sMand,-eta2)); >> 708 >> 709 xsection += nn*( 17.87 + B*G4Pow::GetInstance()->powA(G4Log(sMand/s0),2.) >> 710 + 5.17*G4Pow::GetInstance()->powA(sMand,-eta1) + 7.23*G4Pow::GetInstance()->powA(sMand,-eta2)); 363 } 711 } 364 return res; << 712 else if(theParticle == theSMinus) >> 713 { >> 714 xsection = aa*( 35.20 + B*G4Pow::GetInstance()->powA(G4Log(sMand/s0),2.) >> 715 - 199.*G4Pow::GetInstance()->powA(sMand,-eta1) + 264.*G4Pow::GetInstance()->powA(sMand,-eta2)); >> 716 } >> 717 else if(theParticle == theGamma) // modify later on >> 718 { >> 719 xsection = aa*( 0.0 + B*G4Pow::GetInstance()->powA(G4Log(sMand/s0),2.) >> 720 + 0.032*G4Pow::GetInstance()->powA(sMand,-eta1) - 0.0*G4Pow::GetInstance()->powA(sMand,-eta2)); >> 721 >> 722 } >> 723 else // as proton ??? >> 724 { >> 725 xsection = zz*( 35.45 + B*G4Pow::GetInstance()->powA(G4Log(sMand/s0),2.) >> 726 + 42.53*G4Pow::GetInstance()->powA(sMand,-eta1) - 33.34*G4Pow::GetInstance()->powA(sMand,-eta2)); >> 727 >> 728 xsection += nn*( 35.80 + B*G4Pow::GetInstance()->powA(G4Log(sMand/s0),2.) >> 729 + 40.15*G4Pow::GetInstance()->powA(sMand,-eta1) - 30.*G4Pow::GetInstance()->powA(sMand,-eta2)); >> 730 } >> 731 xsection *= millibarn; // parametrised in mb >> 732 return xsection; 365 } 733 } 366 734 >> 735 367 ////////////////////////////////////////////// 736 ///////////////////////////////////////////////////////////////////////////////////// 368 // 737 // 369 // Returns hadron-nucleon total cross-section << 738 // Returns hadron-nucleon cross-section based on N. Starkov parametrisation of 370 // data from mainly http://wwwppds.ihep.su:800 739 // data from mainly http://wwwppds.ihep.su:8001/c5-6A.html database 371 740 372 G4double G4ComponentGGHadronNucleusXsc::GetHad << 741 G4double 373 const G4DynamicParticle* aParticle, c << 742 G4ComponentGGHadronNucleusXsc::GetHadronNucleonXscNS(const G4DynamicParticle* aParticle, >> 743 const G4Element* anElement) 374 { 744 { 375 G4int At = G4lrint(anElement->GetN()); // n 745 G4int At = G4lrint(anElement->GetN()); // number of nucleons 376 G4int Zt = anElement->GetZasInt(); // n << 746 G4int Zt = G4lrint(anElement->GetZ()); // number of protons 377 747 378 return GetHadronNucleonXscNS(aParticle, At, 748 return GetHadronNucleonXscNS(aParticle, At, Zt); 379 } 749 } 380 750 381 ////////////////////////////////////////////// << 751 >> 752 >> 753 >> 754 ///////////////////////////////////////////////////////////////////////////////////// 382 // 755 // 383 // Returns hadron-nucleon total cross-section << 756 // Returns hadron-nucleon cross-section based on N. Starkov parametrisation of 384 // data from mainly http://wwwppds.ihep.su:800 757 // data from mainly http://wwwppds.ihep.su:8001/c5-6A.html database 385 758 386 G4double G4ComponentGGHadronNucleusXsc::GetHad << 759 G4double 387 const G4DynamicParticle* aParticle, G << 760 G4ComponentGGHadronNucleusXsc::GetHadronNucleonXscNS(const G4DynamicParticle* aParticle, >> 761 G4int At, G4int Zt) 388 { 762 { 389 G4double res = 0.0; << 763 G4double xsection(0); 390 if(1 == At && 1 == Zt) { << 764 // G4double Delta; DHW 19 May 2011: variable set but not used 391 res = hnXsc->HadronNucleonXscNS(aParticle- << 765 G4double A0, B0; 392 aParticle->GetKineticEnergy()); << 766 G4double hpXscv(0); 393 } else if(1 == At && 0 == Zt) { << 767 G4double hnXscv(0); 394 res = hnXsc->HadronNucleonXscNS(aParticle- << 768 395 aParticle->GetKineticEnergy()); << 769 G4int Nt = At-Zt; // number of neutrons >> 770 if (Nt < 0) Nt = 0; >> 771 >> 772 G4double aa = At; >> 773 G4double zz = Zt; >> 774 G4double nn = Nt; >> 775 >> 776 G4double targ_mass = G4ParticleTable::GetParticleTable()-> >> 777 GetIonTable()->GetIonMass(Zt, At); >> 778 >> 779 targ_mass = 0.939*GeV; // ~mean neutron and proton ??? >> 780 >> 781 G4double proj_mass = aParticle->GetMass(); >> 782 G4double proj_energy = aParticle->GetTotalEnergy(); >> 783 G4double proj_momentum = aParticle->GetMomentum().mag(); >> 784 >> 785 G4double sMand = CalcMandelstamS ( proj_mass , targ_mass , proj_momentum ); >> 786 >> 787 sMand /= GeV*GeV; // in GeV for parametrisation >> 788 proj_momentum /= GeV; >> 789 proj_energy /= GeV; >> 790 proj_mass /= GeV; >> 791 >> 792 // General PDG fit constants >> 793 >> 794 G4double s0 = 5.38*5.38; // in Gev^2 >> 795 G4double eta1 = 0.458; >> 796 G4double eta2 = 0.458; >> 797 G4double B = 0.308; >> 798 >> 799 >> 800 const G4ParticleDefinition* theParticle = aParticle->GetDefinition(); >> 801 >> 802 >> 803 if(theParticle == theNeutron) >> 804 { >> 805 if( proj_momentum >= 373.) >> 806 { >> 807 return GetHadronNucleonXscPDG(aParticle,At,Zt); >> 808 } >> 809 else if( proj_momentum >= 10.) >> 810 // if( proj_momentum >= 2.) >> 811 { >> 812 // Delta = 1.; // DHW 19 May 2011: variable set but not used >> 813 // if( proj_energy < 40. ) Delta = 0.916+0.0021*proj_energy; >> 814 >> 815 if(proj_momentum >= 10.) >> 816 { >> 817 B0 = 7.5; >> 818 A0 = 100. - B0*G4Log(3.0e7); >> 819 >> 820 xsection = A0 + B0*G4Log(proj_energy) - 11 >> 821 + 103*G4Pow::GetInstance()->powA(2*0.93827*proj_energy + proj_mass*proj_mass+ >> 822 0.93827*0.93827,-0.165); // mb >> 823 } >> 824 xsection *= zz + nn; >> 825 } >> 826 else >> 827 { >> 828 // nn to be pp >> 829 >> 830 if( proj_momentum < 0.73 ) >> 831 { >> 832 hnXscv = 23 + 50*( G4Pow::GetInstance()->powA( G4Log(0.73/proj_momentum), 3.5 ) ); >> 833 } >> 834 else if( proj_momentum < 1.05 ) >> 835 { >> 836 hnXscv = 23 + 40*(G4Log(proj_momentum/0.73))* >> 837 (G4Log(proj_momentum/0.73)); >> 838 } >> 839 else // if( proj_momentum < 10. ) >> 840 { >> 841 hnXscv = 39.0+ >> 842 75*(proj_momentum - 1.2)/(G4Pow::GetInstance()->powA(proj_momentum,3.0) + 0.15); >> 843 } >> 844 // pn to be np >> 845 >> 846 if( proj_momentum < 0.8 ) >> 847 { >> 848 hpXscv = 33+30*G4Pow::GetInstance()->powA(G4Log(proj_momentum/1.3),4.0); >> 849 } >> 850 else if( proj_momentum < 1.4 ) >> 851 { >> 852 hpXscv = 33+30*G4Pow::GetInstance()->powA(G4Log(proj_momentum/0.95),2.0); >> 853 } >> 854 else // if( proj_momentum < 10. ) >> 855 { >> 856 hpXscv = 33.3+ >> 857 20.8*(G4Pow::GetInstance()->powA(proj_momentum,2.0)-1.35)/ >> 858 (G4Pow::GetInstance()->powA(proj_momentum,2.50)+0.95); >> 859 } >> 860 xsection = hpXscv*zz + hnXscv*nn; >> 861 } >> 862 } >> 863 else if(theParticle == theProton) >> 864 { >> 865 if( proj_momentum >= 373.) >> 866 { >> 867 return GetHadronNucleonXscPDG(aParticle,At,Zt); >> 868 } >> 869 else if( proj_momentum >= 10.) >> 870 // if( proj_momentum >= 2.) >> 871 { >> 872 // Delta = 1.; DHW 19 May 2011: variable