Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // author: V. Grichine 26 // author: V. Grichine 27 // 27 // 28 // 25.04.12 V. Grichine - first implementation 28 // 25.04.12 V. Grichine - first implementation 29 // << 30 // 04.09.18 V. Ivantchenko Major revision of i << 31 // 01.10.18 V. Grichine strange hyperon xsc << 32 // 27.05.19 V. Ivantchenko Removed obsolete me << 33 // << 34 29 35 #include "G4ComponentGGHadronNucleusXsc.hh" 30 #include "G4ComponentGGHadronNucleusXsc.hh" 36 31 37 #include "G4PhysicalConstants.hh" 32 #include "G4PhysicalConstants.hh" 38 #include "G4SystemOfUnits.hh" 33 #include "G4SystemOfUnits.hh" 39 #include "G4ParticleTable.hh" 34 #include "G4ParticleTable.hh" 40 #include "G4IonTable.hh" 35 #include "G4IonTable.hh" 41 #include "G4ParticleDefinition.hh" 36 #include "G4ParticleDefinition.hh" 42 #include "G4DynamicParticle.hh" 37 #include "G4DynamicParticle.hh" 43 #include "G4HadronNucleonXsc.hh" 38 #include "G4HadronNucleonXsc.hh" 44 #include "G4Log.hh" << 39 45 #include "G4Lambda.hh" << 46 #include "G4Pow.hh" << 47 #include "G4NuclearRadii.hh" << 48 40 49 ////////////////////////////////////////////// 41 ////////////////////////////////////////////////////////////////////////////// 50 // 42 // 51 43 52 G4ComponentGGHadronNucleusXsc::G4ComponentGGHa 44 G4ComponentGGHadronNucleusXsc::G4ComponentGGHadronNucleusXsc() 53 : G4VComponentCrossSection(Default_Name()), << 45 : G4VComponentCrossSection("Glauber-Gribov"), 54 fTotalXsc(0.0),fElasticXsc(0.0),fInelasticX << 46 // fUpperLimit(100000*GeV), 55 fDiffractionXsc(0.0),fAxsc2piR2(0.0),fModel << 47 fLowerLimit(10.*MeV),// fLowerLimit(3*GeV), 56 fParticle(nullptr),fZ(0),fA(0), fL(0) << 48 fRadiusConst(1.08*fermi), // 1.1, 1.3 ? >> 49 fTotalXsc(0.0), fElasticXsc(0.0), fInelasticXsc(0.0), fProductionXsc(0.0), >> 50 fDiffractionXsc(0.0) >> 51 // , fHadronNucleonXsc(0.0) 57 { 52 { 58 theGamma = G4Gamma::Gamma(); 53 theGamma = G4Gamma::Gamma(); 59 theProton = G4Proton::Proton(); 54 theProton = G4Proton::Proton(); 60 theNeutron = G4Neutron::Neutron(); 55 theNeutron = G4Neutron::Neutron(); 61 theAProton = G4AntiProton::AntiProton(); 56 theAProton = G4AntiProton::AntiProton(); 62 theANeutron = G4AntiNeutron::AntiNeutron(); 57 theANeutron = G4AntiNeutron::AntiNeutron(); 63 thePiPlus = G4PionPlus::PionPlus(); 58 thePiPlus = G4PionPlus::PionPlus(); 64 thePiMinus = G4PionMinus::PionMinus(); 59 thePiMinus = G4PionMinus::PionMinus(); >> 60 thePiZero = G4PionZero::PionZero(); 65 theKPlus = G4KaonPlus::KaonPlus(); 61 theKPlus = G4KaonPlus::KaonPlus(); 66 theKMinus = G4KaonMinus::KaonMinus(); 62 theKMinus = G4KaonMinus::KaonMinus(); 67 theK0S = G4KaonZeroShort::KaonZeroShort 63 theK0S = G4KaonZeroShort::KaonZeroShort(); 68 theK0L = G4KaonZeroLong::KaonZeroLong() 64 theK0L = G4KaonZeroLong::KaonZeroLong(); 69 theLambda = G4Lambda::Lambda(); << 65 theL = G4Lambda::Lambda(); 70 << 66 theAntiL = G4AntiLambda::AntiLambda(); >> 67 theSPlus = G4SigmaPlus::SigmaPlus(); >> 68 theASPlus = G4AntiSigmaPlus::AntiSigmaPlus(); >> 69 theSMinus = G4SigmaMinus::SigmaMinus(); >> 70 theASMinus = G4AntiSigmaMinus::AntiSigmaMinus(); >> 71 theS0 = G4SigmaZero::SigmaZero(); >> 72 theAS0 = G4AntiSigmaZero::AntiSigmaZero(); >> 73 theXiMinus = G4XiMinus::XiMinus(); >> 74 theXi0 = G4XiZero::XiZero(); >> 75 theAXiMinus = G4AntiXiMinus::AntiXiMinus(); >> 76 theAXi0 = G4AntiXiZero::AntiXiZero(); >> 77 theOmega = G4OmegaMinus::OmegaMinus(); >> 78 theAOmega = G4AntiOmegaMinus::AntiOmegaMinus(); >> 