set but not used >> 873 // if( proj_energy < 40. ) Delta = 0.916+0.0021*proj_energy; >> 874 >> 875 if(proj_momentum >= 10.) >> 876 { >> 877 B0 = 7.5; >> 878 A0 = 100. - B0*G4Log(3.0e7); >> 879 >> 880 xsection = A0 + B0*G4Log(proj_energy) - 11 >> 881 + 103*G4Pow::GetInstance()->powA(2*0.93827*proj_energy + proj_mass*proj_mass+ >> 882 0.93827*0.93827,-0.165); // mb >> 883 } >> 884 xsection *= zz + nn; >> 885 } >> 886 else >> 887 { >> 888 // pp >> 889 >> 890 if( proj_momentum < 0.73 ) >> 891 { >> 892 hpXscv = 23 + 50*( G4Pow::GetInstance()->powA( G4Log(0.73/proj_momentum), 3.5 ) ); >> 893 } >> 894 else if( proj_momentum < 1.05 ) >> 895 { >> 896 hpXscv = 23 + 40*(G4Log(proj_momentum/0.73))* >> 897 (G4Log(proj_momentum/0.73)); >> 898 } >> 899 else // if( proj_momentum < 10. ) >> 900 { >> 901 hpXscv = 39.0+ >> 902 75*(proj_momentum - 1.2)/(G4Pow::GetInstance()->powA(proj_momentum,3.0) + 0.15); >> 903 } >> 904 // pn to be np >> 905 >> 906 if( proj_momentum < 0.8 ) >> 907 { >> 908 hnXscv = 33+30*G4Pow::GetInstance()->powA(G4Log(proj_momentum/1.3),4.0); >> 909 } >> 910 else if( proj_momentum < 1.4 ) >> 911 { >> 912 hnXscv = 33+30*G4Pow::GetInstance()->powA(G4Log(proj_momentum/0.95),2.0); >> 913 } >> 914 else // if( proj_momentum < 10. ) >> 915 { >> 916 hnXscv = 33.3+ >> 917 20.8*(G4Pow::GetInstance()->powA(proj_momentum,2.0)-1.35)/ >> 918 (G4Pow::GetInstance()->powA(proj_momentum,2.50)+0.95); >> 919 } >> 920 xsection = hpXscv*zz + hnXscv*nn; >> 921 // xsection = hpXscv*(Zt + Nt); >> 922 // xsection = hnXscv*(Zt + Nt); >> 923 } >> 924 // xsection *= 0.95; >> 925 } >> 926 else if( theParticle == theAProton ) >> 927 { >> 928 // xsection = Zt*( 35.45 + B*G4Pow::GetInstance()->powA(G4Log(sMand/s0),2.) >> 929 // + 42.53*G4Pow::GetInstance()->powA(sMand,-eta1) + 33.34*G4Pow::GetInstance()->powA(sMand,-eta2)); >> 930 >> 931 // xsection += Nt*( 35.80 + B*G4Pow::GetInstance()->powA(G4Log(sMand/s0),2.) >> 932 // + 40.15*G4Pow::GetInstance()->powA(sMand,-eta1) + 30.*G4Pow::GetInstance()->powA(sMand,-eta2)); >> 933 >> 934 G4double logP = G4Log(proj_momentum); >> 935 >> 936 if( proj_momentum <= 1.0 ) >> 937 { >> 938 xsection = zz*(65.55 + 53.84/(proj_momentum+1.e-6) ); >> 939 } >> 940 else >> 941 { >> 942 xsection = zz*( 41.1 + 77.2*G4Pow::GetInstance()->powA( proj_momentum, -0.68) >> 943 + 0.293*logP*logP - 1.82*logP ); >> 944 } >> 945 if ( nn > 0.) >> 946 { >> 947 xsection += nn*( 41.9 + 96.2*G4Pow::GetInstance()->powA( proj_momentum, -0.99) - 0.154*logP); >> 948 } >> 949 else // H >> 950 { >> 951 fInelasticXsc = 38.0 + 38.0*G4Pow::GetInstance()->powA( proj_momentum, -0.96) >> 952 - 0.169*logP*logP; >> 953 fInelasticXsc *= millibarn; >> 954 } >> 955 } >> 956 else if( theParticle == thePiPlus ) >> 957 { >> 958 if(proj_momentum < 0.4) >> 959 { >> 960 G4double Ex3 = 180*G4Exp(-(proj_momentum-0.29)*(proj_momentum-0.29)/0.085/0.085); >> 961 hpXscv = Ex3+20.0; >> 962 } >> 963 else if( proj_momentum < 1.15 ) >> 964 { >> 965 G4double Ex4 = 88*(G4Log(proj_momentum/0.75))*(G4Log(proj_momentum/0.75)); >> 966 hpXscv = Ex4+14.0; >> 967 } >> 968 else if(proj_momentum < 3.5) >> 969 { >> 970 G4double Ex1 = 3.2*G4Exp(-(proj_momentum-2.55)*(proj_momentum-2.55)/0.55/0.55); >> 971 G4double Ex2 = 12*G4Exp(-(proj_momentum-1.47)*(proj_momentum-1.47)/0.225/0.225); >> 972 hpXscv = Ex1+Ex2+27.5; >> 973 } >> 974 else // if(proj_momentum > 3.5) // mb >> 975 { >> 976 hpXscv = 10.6+2.*G4Log(proj_energy)+25*G4Pow::GetInstance()->powA(proj_energy,-0.43); >> 977 } >> 978 // pi+n = pi-p?? >> 979 >> 980 if(proj_momentum < 0.37) >> 981 { >> 982 hnXscv = 28.0 + 40*G4Exp(-(proj_momentum-0.29)*(proj_momentum-0.29)/0.07/0.07); >> 983 } >> 984 else if(proj_momentum<0.65) >> 985 { >> 986 hnXscv = 26+110*(G4Log(proj_momentum/0.48))*(G4Log(proj_momentum/0.48)); >> 987 } >> 988 else if(proj_momentum<1.3) >> 989 { >> 990 hnXscv = 36.1+ >> 991 10*G4Exp(-(proj_momentum-0.72)*(proj_momentum-0.72)/0.06/0.06)+ >> 992 24*G4Exp(-(proj_momentum-1.015)*(proj_momentum-1.015)/0.075/0.075); >> 993 } >> 994 else if(proj_momentum<3.0) >> 995 { >> 996 hnXscv = 36.1+0.079-4.313*G4Log(proj_momentum)+ >> 997 3*G4Exp(-(proj_momentum-2.1)*(proj_momentum-2.1)/0.4/0.4)+ >> 998 1.5*G4Exp(-(proj_momentum-1.4)*(proj_momentum-1.4)/0.12/0.12); >> 999 } >> 1000 else // mb >> 1001 { >> 1002 hnXscv = 10.6+2*G4Log(proj_energy)+30*G4Pow::GetInstance()->powA(proj_energy,-0.43); >> 1003 } >> 1004 xsection = hpXscv*zz + hnXscv*nn; >> 1005 } >> 1006 else if(theParticle == thePiMinus) >> 1007 { >> 1008 // pi-n = pi+p?? >> 1009 >> 1010 if(proj_momentum < 0.4) >> 1011 { >> 1012 G4double Ex3 = 180*G4Exp(-(proj_momentum-0.29)*(proj_momentum-0.29)/0.085/0.085); >> 1013 hnXscv = Ex3+20.0; >> 1014 } >> 1015 else if(proj_momentum < 1.15) >> 1016 { >> 1017 G4double Ex4 = 88*(G4Log(proj_momentum/0.75))*(G4Log(proj_momentum/0.75)); >> 1018 hnXscv = Ex4+14.0; >> 1019 } >> 1020 else if(proj_momentum < 3.5) >> 1021 { >> 1022 G4double Ex1 = 3.2*G4Exp(-(proj_momentum-2.55)*(proj_momentum-2.55)/0.55/0.55); >> 1023 G4double Ex2 = 12*G4Exp(-(proj_momentum-1.47)*(proj_momentum-1.47)/0.225/0.225); >> 1024 hnXscv = Ex1+Ex2+27.5; >> 1025 } >> 1026 else // if(proj_momentum > 3.5) // mb >> 1027 { >> 1028 hnXscv = 10.6+2.*G4Log(proj_energy)+25*G4Pow::GetInstance()->powA(proj_energy,-0.43); >> 1029 } >> 1030 // pi-p >> 1031 >> 1032 if(proj_momentum < 0.37) >> 1033 { >> 1034 hpXscv = 28.0 + 40*G4Exp(-(proj_momentum-0.29)*(proj_momentum-0.29)/0.07/0.07); >> 1035 } >> 1036 else if(proj_momentum<0.65) >> 1037 { >> 1038 hpXscv = 26+110*(G4Log(proj_momentum/0.48))*(G4Log(proj_momentum/0.48)); >> 1039 } >> 1040 else if(proj_momentum<1.3) >> 1041 { >> 1042 hpXscv = 36.1+ >> 1043 10*G4Exp(-(proj_momentum-0.72)*(proj_momentum-0.72)/0.06/0.06)+ >> 1044 24*G4Exp(-(proj_momentum-1.015)*(proj_momentum-1.015)/0.075/0.075); >> 1045 } >> 1046 else if(proj_momentum<3.0) >> 1047 { >> 1048 hpXscv = 36.1+0.079-4.313*G4Log(proj_momentum)+ >> 1049 3*G4Exp(-(proj_momentum-2.1)*(proj_momentum-2.1)/0.4/0.4)+ >> 1050 1.5*G4Exp(-(proj_momentum-1.4)*(proj_momentum-1.4)/0.12/0.12); >> 1051 } >> 1052 else // mb >> 1053 { >> 1054 hpXscv = 10.6+2*G4Log(proj_energy)+30*G4Pow::GetInstance()->powA(proj_energy,-0.43); >> 1055 } >> 1056 xsection = hpXscv*zz + hnXscv*nn; >> 1057 } >> 1058 else if(theParticle == theKPlus) >> 1059 { >> 1060 xsection = zz*( 17.91 + B*G4Pow::GetInstance()->powA(G4Log(sMand/s0),2.) >> 1061 + 7.14*G4Pow::GetInstance()->powA(sMand,-eta1) - 13.45*G4Pow::GetInstance()->powA(sMand,-eta2)); >> 1062 >> 1063 xsection += nn*( 17.87 + B*G4Pow::GetInstance()->powA(G4Log(sMand/s0),2.) >> 1064 + 5.17*G4Pow::GetInstance()->powA(sMand,-eta1) - 7.23*G4Pow::GetInstance()->powA(sMand,-eta2)); >> 1065 } >> 1066 else if(theParticle == theKMinus) >> 1067 { >> 1068 xsection = zz*( 17.91 + B*G4Pow::GetInstance()->powA(G4Log(sMand/s0),2.) >> 1069 + 7.14*G4Pow::GetInstance()->powA(sMand,-eta1) + 13.45*G4Pow::GetInstance()->powA(sMand,-eta2)); >> 1070 >> 1071 xsection += nn*( 17.87 + B*G4Pow::GetInstance()->powA(G4Log(sMand/s0),2.) >> 1072 + 5.17*G4Pow::GetInstance()->powA(sMand,-eta1) + 7.23*G4Pow::GetInstance()->powA(sMand,-eta2)); 396 } 1073 } 397 return res; << 1074 else if(theParticle == theSMinus) >> 1075 { >> 1076 xsection = aa*( 35.20 + B*G4Pow::GetInstance()->powA(G4Log(sMand/s0),2.) >> 1077 - 199.*G4Pow::GetInstance()->powA(sMand,-eta1) + 264.*G4Pow::GetInstance()->powA(sMand,-eta2)); >> 1078 } >> 1079 else if(theParticle == theGamma) // modify later on >> 1080 { >> 1081 xsection = aa*( 0.0 + B*G4Pow::GetInstance()->powA(G4Log(sMand/s0),2.) >> 1082 + 0.032*G4Pow::GetInstance()->powA(sMand,-eta1) - 0.0*G4Pow::GetInstance()->powA(sMand,-eta2)); >> 1083 >> 1084 } >> 1085 else // as proton ??? >> 1086 { >> 1087 xsection = zz*( 35.45 + B*G4Pow::GetInstance()->powA(G4Log(sMand/s0),2.) >> 1088 + 42.53*G4Pow::GetInstance()->powA(sMand,-eta1) - 33.34*G4Pow::GetInstance()->powA(sMand,-eta2)); >> 1089 >> 1090 xsection += nn*( 35.80 + B*G4Pow::GetInstance()->powA(G4Log(sMand/s0),2.) >> 1091 + 40.15*G4Pow::GetInstance()->powA(sMand,-eta1) - 30.*G4Pow::GetInstance()->powA(sMand,-eta2)); >> 1092 } >> 1093 xsection *= millibarn; // parametrised in mb >> 1094 return xsection; >> 1095 } >> 1096 >> 1097 /* >> 1098 G4double >> 1099 G4ComponentGGHadronNucleusXsc::GetKaonNucleonXscVector(const G4DynamicParticle* aParticle, >> 1100 G4int At, G4int Zt) >> 1101 { >> 1102 G4double Tkin, logTkin, xsc, xscP, xscN; >> 1103 const G4ParticleDefinition* theParticle = aParticle->GetDefinition(); >> 1104 >> 1105 G4int Nt = At-Zt; // number of neutrons >> 1106 if (Nt < 0) Nt = 0; >> 1107 >> 1108 Tkin = aParticle->GetKineticEnergy(); // Tkin in MeV >> 1109 >> 1110 if( Tkin > 70*GeV ) return GetHadronNucleonXscPDG(aParticle,At,Zt); >> 1111 >> 1112 logTkin = G4Log(Tkin); // Tkin in MeV!!! >> 1113 >> 1114 if( theParticle == theKPlus ) >> 1115 { >> 1116 xscP = hnXsc->GetKpProtonTotXscVector(logTkin); >> 1117 xscN = hnXsc->GetKpNeutronTotXscVector(logTkin); >> 1118 } >> 1119 else if( theParticle == theKMinus ) >> 1120 { >> 1121 xscP = hnXsc->GetKmProtonTotXscVector(logTkin); >> 1122 xscN = hnXsc->GetKmNeutronTotXscVector(logTkin); >> 1123 } >> 1124 else // K-zero as half of K+ and K- >> 1125 { >> 1126 xscP = (hnXsc->GetKpProtonTotXscVector(logTkin)+hnXsc->GetKmProtonTotXscVector(logTkin))*0.5; >> 1127 xscN = (hnXsc->GetKpNeutronTotXscVector(logTkin)+hnXsc->GetKmNeutronTotXscVector(logTkin))*0.5; >> 1128 } >> 1129 xsc = xscP*Zt + xscN*Nt; >> 1130 return xsc; 398 } 1131 } >> 1132 */ 399 1133 400 ////////////////////////////////////////////// 1134 ///////////////////////////////////////////////////////////////////////////////////// 401 // 1135 // 402 // Returns hadron-nucleon inelastic cross-sect 1136 // Returns hadron-nucleon inelastic cross-section based on proper parametrisation 403 1137 404 G4double 1138 G4double 405 G4ComponentGGHadronNucleusXsc::GetHNinelasticX 1139 G4ComponentGGHadronNucleusXsc::GetHNinelasticXsc(const G4DynamicParticle* aParticle, 406 << 1140 const G4Element* anElement) 407 { 1141 { 408 G4int At = G4lrint(anElement->GetN()); // n 1142 G4int At = G4lrint(anElement->GetN()); // number of nucleons 409 G4int Zt = anElement->GetZasInt(); // n << 1143 G4int Zt = G4lrint(anElement->GetZ()); // number of protons 410 1144 411 return GetHNinelasticXsc(aParticle, At, Zt); 1145 return GetHNinelasticXsc(aParticle, At, Zt); 412 } 1146 } 413 1147 414 ////////////////////////////////////////////// 1148 ///////////////////////////////////////////////////////////////////////////////////// 415 // 1149 // 416 // Returns hadron-nucleon inelastic cross-sect << 1150 // Returns hadron-nucleon inelastic cross-section based on FTF-parametrisation 417 1151 418 G4double G4ComponentGGHadronNucleusXsc::GetHNi << 1152 G4double 419 const G4DynamicParticle* aParticle, G << 1153 G4ComponentGGHadronNucleusXsc::GetHNinelasticXsc(const G4DynamicParticle* aParticle, >> 1154 G4int At, G4int Zt) 420 { 1155 { 421 const G4ParticleDefinition* hadron = aPartic 1156 const G4ParticleDefinition* hadron = aParticle->GetDefinition(); 422 G4double e = aParticle->GetKineticEnergy(); << 1157 G4double sumInelastic; 423 G4int Nt = std::max(At - Zt, 0); << 1158 G4int Nt = At - Zt; 424 << 1159 if(Nt < 0) Nt = 0; 425 hnXsc->HadronNucleonXscNS(hadron, theProton, << 1160 426 G4double sumInelastic = Zt*hnXsc->GetInelast << 1161 if( hadron == theKPlus ) 427 if(Nt > 0) { << 1162 { 428 hnXsc->HadronNucleonXscNS(hadron, theNeutr << 1163 sumInelastic = GetHNinelasticXscVU(aParticle, At, Zt); 429 sumInelastic += Nt*hnXsc->GetInelasticHadr << 430 } 1164 } >> 1165 else >> 1166 { >> 1167 //sumInelastic = Zt*GetHadronNucleonXscMK(aParticle, theProton); >> 1168 // sumInelastic += Nt*GetHadronNucleonXscMK(aParticle, theNeutron); >> 1169 sumInelastic = G4double(Zt)*GetHadronNucleonXscNS(aParticle, 1, 1); >> 1170 sumInelastic += G4double(Nt)*GetHadronNucleonXscNS(aParticle, 1, 0); >> 1171 } 431 return sumInelastic; 1172 return sumInelastic; 432 } 1173 } 433 1174 >> 1175 434 ////////////////////////////////////////////// 1176 ///////////////////////////////////////////////////////////////////////////////////// 435 // 1177 // 436 // Returns hadron-nucleon inelastic cross-sect 1178 // Returns hadron-nucleon inelastic cross-section based on FTF-parametrisation 437 1179 438 G4double G4ComponentGGHadronNucleusXsc::GetHNi << 1180 G4double 439 const G4DynamicParticle* aParticle, G << 1181 G4ComponentGGHadronNucleusXsc::GetHNinelasticXscVU(const G4DynamicParticle* aParticle, >> 1182 G4int At, G4int Zt) 440 { 1183 { 441 const G4ParticleDefinition* hadron = aPartic << 1184 G4int PDGcode = aParticle->GetDefinition()->GetPDGEncoding(); 442 G4double e = aParticle->GetKineticEnergy(); << 1185 G4int absPDGcode = std::abs(PDGcode); 443 G4int Nt = std::max(At - Zt, 0); << 1186 >> 1187 G4double Elab = aParticle->GetTotalEnergy(); >> 1188 // (s - 2*0.88*GeV*GeV)/(2*0.939*GeV)/GeV; >> 1189 G4double Plab = aParticle->GetMomentum().mag(); >> 1190 // std::sqrt(Elab * Elab - 0.88); >> 1191 >> 1192 Elab /= GeV; >> 1193 Plab /= GeV; >> 1194 >> 1195 G4double