79 theD = G4Deuteron::Deuteron(); >> 80 theT = G4Triton::Triton(); >> 81 theA = G4Alpha::Alpha(); >> 82 theHe3 = G4He3::He3(); >> 83 71 hnXsc = new G4HadronNucleonXsc(); 84 hnXsc = new G4HadronNucleonXsc(); 72 } 85 } 73 86 74 ////////////////////////////////////////////// << 87 /////////////////////////////////////////////////////////////////////////////////////// >> 88 // >> 89 // 75 90 76 G4ComponentGGHadronNucleusXsc::~G4ComponentGGH 91 G4ComponentGGHadronNucleusXsc::~G4ComponentGGHadronNucleusXsc() 77 { 92 { 78 delete hnXsc; << 93 if (hnXsc) delete hnXsc; 79 } 94 } 80 95 81 ////////////////////////////////////////////// << 96 //////////////////////////////////////////////////////////////////// >> 97 >> 98 G4double G4ComponentGGHadronNucleusXsc::GetTotalIsotopeCrossSection(const G4ParticleDefinition* aParticle, >> 99 G4double kinEnergy, >> 100 G4int Z, G4int A) >> 101 { >> 102 G4DynamicParticle* aDP = new G4DynamicParticle(aParticle,G4ParticleMomentum(1.,0.,0.), >> 103 kinEnergy); >> 104 fTotalXsc = GetIsoCrossSection(aDP, Z, A); >> 105 delete aDP; 82 106 83 G4double G4ComponentGGHadronNucleusXsc::GetTot << 84 const G4ParticleDefinition << 85 G4double kinEnergy, G4int << 86 { << 87 ComputeCrossSections(aParticle, kinEnergy, Z << 88 return fTotalXsc; 107 return fTotalXsc; 89 } 108 } 90 109 91 ////////////////////////////////////////////// << 110 ////////////////////////////////////////////////////////////////////// >> 111 >> 112 G4double G4ComponentGGHadronNucleusXsc::GetTotalElementCrossSection(const G4ParticleDefinition* aParticle, >> 113 G4double kinEnergy, >> 114 G4int Z, G4double A) >> 115 { >> 116 G4DynamicParticle* aDP = new G4DynamicParticle(aParticle,G4ParticleMomentum(1.,0.,0.), >> 117 kinEnergy); >> 118 fTotalXsc = GetIsoCrossSection(aDP, Z, G4int(A)); >> 119 delete aDP; 92 120 93 G4double G4ComponentGGHadronNucleusXsc::GetTot << 94 const G4ParticleDefinition << 95 G4double kinEnergy, G4int Z, G4int A) << 96 { << 97 ComputeCrossSections(aParticle, kinEnergy, Z << 98 return fTotalXsc; 121 return fTotalXsc; 99 } 122 } 100 123 101 ////////////////////////////////////////////// << 124 //////////////////////////////////////////////////////////////////// >> 125 >> 126 G4double G4ComponentGGHadronNucleusXsc::GetInelasticIsotopeCrossSection(const G4ParticleDefinition* aParticle, >> 127 G4double kinEnergy, >> 128 G4int Z, G4int A) >> 129 { >> 130 G4DynamicParticle* aDP = new G4DynamicParticle(aParticle,G4ParticleMomentum(1.,0.,0.), >> 131 kinEnergy); >> 132 fTotalXsc = GetIsoCrossSection(aDP, Z, A); >> 133 delete aDP; 102 134 103 G4double G4ComponentGGHadronNucleusXsc::GetIne << 104 const G4ParticleDefinition << 105 G4double kinEnergy, G4int Z, G4double << 106 { << 107 ComputeCrossSections(aParticle, kinEnergy, Z << 108 return fInelasticXsc; 135 return fInelasticXsc; 109 } 136 } 110 137 111 ////////////////////////////////////////////// 138 //////////////////////////////////////////////////////////////////// 112 139 113 G4double G4ComponentGGHadronNucleusXsc::GetIne << 140 G4double G4ComponentGGHadronNucleusXsc::GetProductionIsotopeCrossSection(const G4ParticleDefinition* aParticle, 114 const G4ParticleDefinition << 141 G4double kinEnergy, 115 G4double kinEnergy, G4int Z, G4int A) << 142 G4int Z, G4int A) 116 { << 143 { 117 ComputeCrossSections(aParticle, kinEnergy, Z << 144 G4DynamicParticle* aDP = new G4DynamicParticle(aParticle,G4ParticleMomentum(1.,0.,0.), >> 145 kinEnergy); >> 146 fTotalXsc = GetIsoCrossSection(aDP, Z, A); >> 147 delete aDP; >> 148 >> 149 return fProductionXsc; >> 150 } >> 151 >> 152 ///////////////////////////////////////////////////////////////////// >> 153 >> 154 G4double G4ComponentGGHadronNucleusXsc::GetInelasticElementCrossSection(const G4ParticleDefinition* aParticle, >> 155 G4double kinEnergy, >> 156 G4int Z, G4double A) >> 157 { >> 158 G4DynamicParticle* aDP = new G4DynamicParticle(aParticle,G4ParticleMomentum(1.,0.,0.), >> 159 kinEnergy); >> 160 fTotalXsc = GetIsoCrossSection(aDP, Z, G4int(A)); >> 161 delete aDP; >> 162 118 return fInelasticXsc; 163 return fInelasticXsc; 119 } 164 } 120 165 >> 166 ///////////////////////////////////////////////////////////////////// >> 167 >> 168 G4double G4ComponentGGHadronNucleusXsc::GetProductionElementCrossSection(const G4ParticleDefinition* aParticle, >> 169 G4double kinEnergy, >> 170 G4int Z, G4double A) >> 171 { >> 172 G4DynamicParticle* aDP = new G4DynamicParticle(aParticle,G4ParticleMomentum(1.,0.,0.), >> 173 kinEnergy); >> 174 fTotalXsc = GetIsoCrossSection(aDP, Z, G4int(A)); >> 175 delete aDP; >> 176 >> 177 return fProductionXsc; >> 178 } >> 179 121 ////////////////////////////////////////////// 180 ////////////////////////////////////////////////////////////////// 122 181 123 G4double G4ComponentGGHadronNucleusXsc::GetEla << 182 G4double G4ComponentGGHadronNucleusXsc::GetElasticElementCrossSection(const G4ParticleDefinition* aParticle, 124 const G4ParticleDefinition << 183 G4double kinEnergy, 125 G4double kinEnergy, G4int Z, G4double << 184 G4int Z, G4double A) 126 { << 185 { 127 ComputeCrossSections(aParticle, kinEnergy, Z << 186 G4DynamicParticle* aDP = new G4DynamicParticle(aParticle,G4ParticleMomentum(1.,0.,0.), >> 187 kinEnergy); >> 188 fTotalXsc = GetIsoCrossSection(aDP, Z, G4int(A)); >> 189 delete aDP; >> 190 128 return fElasticXsc; 191 return fElasticXsc; 129 } 192 } 130 193 131 ////////////////////////////////////////////// 194 /////////////////////////////////////////////////////////////////// 132 195 133 G4double G4ComponentGGHadronNucleusXsc::GetEla << 196 G4double G4ComponentGGHadronNucleusXsc::GetElasticIsotopeCrossSection(const G4ParticleDefinition* aParticle, 134 const G4ParticleDefinition << 197 G4double kinEnergy, 135 G4double kinEnergy, G4int Z, G4int A) << 198 G4int Z, G4int A) 136 { << 199 { 137 ComputeCrossSections(aParticle, kinEnergy, Z << 200 G4DynamicParticle* aDP = new G4DynamicParticle(aParticle,G4ParticleMomentum(1.,0.,0.), >> 201 kinEnergy); >> 202 fTotalXsc = GetIsoCrossSection(aDP, Z, A); >> 203 delete aDP; >> 204 138 return fElasticXsc; 205 return fElasticXsc; 139 } 206 } 140 207 141 ////////////////////////////////////////////// 208 //////////////////////////////////////////////////////////////// 142 209 143 G4double G4ComponentGGHadronNucleusXsc::Comput << 210 G4double G4ComponentGGHadronNucleusXsc::ComputeQuasiElasticRatio(const G4ParticleDefinition* aParticle, 144 const G4ParticleDefinition << 211 G4double kinEnergy, 145 G4double kinEnergy, G4int Z, G4int A) << 212 G4int Z, G4int A) 146 { << 213 { 147 ComputeCrossSections(aParticle, kinEnergy, Z << 214 G4DynamicParticle* aDP = new G4DynamicParticle(aParticle,G4ParticleMomentum(1.,0.,0.), 148 G4double ratio = (fInelasticXsc > 0.) << 215 kinEnergy); 149 ? (fInelasticXsc - fProductionXsc)/fInelas << 216 fTotalXsc = GetIsoCrossSection(aDP, Z, A); 150 ratio = std::max(ratio, 0.); << 217 delete aDP; >> 218 G4double ratio = 0.; >> 219 >> 220 