LogPlab = G4Log( Plab ); >> 1196 G4double sqrLogPlab = LogPlab * LogPlab; 444 1197 445 hnXsc->HadronNucleonXscVU(hadron, theProton, << 1198 //G4cout<<"Plab = "<<Plab<<G4endl; 446 G4double sumInelastic = Zt*hnXsc->GetInelast << 1199 447 if(Nt > 0) { << 1200 G4double NumberOfTargetProtons = G4double(Zt); 448 hnXsc->HadronNucleonXscVU(hadron, theNeutr << 1201 G4double NumberOfTargetNucleons = G4double(At); 449 sumInelastic += Nt*hnXsc->GetInelasticHadr << 1202 G4double NumberOfTargetNeutrons = NumberOfTargetNucleons - NumberOfTargetProtons; >> 1203 >> 1204 if(NumberOfTargetNeutrons < 0.0) NumberOfTargetNeutrons = 0.0; >> 1205 >> 1206 G4double Xtotal, Xelastic, Xinelastic; >> 1207 >> 1208 if( absPDGcode > 1000 ) //------Projectile is baryon -------- >> 1209 { >> 1210 G4double XtotPP = 48.0 + 0. *G4Pow::GetInstance()->powA(Plab, 0. ) + >> 1211 0.522*sqrLogPlab - 4.51*LogPlab; >> 1212 >> 1213 G4double XtotPN = 47.3 + 0. *G4Pow::GetInstance()->powA(Plab, 0. ) + >> 1214 0.513*sqrLogPlab - 4.27*LogPlab; >> 1215 >> 1216 G4double XelPP = 11.9 + 26.9*G4Pow::GetInstance()->powA(Plab,-1.21) + >> 1217 0.169*sqrLogPlab - 1.85*LogPlab; >> 1218 >> 1219 G4double XelPN = 11.9 + 26.9*G4Pow::GetInstance()->powA(Plab,-1.21) + >> 1220 0.169*sqrLogPlab - 1.85*LogPlab; >> 1221 >> 1222 Xtotal = (NumberOfTargetProtons * XtotPP + >> 1223 NumberOfTargetNeutrons * XtotPN); >> 1224 >> 1225 Xelastic = (NumberOfTargetProtons * XelPP + >> 1226 NumberOfTargetNeutrons * XelPN); 450 } 1227 } 451 return sumInelastic; << 1228 else if( PDGcode == 211 ) //------Projectile is PionPlus ------- >> 1229 { >> 1230 G4double XtotPiP = 16.4 + 19.3 *G4Pow::GetInstance()->powA(Plab,-0.42) + >> 1231 0.19 *sqrLogPlab - 0.0 *LogPlab; >> 1232 >> 1233 G4double XtotPiN = 33.0 + 14.0 *G4Pow::GetInstance()->powA(Plab,-1.36) + >> 1234 0.456*sqrLogPlab - 4.03*LogPlab; >> 1235 >> 1236 G4double XelPiP = 0.0 + 11.4*G4Pow::GetInstance()->powA(Plab,-0.40) + >> 1237 0.079*sqrLogPlab - 0.0 *LogPlab; >> 1238 >> 1239 G4double XelPiN = 1.76 + 11.2*G4Pow::GetInstance()->powA(Plab,-0.64) + >> 1240 0.043*sqrLogPlab - 0.0 *LogPlab; >> 1241 >> 1242 Xtotal = ( NumberOfTargetProtons * XtotPiP + >> 1243 NumberOfTargetNeutrons * XtotPiN ); >> 1244 >> 1245 Xelastic = ( NumberOfTargetProtons * XelPiP + >> 1246 NumberOfTargetNeutrons * XelPiN ); >> 1247 } >> 1248 else if( PDGcode == -211 ) //------Projectile is PionMinus ------- >> 1249 { >> 1250 G4double XtotPiP = 33.0 + 14.0 *G4Pow::GetInstance()->powA(Plab,-1.36) + >> 1251 0.456*sqrLogPlab - 4.03*LogPlab; >> 1252 >> 1253 G4double XtotPiN = 16.4 + 19.3 *G4Pow::GetInstance()->powA(Plab,-0.42) + >> 1254 0.19 *sqrLogPlab - 0.0 *LogPlab; >> 1255 >> 1256 G4double XelPiP = 1.76 + 11.2*G4Pow::GetInstance()->powA(Plab,-0.64) + >> 1257 0.043*sqrLogPlab - 0.0 *LogPlab; >> 1258 >> 1259 G4double XelPiN = 0.0 + 11.4*G4Pow::GetInstance()->powA(Plab,-0.40) + >> 1260 0.079*sqrLogPlab - 0.0 *LogPlab; >> 1261 >> 1262 Xtotal = ( NumberOfTargetProtons * XtotPiP + >> 1263 NumberOfTargetNeutrons * XtotPiN ); >> 1264 >> 1265 Xelastic = ( NumberOfTargetProtons * XelPiP + >> 1266 NumberOfTargetNeutrons * XelPiN ); >> 1267 } >> 1268 else if( PDGcode == 111 ) //------Projectile is PionZero ------- >> 1269 { >> 1270 G4double XtotPiP =(16.4 + 19.3 *G4Pow::GetInstance()->powA(Plab,-0.42) + >> 1271 0.19 *sqrLogPlab - 0.0 *LogPlab + //Pi+ >> 1272 33.0 + 14.0 *G4Pow::GetInstance()->powA(Plab,-1.36) + >> 1273 0.456*sqrLogPlab - 4.03*LogPlab)/2; //Pi- >> 1274 >> 1275 G4double XtotPiN =(33.0 + 14.0 *G4Pow::GetInstance()->powA(Plab,-1.36) + >> 1276 0.456*sqrLogPlab - 4.03*LogPlab + //Pi+ >> 1277 16.4 + 19.3 *G4Pow::GetInstance()->powA(Plab,-0.42) + >> 1278 0.19 *sqrLogPlab - 0.0 *LogPlab)/2; //Pi- >> 1279 >> 1280 G4double XelPiP =( 0.0 + 11.4*G4Pow::GetInstance()->powA(Plab,-0.40) + >> 1281 0.079*sqrLogPlab - 0.0 *LogPlab + //Pi+ >> 1282 1.76 + 11.2*G4Pow::GetInstance()->powA(Plab,-0.64) + >> 1283 0.043*sqrLogPlab - 0.0 *LogPlab)/2; //Pi- >> 1284 >> 1285 G4double XelPiN =( 1.76 + 11.2*G4Pow::GetInstance()->powA(Plab,-0.64) + >> 1286 0.043*sqrLogPlab - 0.0 *LogPlab + //Pi+ >> 1287 0.0 + 11.4*G4Pow::GetInstance()->powA(Plab,-0.40) + >> 1288 0.079*sqrLogPlab - 0.0 *LogPlab)/2; //Pi- >> 1289 >> 1290 Xtotal = ( NumberOfTargetProtons * XtotPiP + >> 1291 NumberOfTargetNeutrons * XtotPiN ); >> 1292 >> 1293 Xelastic = ( NumberOfTargetProtons * XelPiP + >> 1294 NumberOfTargetNeutrons * XelPiN ); >> 1295 } >> 1296 else if( PDGcode == 321 ) //------Projectile is KaonPlus ------- >> 1297 { >> 1298 G4double XtotKP = 18.1 + 0. *G4Pow::GetInstance()->powA(Plab, 0. ) + >> 1299 0.26 *sqrLogPlab - 1.0 *LogPlab; >> 1300 G4double XtotKN = 18.7 + 0. *G4Pow::GetInstance()->powA(Plab, 0. ) + >> 1301 0.21 *sqrLogPlab - 0.89*LogPlab; >> 1302 >> 1303 G4double XelKP = 5.0 + 8.1*G4Pow::GetInstance()->powA(Plab,-1.8 ) + >> 1304 0.16 *sqrLogPlab - 1.3 *LogPlab; >> 1305 >> 1306 G4double XelKN = 7.3 + 0. *G4Pow::GetInstance()->powA(Plab,-0. ) + >> 1307 0.29 *sqrLogPlab - 2.4 *LogPlab; >> 1308 >> 1309 Xtotal = ( NumberOfTargetProtons * XtotKP + >> 1310 NumberOfTargetNeutrons * XtotKN ); >> 1311 >> 1312 Xelastic = ( NumberOfTargetProtons * XelKP + >> 1313 NumberOfTargetNeutrons * XelKN ); >> 1314 } >> 1315 else if( PDGcode ==-321 ) //------Projectile is KaonMinus ------ >> 1316 { >> 1317 G4double XtotKP = 32.1 + 0. *G4Pow::GetInstance()->powA(Plab, 0. ) + >> 1318 0.66 *sqrLogPlab - 5.6 *LogPlab; >> 1319 G4double XtotKN = 25.2 + 0. *G4Pow::GetInstance()->powA(Plab, 0. ) + >> 1320 0.38 *sqrLogPlab - 2.9 *LogPlab; >> 1321 >> 1322 G4double XelKP = 7.3 + 0. *G4Pow::GetInstance()->powA(Plab,-0. ) + >> 1323 0.29 *sqrLogPlab - 2.4 *LogPlab; >> 1324 >> 1325 G4double XelKN = 5.0 + 8.1*G4Pow::GetInstance()->powA(Plab,-1.8 ) + >> 1326 0.16 *sqrLogPlab - 1.3 *LogPlab; >> 1327 >> 1328 Xtotal = ( NumberOfTargetProtons * XtotKP + >> 1329 NumberOfTargetNeutrons * XtotKN ); >> 1330 >> 1331 Xelastic = ( NumberOfTargetProtons * XelKP + >> 1332 NumberOfTargetNeutrons * XelKN ); >> 1333 } >> 1334 else if( PDGcode == 311 ) //------Projectile is KaonZero ------ >> 1335 { >> 1336 G4double XtotKP = ( 18.1 + 0. *G4Pow::GetInstance()->powA(Plab, 0. ) + >> 1337 0.26 *sqrLogPlab - 1.0 *LogPlab + //K+ >> 1338 32.1 + 0. *G4Pow::GetInstance()->powA(Plab, 0. ) + >> 1339 0.66 *sqrLogPlab - 5.6 *LogPlab)/2; //K- >> 1340 >> 1341 G4double XtotKN = ( 18.7 + 0. *G4Pow::GetInstance()->powA(Plab, 0. ) + >> 1342 0.21 *sqrLogPlab - 0.89*LogPlab + //K+ >> 1343 25.2 + 0. *G4Pow::GetInstance()->powA(Plab, 0. ) + >> 1344 0.38 *sqrLogPlab - 2.9 *LogPlab)/2; //K- >> 1345 >> 1346 G4double XelKP = ( 5.0 + 8.1*G4Pow::GetInstance()->powA(Plab,-1.8 ) >> 1347 + 0.16 *sqrLogPlab - 1.3 *LogPlab + //K+ >> 1348 7.3 + 0. *G4Pow::GetInstance()->powA(Plab,-0. ) + >> 1349 0.29 *sqrLogPlab - 2.4 *LogPlab)/2; //K- >> 1350 >> 1351 G4double XelKN = ( 7.3 + 0. *G4Pow::GetInstance()->powA(Plab,-0. ) + >> 1352 0.29 *sqrLogPlab - 2.4 *LogPlab + //K+ >> 1353 5.0 + 8.1*G4Pow::GetInstance()->powA(Plab,-1.8 ) + >> 1354 0.16 *sqrLogPlab - 1.3 *LogPlab)/2; //K- >> 1355 >> 1356 Xtotal = ( NumberOfTargetProtons * XtotKP + >> 1357 NumberOfTargetNeutrons * XtotKN ); >> 1358 >> 1359 Xelastic = ( NumberOfTargetProtons * XelKP + >> 1360 NumberOfTargetNeutrons * XelKN ); >> 1361 } >> 1362 else //------Projectile is undefined, Nucleon assumed >> 1363 { >> 1364 G4double XtotPP = 48.0 + 0. *G4Pow::GetInstance()->powA(Plab, 0. ) + >> 1365 0.522*sqrLogPlab - 4.51*LogPlab; >> 1366 >> 1367 G4double XtotPN = 47.3 + 0. *G4Pow::GetInstance()->powA(Plab, 0. ) + >> 1368 0.513*sqrLogPlab - 4.27*LogPlab; >> 1369 >> 1370 G4double XelPP = 11.9 + 26.9*G4Pow::GetInstance()->powA(Plab,-1.21) + >> 1371 0.169*sqrLogPlab - 1.85*LogPlab; >> 1372 G4double XelPN = 11.9 + 26.9*G4Pow::GetInstance()->powA(Plab,-1.21) + >> 1373 0.169*sqrLogPlab - 1.85*LogPlab; >> 1374 >> 1375 Xtotal = ( NumberOfTargetProtons * XtotPP + >> 1376 NumberOfTargetNeutrons * XtotPN ); >> 1377 >> 1378 Xelastic = ( NumberOfTargetProtons * XelPP + >> 1379 NumberOfTargetNeutrons * XelPN ); >> 1380 } >> 1381 Xinelastic = Xtotal - Xelastic; >> 1382 >> 1383 if( Xinelastic < 0.) Xinelastic = 0.; >> 1384 >> 1385 return Xinelastic*= millibarn; 452 } 1386 } 453 1387 454 ////////////////////////////////////////////// << 1388 //////////////////////////////////////////////////////////////////////////////////// 455 // 1389 // 456 // 1390 // 457 1391 458 void G4ComponentGGHadronNucleusXsc::Descriptio << 1392 G4double >> 1393 G4ComponentGGHadronNucleusXsc::GetNucleusRadius(const G4DynamicParticle* , >> 1394 const G4Element* anElement) >> 1395 { >> 1396 G4int At = G4lrint(anElement->GetN()); >> 1397 G4double oneThird = 1.0/3.0; >> 1398 G4double cubicrAt = G4Pow::GetInstance()->powA(G4double(At), oneThird); >> 1399 >> 1400 G4double R; // = fRadiusConst*cubicrAt; >> 1401 /* >> 1402 G4double tmp = G4Pow::GetInstance()->powA( cubicrAt-1., 3.); >> 1403 tmp += At; >> 1404 tmp *= 0.5; >> 1405 >> 1406 if (At > 20.) // 20. >> 1407 { >> 1408 R = fRadiusConst*G4Pow::GetInstance()->powA (tmp, oneThird); >> 1409 } >> 1410 else >> 1411 { >> 1412 R = fRadiusConst*cubicrAt; >> 1413 } >> 1414 */ >> 1415 >> 1416 R = fRadiusConst*cubicrAt; >> 1417 >> 1418 G4double meanA = 21.; >> 1419 >> 1420 G4double tauA1 = 40.; >> 1421 G4double tauA2 = 10.; >> 1422 G4double tauA3 = 5.; >> 1423 >> 1424 G4double a1 = 0.85; >> 1425 G4double b1 = 1. - a1; >> 1426 >> 1427 G4double b2 = 0.3; >> 1428 G4double b3 = 4.; >> 1429 >> 1430 if (At > 20) // 20. >> 1431 { >> 1432 R *= ( a1 + b1*G4Exp( -(At - meanA)/tauA1) ); >> 1433 } >> 1434 else if (At > 3) >> 1435 { >> 1436 R *= ( 1.0 + b2*( 1. - G4Exp( (At - meanA)/tauA2) ) ); >> 1437 } >> 1438 else >> 1439 { >> 1440 R *= ( 1.0 + b3*( 1. - G4Exp( (At - meanA)/tauA3) ) ); >> 1441 } >> 1442 return R; >> 1443 >> 1444 } >> 1445 //////////////////////////////////////////////////////////////////////////////////// >> 1446 // >> 1447 // >> 1448 >> 1449 G4double >> 1450 G4ComponentGGHadronNucleusXsc::GetNucleusRadius(G4int At) >> 1451 { >> 1452 G4double oneThird = 1.0/3.0; >> 1453 G4double cubicrAt = G4Pow::GetInstance()->powA(G4double(At), oneThird); >> 1454 >> 1455 G4double R; // = fRadiusConst*cubicrAt; >> 1456 >> 1457 /* >> 1458 G4double tmp = G4Pow::GetInstance()->powA( cubicrAt-1., 3.); >> 1459 tmp += At; >> 1460 tmp *= 0.5; >> 1461 >> 1462 if (At > 20.) >> 1463 { >> 1464 R = fRadiusConst*G4Pow::GetInstance()->powA (tmp, oneThird); >> 1465 } >> 1466 else >> 1467 { >> 1468 R = fRadiusConst*cubicrAt; >> 1469 } >> 1470 */ >> 1471 >> 1472 R = fRadiusConst*cubicrAt; >> 1473 >> 1474 G4double meanA = 20.; >> 1475 G4double tauA = 20.; >> 1476 >> 1477 if (At > 20) // 20. >> 1478 { >> 1479 R *= ( 0.8 + 0.2*G4Exp( -(G4double(At) - meanA)/tauA) ); >> 1480 } >> 1481 else >> 1482 { >> 1483 R *= ( 1.0 + 0.1*( 1. - G4Exp( (G4double(At) - meanA)/tauA) ) ); >> 1484 } >> 1485 >> 1486 return R; >> 1487 } >> 1488 >> 1489 //////////////////////////////////////////////////////////////////////////////////// >> 1490 // >> 1491 // >> 1492 >> 1493 G4double G4ComponentGGHadronNucleusXsc::CalculateEcmValue( const G4double mp , >> 1494 const G4double mt , >> 1495 const G4double Plab ) >> 1496 { >> 1497 G4double Elab = std::sqrt ( mp * mp + Plab * Plab ); >> 1498 G4double Ecm = std::sqrt ( mp * mp + mt * mt + 2 * Elab * mt ); >> 1499 // G4double Pcm = Plab * mt / Ecm; >> 1500 // G4double KEcm = std::sqrt ( Pcm * Pcm + mp * mp ) - mp; >> 1501 >> 1502 return Ecm ; // KEcm; >> 1503 } >> 1504 >> 1505 //////////////////////////////////////////////////////////////////////////////////// >> 1506 // >> 1507 // >> 1508 >> 1509 G4double G4ComponentGGHadronNucleusXsc::CalcMandelstamS( const G4double mp , >> 1510 const G4double mt , >> 1511 const G4double Plab ) >> 1512 { >> 1513 G4double Elab = std::sqrt ( mp * mp + Plab * Plab ); >> 1514 G4double sMand = mp*mp + mt*mt + 2*Elab*mt ; >> 1515 >> 1516 return sMand; >> 1517 } >> 1518 >> 1519 //////////////////////////////////////////////////////////////////////////////////// >> 1520 // >> 1521 // >> 1522 >> 1523 void G4ComponentGGHadronNucleusXsc::CrossSectionDescription(std::ostream& outFile) const 459 { 1524 { 460 outFile << "G4ComponentGGHadronNucleusXsc ca 1525 outFile << "G4ComponentGGHadronNucleusXsc calculates total, inelastic and\n" 461 << "elastic cross sections for hadro 1526 << "elastic cross sections for hadron-nucleus cross sections using\n" 462 << "the Glauber model with Gribov co 1527 << "the Glauber model with Gribov corrections. It is valid for all\n" 463 << "targets except hydrogen, and for 1528 << "targets except hydrogen, and for incident p, pbar, n, sigma-,\n" 464 << "pi+, pi-, K+, K- and gammas with 1529 << "pi+, pi-, K+, K- and gammas with energies above 3 GeV. This is\n" 465 << "a cross section component which 1530 << "a cross section component which is to be used to build a cross\n" 466 << "data set.\n"; 1531 << "data set.\n"; 467 } 1532 } 468 1533 469 1534 470 ////////////////////////////////////////////// 1535 /////////////////////////////////////////////////////////////////////////////// 471 // 1536 // 472 // Correction arrays for GG <-> Bar changea at 1537 // Correction arrays for GG <-> Bar changea at ~ 90 GeV 473 1538 474 const G4double G4ComponentGGHadronNucleusXsc:: 1539 const G4double G4ComponentGGHadronNucleusXsc::fNeutronBarCorrectionTot[93] = { 475 1540 476 1.0, 1.0, 1.42517e+00, // 1.118517e+00, 1541 1.0, 1.0, 1.42517e+00, // 1.118517e+00, 477 1.082002e+00, 1.116171e+00, 1.078747e+00, 1.06 1542 1.082002e+00, 1.116171e+00, 1.078747e+00, 1.061315e+00, 478 1.058205e+00, 1.082663e+00, 1.068500e+00, 1.07 1543 1.058205e+00, 1.082663e+00, 1.068500e+00, 1.076912e+00, 1.083475e+00, 1.079117e+00, 479 1.071856e+00, 1.071990e+00, 1.073774e+00, 1.07 1544 1.071856e+00, 1.071990e+00, 1.073774e+00, 1.079356e+00, 1.081314e+00, 1.082056e+00, 480 1.090772e+00, 1.096776e+00, 1.095828e+00, 1.09 1545 1.090772e+00, 1.096776e+00, 1.095828e+00, 1.097678e+00, 1.099157e+00, 1.103677e+00, 481 1.105132e+00, 1.109806e+00, 1.110816e+00, 1.11 1546 1.105132e+00, 1.109806e+00, 1.110816e+00, 1.117378e+00, 1.115165e+00, 1.115710e+00, 482 1.111855e+00, 1.110482e+00, 1.110112e+00, 1.10 1547 1.111855e+00, 1.110482e+00, 1.110112e+00, 1.106676e+00, 1.108706e+00, 1.105549e+00, 483 1.106318e+00, 1.106242e+00, 1.107672e+00, 1.10 1548 1.106318e+00, 1.106242e+00, 1.107672e+00, 1.107342e+00, 1.108119e+00, 1.106655e+00, 484 1.102588e+00, 1.096657e+00, 1.092920e+00, 1.08 1549 1.102588e+00, 1.096657e+00, 1.092920e+00, 1.086629e+00, 1.083592e+00, 1.076030e+00, 485 1.083777e+00, 1.089460e+00, 1.086545e+00, 1.07 1550 1.083777e+00, 1.089460e+00, 1.086545e+00, 1.079924e+00, 1.082218e+00, 1.077798e+00, 486 1.077062e+00, 1.072825e+00, 1.072241e+00, 1.07 1551 1.077062e+00, 1.072825e+00, 1.072241e+00, 1.072104e+00, 1.072490e+00, 1.069829e+00, 487 1.070398e+00, 1.065458e+00, 1.064968e+00, 1.06 1552 1.070398e+00, 1.065458e+00, 1.064968e+00, 1.060524e+00, 1.060048e+00, 1.057620e+00, 488 1.056428e+00, 1.055366e+00, 1.055017e+00, 1.05 1553 1.056428e+00, 1.055366e+00, 1.055017e+00, 1.052304e+00, 1.051767e+00, 1.049728e+00, 489 1.048745e+00, 1.047399e+00, 1.045876e+00, 1.04 1554 1.048745e+00, 1.047399e+00, 1.045876e+00, 1.042972e+00, 1.041824e+00, 1.039993e+00, 490 1.039021e+00, 1.036627e+00, 1.034176e+00, 1.03 1555 1.039021e+00, 1.036627e+00, 1.034176e+00, 1.032526e+00, 1.033633e+00, 1.036107e+00, 491 1.037803e+00, 1.031266e+00, 1.032991e+00, 1.03 1556 1.037803e+00, 1.031266e+00, 1.032991e+00, 1.033284e+00, 1.035015e+00, 1.033945e+00, 492 1.037075e+00, 1.034721e+00 1557 1.037075e+00, 1.034721e+00 493 1558 494 }; 1559 }; 495 1560 496 const G4double G4ComponentGGHadronNucleusXsc:: 1561 const G4double G4ComponentGGHadronNucleusXsc::fNeutronBarCorrectionIn[93] = { 497 1562 498 1.0, 1.0, 1.167421e+00, 1.156250e+00, 1.20 1563 1.0, 1.0, 1.167421e+00, 1.156250e+00, 1.205364e+00, 1.154225e+00, 1.120391e+00, // 6 499 1.124632e+00, 1.129460e+00, 1.107863e+00, 1.10 1564 1.124632e+00, 1.129460e+00, 1.107863e+00, 1.102152e+00, 1.104593e+00, 1.100285e+00, // 12 500 1.098450e+00, 1.092677e+00, 1.101124e+00, 1.10 1565 1.098450e+00, 1.092677e+00, 1.101124e+00, 1.106461e+00, 1.115049e+00, 1.123903e+00, // 18 501 1.126661e+00, 1.131259e+00, 1.133949e+00, 1.13 1566 1.126661e+00, 1.131259e+00, 1.133949e+00, 1.134185e+00, 1.133767e+00, 1.132813e+00, // 24 502 1.131515e+00, 1.144338e+00, // 1.130338e+00, 1567 1.131515e+00, 1.144338e+00, // 1.130338e+00, 503 1.134171e+00, 1.139206e+00, 1.148474e+00, // 1 1568 1.134171e+00, 1.139206e+00, 1.148474e+00, // 1.141474e+00, 504 1.142189e+00, 1569 1.142189e+00, 505 1.140725e+00, 1.140100e+00, 1.139848e+00, 1.13 1570 1.140725e+00, 1.140100e+00, 1.139848e+00, 1.137674e+00, 1.138645e+00, 1.136339e+00, 506 1.136439e+00, 1.135946e+00, 1.136431e+00, 1.13 1571 1.136439e+00, 1.135946e+00, 1.136431e+00, 1.135702e+00, 1.135703e+00, 1.134113e+00, 507 1.131935e+00, 1.128381e+00, 1.126373e+00, 1.12 1572 1.131935e+00, 1.128381e+00, 1.126373e+00, 1.122453e+00, 1.120908e+00, 1.115953e+00, 508 1.115947e+00, 1.114426e+00, 1.111749e+00, 1.10 1573 1.115947e+00, 1.114426e+00, 1.111749e+00, 1.106207e+00, 1.107494e+00, 1.103622e+00, 509 1.102576e+00, 1.098816e+00, 1.097889e+00, 1.09 1574 1.102576e+00, 1.098816e+00, 1.097889e+00, 1.097306e+00, 1.097130e+00, 1.094578e+00, 510 1.094552e+00, 1.090222e+00, 1.089358e+00, 1.08 1575 1.094552e+00, 1.090222e+00, 1.089358e+00, 1.085409e+00, 1.084560e+00, 1.082182e+00, 511 1.080773e+00, 1.079464e+00, 1.078724e+00, 1.07 1576 1.080773e+00, 1.079464e+00, 1.078724e+00, 1.076121e+00, 1.075235e+00, 1.073159e+00, 512 1.071920e+00, 1.070395e+00, 1.069503e+00, 1.06 1577 1.071920e+00, 1.070395e+00, 1.069503e+00, 1.067525e+00, 1.066919e+00, 1.065779e+00, 513 1.065319e+00, 1.063730e+00, 1.062092e+00, 1.06 1578 1.065319e+00, 1.063730e+00, 1.062092e+00, 1.061085e+00, 1.059908e+00, 1.059815e+00, 514 1.059109e+00, 1.051920e+00, 1.051258e+00, 1.04 1579 1.059109e+00, 1.051920e+00, 1.051258e+00, 1.049473e+00, 1.048823e+00, 1.045984e+00, 515 1.046435e+00, 1.042614e+00 1580 1.046435e+00, 1.042614e+00 516 1581 517 }; 1582 }; 518 1583 519 const G4double G4ComponentGGHadronNucleusXsc:: 1584 const G4double G4ComponentGGHadronNucleusXsc::fProtonBarCorrectionTot[93] = { 520 1585 521 1.0, 1.0, 1586 1.0, 1.0, 522 1.118515e+00, 1.082000e+00, 1.116169e+00, 1.07 1587 1.118515e+00, 1.082000e+00, 1.116169e+00, 1.078745e+00, 1.061313e+00, 1.058203e+00, 523 1.082661e+00, 1.068498e+00, 1.076910e+00, 1.08 1588 1.082661e+00, 1.068498e+00, 1.076910e+00, 1.083474e+00, 1.079115e+00, 1.071854e+00, 524 1.071988e+00, 1.073772e+00, 1.079355e+00, 1.08 1589 1.071988e+00, 1.073772e+00, 1.079355e+00, 1.081312e+00, 1.082054e+00, 1.090770e+00, 525 1.096774e+00, 1.095827e+00, 1.097677e+00, 1.09 1590 1.096774e+00, 1.095827e+00, 1.097677e+00, 1.099156e+00, 1.103676e+00, 1.105130e+00, 526 1.109805e+00, 1.110814e+00, 1.117377e+00, 1.11 1591 1.109805e+00, 1.110814e+00, 1.117377e+00, 1.115163e+00, 1.115708e+00, 1.111853e+00, 527 1.110480e+00, 1.110111e+00, 1.106674e+00, 1.10 1592 1.110480e+00, 1.110111e+00, 1.106674e+00, 1.108705e+00, 1.105548e+00, 1.106317e+00, 528 1.106241e+00, 1.107671e+00, 1.107341e+00, 1.10 1593 1.106241e+00, 1.107671e+00, 1.107341e+00, 1.108118e+00, 1.106654e+00, 1.102586e+00, 529 1.096655e+00, 1.092918e+00, 1.086628e+00, 1.08 1594 1.096655e+00, 1.092918e+00, 1.086628e+00, 1.083590e+00, 1.076028e+00, 1.083776e+00, 530 1.089458e+00, 1.086543e+00, 1.079923e+00, 1.08 1595 1.089458e+00, 1.086543e+00, 1.079923e+00, 1.082216e+00, 1.077797e+00, 1.077061e+00, 531 1.072824e+00, 1.072239e+00, 1.072103e+00, 1.07 1596 1.072824e+00, 1.072239e+00, 1.072103e+00, 1.072488e+00, 1.069828e+00, 1.070396e+00, 532 1.065456e+00, 1.064966e+00, 1.060523e+00, 1.06 1597 1.065456e+00, 1.064966e+00, 1.060523e+00, 1.060047e+00, 1.057618e+00, 1.056427e+00, 533 1.055365e+00, 1.055016e+00, 1.052303e+00, 1.05 1598 1.055365e+00, 1.055016e+00, 1.052303e+00, 1.051766e+00, 1.049727e+00, 1.048743e+00, 534 1.047397e+00, 1.045875e+00, 1.042971e+00, 1.04 1599 1.047397e+00, 1.045875e+00, 1.042971e+00, 1.041823e+00, 1.039992e+00, 1.039019e+00, 535 1.036626e+00, 1.034175e+00, 1.032525e+00, 1.03 1600 1.036626e+00, 1.034175e+00, 1.032525e+00, 1.033632e+00, 1.036106e+00, 1.037802e+00, 536 1.031265e+00, 1.032990e+00, 1.033283e+00, 1.03 1601 1.031265e+00, 1.032990e+00, 1.033283e+00, 1.035014e+00, 1.033944e+00, 1.037074e+00, 537 1.034720e+00 1602 1.034720e+00 538 1603 539 }; 1604 }; 540 1605 541 const G4double G4ComponentGGHadronNucleusXsc:: 1606 const G4double G4ComponentGGHadronNucleusXsc::fProtonBarCorrectionIn[93] = { 542 1607 543 1.0, 1.0, 1608 1.0, 1.0, 544 1.147419e+00, // 1.167419e+00, 1609 1.147419e+00, // 1.167419e+00, 545 1.156248e+00, 1.205362e+00, 1.154224e+00, 1.12 1610 1.156248e+00, 1.205362e+00, 1.154224e+00, 1.120390e+00, 1.124630e+00, // 7 546 1.129459e+00, 1.107861e+00, 1.102151e+00, 1.10 1611 1.129459e+00, 1.107861e+00, 1.102151e+00, 1.104591e+00, 1.100284e+00, 1.098449e+00, // 13 547 1.092675e+00, 1.101122e+00, 1.106460e+00, 1.11 1612 1.092675e+00, 1.101122e+00, 1.106460e+00, 1.115048e+00, 1.123902e+00, 1.126659e+00, // 19 548 1.131258e+00, 1.133948e+00, 1.134183e+00, 1.13 1613 1.131258e+00, 1.133948e+00, 1.134183e+00, 1.133766e+00, 1.132812e+00, 1.131514e+00, // 25 549 1.140337e+00, // 1.130337e+00, 1614 1.140337e+00, // 1.130337e+00, 550 1615 551 1.134170e+00, 1.139205e+00, 1.151472e+00, // 1616 1.134170e+00, 1.139205e+00, 1.151472e+00, // 1.141472e+00, 552 1.142188e+00, 1.140724e+00, 1617 1.142188e+00, 1.140724e+00, 553 1.140099e+00, 1.139847e+00, 1.137672e+00, 1.13 1618 1.140099e+00, 1.139847e+00, 1.137672e+00, 1.138644e+00, 1.136338e+00, 1.136438e+00, 554 1.135945e+00, 1.136429e+00, 1.135701e+00, 1.13 1619 1.135945e+00, 1.136429e+00, 1.135701e+00, 1.135702e+00, 1.134112e+00, 1.131934e+00, 555 1.128380e+00, 1.126371e+00, 1.122452e+00, 1.12 1620 1.128380e+00, 1.126371e+00, 1.122452e+00, 1.120907e+00, 1.115952e+00, 1.115946e+00, 556 1.114425e+00, 1.111748e+00, 1.106205e+00, 1.10 1621 1.114425e+00, 1.111748e+00, 1.106205e+00, 1.107493e+00, 1.103621e+00, 1.102575e+00, 557 1.098815e+00, 1.097888e+00, 1.097305e+00, 1.09 1622 1.098815e+00, 1.097888e+00, 1.097305e+00, 1.097129e+00, 1.094577e+00, 1.094551e+00, 558 1.090221e+00, 1.089357e+00, 1.085408e+00, 1.08 1623 1.090221e+00, 1.089357e+00, 1.085408e+00, 1.084559e+00, 1.082181e+00, 1.080772e+00, 559 1.079463e+00, 1.078723e+00, 1.076120e+00, 1.07 1624 1.079463e+00, 1.078723e+00, 1.076120e+00, 1.075234e+00, 1.073158e+00, 1.071919e+00, 560 1.070394e+00, 1.069502e+00, 1.067524e+00, 1.06 1625 1.070394e+00, 1.069502e+00, 1.067524e+00, 1.066918e+00, 1.065778e+00, 1.065318e+00, 561 1.063729e+00, 1.062091e+00, 1.061084e+00, 1.05 1626 1.063729e+00, 1.062091e+00, 1.061084e+00, 1.059907e+00, 1.059814e+00, 1.059108e+00, 562 1.051919e+00, 1.051257e+00, 1.049472e+00, 1.04 1627 1.051919e+00, 1.051257e+00, 1.049472e+00, 1.048822e+00, 1.045983e+00, 1.046434e+00, 563 1.042613e+00 1628 1.042613e+00 564 1629 565 }; 1630 }; 566 1631 567 1632 568 const G4double G4ComponentGGHadronNucleusXsc:: 1633 const G4double G4ComponentGGHadronNucleusXsc::fPionPlusBarCorrectionTot[93] = { 569 1634 570 1.0, 1.0, 1635 1.0, 1.0, 571 1.075927e+00, 1.074407e+00, 1.126098e+00, 1.10 1636 1.075927e+00, 1.074407e+00, 1.126098e+00, 1.100127e+00, 1.089742e+00, 1.083536e+00, 572 1.089988e+00, 1.103566e+00, 1.096922e+00, 1.12 1637 1.089988e+00, 1.103566e+00, 1.096922e+00, 1.126573e+00, 1.132734e+00, 1.136512e+00, 573 1.136629e+00, 1.133086e+00, 1.132428e+00, 1.12 1638 1.136629e+00, 1.133086e+00, 1.132428e+00, 1.129299e+00, 1.125622e+00, 1.126992e+00, 574 1.127840e+00, 1.162670e+00, 1.160392e+00, 1.15 1639 1.127840e+00, 1.162670e+00, 1.160392e+00, 1.157864e+00, 1.157227e+00, 1.154627e+00, 575 1.192555e+00, 1.197243e+00, 1.197911e+00, 1.20 1640 1.192555e+00, 1.197243e+00, 1.197911e+00, 1.200326e+00, 1.220053e+00, 1.215019e+00, 576 1.211703e+00, 1.209080e+00, 1.204248e+00, 1.20 1641 1.211703e+00, 1.209080e+00, 1.204248e+00, 1.203328e+00, 1.198671e+00, 1.196840e+00, 577 1.194392e+00, 1.193037e+00, 1.190408e+00, 1.18 1642 1.194392e+00, 1.193037e+00, 1.190408e+00, 1.188583e+00, 1.206127e+00, 1.210028e+00, 578 1.206434e+00, 1.204456e+00, 1.200547e+00, 1.19 1643 1.206434e+00, 1.204456e+00, 1.200547e+00, 1.199058e+00, 1.200174e+00, 1.200276e+00, 579 1.198912e+00, 1.213048e+00, 1.207160e+00, 1.20 1644 1.198912e+00, 1.213048e+00, 1.207160e+00, 1.208020e+00, 1.203814e+00, 1.202380e+00, 580 1.198306e+00, 1.197002e+00, 1.196027e+00, 1.19 1645 1.198306e+00, 1.197002e+00, 1.196027e+00, 1.195449e+00, 1.192563e+00, 1.192135e+00, 581 1.187556e+00, 1.186308e+00, 1.182124e+00, 1.18 1646 1.187556e+00, 1.186308e+00, 1.182124e+00, 1.180900e+00, 1.178224e+00, 1.176471e+00, 582 1.174811e+00, 1.173702e+00, 1.170827e+00, 1.16 1647 1.174811e+00, 1.173702e+00, 1.170827e+00, 1.169581e+00, 1.167205e+00, 1.165626e+00, 583 1.180244e+00, 1.177626e+00, 1.175121e+00, 1.17 1648 1.180244e+00, 1.177626e+00, 1.175121e+00, 1.173903e+00, 1.172192e+00, 1.171128e+00, 584 1.168997e+00, 1.166826e+00, 1.164130e+00, 1.16 1649 1.168997e+00, 1.166826e+00, 1.164130e+00, 1.165412e+00, 1.165504e+00, 1.165020e+00, 585 1.158462e+00, 1.158014e+00, 1.156519e+00, 1.15 1650 1.158462e+00, 1.158014e+00, 1.156519e+00, 1.156081e+00, 1.153602e+00, 1.154190e+00, 586 1.152974e+00 1651 1.152974e+00 587 1652 588 }; 1653 }; 589 1654 590 const G4double G4ComponentGGHadronNucleusXsc:: 1655 const G4double G4ComponentGGHadronNucleusXsc::fPionPlusBarCorrectionIn[93] = { 591 1656 592 1.0, 1.0, 1657 1.0, 1.0, 593 1.140246e+00, 1.097872e+00, 1.104301e+00, 1.06 1658 1.140246e+00, 1.097872e+00, 1.104301e+00, 1.068722e+00, 1.056495e+00, 1.062622e+00, // 7 594 1.047987e+00, 1.037032e+00, 1.035686e+00, 1.04 1659 1.047987e+00, 1.037032e+00, 1.035686e+00, 1.042870e+00, 1.052222e+00, 1.075100e+00, // 13 595 1.084480e+00, 1.078286e+00, 1.081488e+00, 1.08 1660 1.084480e+00, 1.078286e+00, 1.081488e+00, 1.089713e+00, 1.099105e+00, 1.098003e+00, // 19 596 1.102175e+00, 1.117707e+00, 1.121734e+00, 1.12 1661 1.102175e+00, 1.117707e+00, 1.121734e+00, 1.125229e+00, 1.126457e+00, 1.128905e+00, // 25 597 1.163312e+00, 1.126263e+00, 1.126459e+00, 1.13 1662 1.163312e+00, 1.126263e+00, 1.126459e+00, 1.135191e+00, 1.116986e+00, 1.117184e+00, // 31 598 1.117037e+00, 1.116777e+00, 1.115858e+00, 1.11 1663 1.117037e+00, 1.116777e+00, 1.115858e+00, 1.115745e+00, 1.114489e+00, 1.113993e+00, // 37 599 1.113226e+00, 1.112818e+00, 1.111890e+00, 1.11 1664 1.113226e+00, 1.112818e+00, 1.111890e+00, 1.111238e+00, 1.111209e+00, 1.111775e+00, // 43 600 1.110256e+00, 1.109414e+00, 1.107647e+00, 1.10 1665 1.110256e+00, 1.109414e+00, 1.107647e+00, 1.106980e+00, 1.106096e+00, 1.107331e+00, // 49 601 1.107849e+00, 1.106407e+00, 1.103426e+00, 1.10 1666 1.107849e+00, 1.106407e+00, 1.103426e+00, 1.103896e+00, 1.101756e+00, 1.101031e+00, // 55 602 1.098915e+00, 1.098260e+00, 1.097768e+00, 1.09 1667 1.098915e+00, 1.098260e+00, 1.097768e+00, 1.097487e+00, 1.095964e+00, 1.095773e+00, // 61 603 1.093348e+00, 1.092687e+00, 1.090465e+00, 1.08 1668 1.093348e+00, 1.092687e+00, 1.090465e+00, 1.089821e+00, 1.088394e+00, 1.087462e+00, // 67 604 1.086571e+00, 1.085997e+00, 1.084451e+00, 1.08 1669 1.086571e+00, 1.085997e+00, 1.084451e+00, 1.083798e+00, 1.082513e+00, 1.081670e+00, // 73 605 1.080735e+00, 1.075659e+00, 1.074341e+00, 1.07 1670 1.080735e+00, 1.075659e+00, 1.074341e+00, 1.073689e+00, 1.072787e+00, 1.072237e+00, // 79 606 1.071107e+00, 1.069955e+00, 1.074856e+00, 1.06 1671 1.071107e+00, 1.069955e+00, 1.074856e+00, 1.065873e+00, 1.065938e+00, 1.065694e+00, 607 1.062192e+00, 1.061967e+00, 1.061180e+00, 1.06 1672 1.062192e+00, 1.061967e+00, 1.061180e+00, 1.060960e+00, 1.059646e+00, 1.059975e+00, 608 1.059658e+00 1673 1.059658e+00 609 1674 610 }; 1675 }; 611 1676 612 1677 613 const G4double G4ComponentGGHadronNucleusXsc:: 1678 const G4double G4ComponentGGHadronNucleusXsc::fPionMinusBarCorrectionTot[93] = { 614 1679 615 1.0, 1.0, 1680 1.0, 1.0, 616 1.3956e+00, 1.077959e+00, 1.129145e+00, 1.1020 1681 1.3956e+00, 1.077959e+00, 1.129145e+00, 1.102088e+00, 1.089765e+00, 1.083542e+00, // 7 617 1.089995e+00, 1.104895e+00, 1.097154e+00, 1.12 1682 1.089995e+00, 1.104895e+00, 1.097154e+00, 1.127663e+00, 1.133063e+00, 1.137425e+00, // 13 618 1.136724e+00, 1.133859e+00, 1.132498e+00, 1.13 1683 1.136724e+00, 1.133859e+00, 1.132498e+00, 1.130276e+00, 1.127896e+00, 1.127656e+00, // 19 619 1.127905e+00, 1.164210e+00, 1.162259e+00, 1.16 1684 1.127905e+00, 1.164210e+00, 1.162259e+00, 1.160075e+00, 1.158978e+00, 1.156649e+00, // 25 620 1.194157e+00, 1.199177e+00, 1.198983e+00, 1.20 1685 1.194157e+00, 1.199177e+00, 1.198983e+00, 1.202325e+00, 1.221967e+00, 1.217548e+00, 621 1.214389e+00, 1.211760e+00, 1.207335e+00, 1.20 1686 1.214389e+00, 1.211760e+00, 1.207335e+00, 1.206081e+00, 1.201766e+00, 1.199779e+00, 622 1.197283e+00, 1.195706e+00, 1.193071e+00, 1.19 1687 1.197283e+00, 1.195706e+00, 1.193071e+00, 1.191115e+00, 1.208838e+00, 1.212681e+00, 623 1.209235e+00, 1.207163e+00, 1.203451e+00, 1.20 1688 1.209235e+00, 1.207163e+00, 1.203451e+00, 1.201807e+00, 1.203283e+00, 1.203388e+00, 624 1.202244e+00, 1.216509e+00, 1.211066e+00, 1.21 1689 1.202244e+00, 1.216509e+00, 1.211066e+00, 1.211504e+00, 1.207539e+00, 1.205991e+00, 625 1.202143e+00, 1.200724e+00, 1.199595e+00, 1.19 1690 1.202143e+00, 1.200724e+00, 1.199595e+00, 1.198815e+00, 1.196025e+00, 1.195390e+00, 626 1.191137e+00, 1.189791e+00, 1.185888e+00, 1.18 1691 1.191137e+00, 1.189791e+00, 1.185888e+00, 1.184575e+00, 1.181996e+00, 1.180229e+00, 627 1.178545e+00, 1.177355e+00, 1.174616e+00, 1.17 1692 1.178545e+00, 1.177355e+00, 1.174616e+00, 1.173312e+00, 1.171016e+00, 1.169424e+00, 628 1.184120e+00, 1.181478e+00, 1.179085e+00, 1.17 1693 1.184120e+00, 1.181478e+00, 1.179085e+00, 1.177817e+00, 1.176124e+00, 1.175003e+00, 629 1.172947e+00, 1.170858e+00, 1.168170e+00, 1.16 1694 1.172947e+00, 1.170858e+00, 1.168170e+00, 1.169397e+00, 1.169304e+00, 1.168706e+00, 630 1.162774e+00, 1.162217e+00, 1.160740e+00, 1.16 1695 1.162774e+00, 1.162217e+00, 1.160740e+00, 1.160196e+00, 1.157857e+00, 1.158220e+00, 631 1.157267e+00 1696 1.157267e+00 632 }; 1697 }; >> 1698 633 1699 634 const G4double G4ComponentGGHadronNucleusXsc:: 1700 const G4double G4ComponentGGHadronNucleusXsc::fPionMinusBarCorrectionIn[93] = { 635 1701 636 1.0, 1.0, 1702 1.0, 1.0, 637 1.463e+00, 1.100898e+00, 1.106773e+00, 1.07 1703 1.463e+00, 1.100898e+00, 1.106773e+00, 1.070289e+00, 1.040514e+00, 1.062628e+00, // 7 638 1.047992e+00, 1.038041e+00, 1.035862e+00, 1.04 1704 1.047992e+00, 1.038041e+00, 1.035862e+00, 1.043679e+00, 1.052466e+00, 1.065780e+00, // 13 639 1.070551e+00, 1.078869e+00, 1.081541e+00, 1.09 1705 1.070551e+00, 1.078869e+00, 1.081541e+00, 1.090455e+00, 1.100847e+00, 1.098511e+00, // 19 640 1.102226e+00, 1.118865e+00, 1.123143e+00, 1.12 1706 1.102226e+00, 1.118865e+00, 1.123143e+00, 1.126904e+00, 1.127785e+00, 1.130444e+00, // 25 641 1.148502e+00, 1.127678e+00, 1.127244e+00, 1.12 1707 1.148502e+00, 1.127678e+00, 1.127244e+00, 1.123634e+00, 1.118347e+00, 1.118988e+00, 642 1.118957e+00, 1.118696e+00, 1.118074e+00, 1.11 1708 1.118957e+00, 1.118696e+00, 1.118074e+00, 1.117722e+00, 1.116717e+00, 1.116111e+00, 643 1.115311e+00, 1.114745e+00, 1.113814e+00, 1.11 1709 1.115311e+00, 1.114745e+00, 1.113814e+00, 1.113069e+00, 1.113141e+00, 1.113660e+00, 644 1.112249e+00, 1.111343e+00, 1.109718e+00, 1.10 1710 1.112249e+00, 1.111343e+00, 1.109718e+00, 1.108942e+00, 1.108310e+00, 1.109549e+00, 645 1.110227e+00, 1.108846e+00, 1.106183e+00, 1.10 1711 1.110227e+00, 1.108846e+00, 1.106183e+00, 1.106354e+00, 1.104388e+00, 1.103583e+00, 646 1.101632e+00, 1.100896e+00, 1.100296e+00, 1.09 1712 1.101632e+00, 1.100896e+00, 1.100296e+00, 1.099873e+00, 1.098420e+00, 1.098082e+00, 647 1.095892e+00, 1.095162e+00, 1.093144e+00, 1.09 1713 1.095892e+00, 1.095162e+00, 1.093144e+00, 1.092438e+00, 1.091083e+00, 1.090142e+00, 648 1.089236e+00, 1.088604e+00, 1.087159e+00, 1.08 1714 1.089236e+00, 1.088604e+00, 1.087159e+00, 1.086465e+00, 1.085239e+00, 1.084388e+00, 649 1.083473e+00, 1.078373e+00, 1.077136e+00, 1.07 1715 1.083473e+00, 1.078373e+00, 1.077136e+00, 1.076450e+00, 1.075561e+00, 1.074973e+00, 650 1.073898e+00, 1.072806e+00, 1.067706e+00, 1.06 1716 1.073898e+00, 1.072806e+00, 1.067706e+00, 1.068684e+00, 1.068618e+00, 1.068294e+00, 651 1.065241e+00, 1.064939e+00, 1.064166e+00, 1.06 1717 1.065241e+00, 1.064939e+00, 1.064166e+00, 1.063872e+00, 1.062659e+00, 1.062828e+00, 652 1.062699e+00 1718 1.062699e+00 653 1719 654 }; 1720 }; 655 1721 656 1722 657 // 1723 // 658 // 1724 // 659 ////////////////////////////////////////////// 1725 /////////////////////////////////////////////////////////////////////////////////////// 660 1726