if(fInelasticXsc > 0.) >> 221 { >> 222 ratio = (fInelasticXsc - fProductionXsc)/fInelasticXsc; >> 223 if(ratio < 0.) ratio = 0.; >> 224 } 151 return ratio; 225 return ratio; 152 } 226 } >> 227 153 228 154 ////////////////////////////////////////////// << 155 229 156 G4double G4ComponentGGHadronNucleusXsc::GetPro << 157 const G4ParticleDefinition << 158 G4double kinEnergy, G4int Z, G4double << 159 { << 160 ComputeCrossSections(aParticle, kinEnergy, Z << 161 return fProductionXsc; << 162 } << 163 230 164 ////////////////////////////////////////////// << 231 //////////////////////////////////////////////////////////////////////////////////////// 165 232 166 G4double G4ComponentGGHadronNucleusXsc::GetPro << 233 G4bool 167 const G4ParticleDefinition << 234 G4ComponentGGHadronNucleusXsc::IsIsoApplicable(const G4DynamicParticle* aDP, 168 G4double kinEnergy, G4int Z, G4int A) << 235 G4int Z, G4int /*A*/, 169 { << 236 const G4Element*, 170 ComputeCrossSections(aParticle, kinEnergy, Z << 237 const G4Material*) 171 return fProductionXsc; << 238 { >> 239 G4bool applicable = false; >> 240 // G4int baryonNumber = aDP->GetDefinition()->GetBaryonNumber(); >> 241 G4double kineticEnergy = aDP->GetKineticEnergy(); >> 242 >> 243 const G4ParticleDefinition* theParticle = aDP->GetDefinition(); >> 244 >> 245 if ( ( kineticEnergy >= fLowerLimit && >> 246 Z > 1 && // >= He >> 247 ( theParticle == theAProton || >> 248 theParticle == theGamma || >> 249 theParticle == theKPlus || >> 250 theParticle == theKMinus || >> 251 theParticle == theK0L || >> 252 theParticle == theK0S || >> 253 theParticle == theSMinus || >> 254 theParticle == theProton || >> 255 theParticle == theNeutron || >> 256 theParticle == thePiPlus || >> 257 theParticle == thePiMinus ) ) ) applicable = true; >> 258 >> 259 return applicable; 172 } 260 } 173 261 174 ////////////////////////////////////////////// << 262 //////////////////////////////////////////////////////////////////////////////////////// 175 // 263 // 176 // Calculates total and inelastic Xsc, derives << 264 // Calculates total and inelastic Xsc, derives elastic as total - inelastic accordong to 177 // inelastic accordong to Glauber model with G << 265 // Glauber model with Gribov correction calculated in the dipole approximation on 178 // in the dipole approximation on light cone. << 266 // light cone. Gaussian density of point-like nucleons helps to calculate rest integrals of the model. 179 // nucleons helps to calculate rest integrals << 180 // [1] B.Z. Kopeliovich, nucl-th/0306044 + sim 267 // [1] B.Z. Kopeliovich, nucl-th/0306044 + simplification above 181 268 182 void G4ComponentGGHadronNucleusXsc::ComputeCro << 269 G4double 183 const G4ParticleDefinition* aP << 270 G4ComponentGGHadronNucleusXsc::GetIsoCrossSection(const G4DynamicParticle* aParticle, 184 G4double kinEnergy, G4int Z, G << 271 G4int Z, G4int A, 185 { << 272 const G4Isotope*, 186 // check cache << 273 const G4Element*, 187 if(aParticle == fParticle && fZ == Z && fA = << 274 const G4Material*) 188 { return; } << 275 { 189 fParticle = aParticle; << 276 G4double xsection, sigma, cofInelastic, cofTotal, nucleusSquare, ratio; 190 fZ = Z; << 277 G4double hpInXsc(0.), hnInXsc(0.); 191 fA = A; << 278 G4double R = GetNucleusRadius(A); 192 fL = nL; << 279 193 fEnergy = kinEnergy; << 280 G4int N = A - Z; // number of neutrons 194 G4Pow* pG4Pow=G4Pow::GetInstance(); << 281 if (N < 0) N = 0; 195 // << 282 196 G4double cofInelastic = 2.4; << 283 const G4ParticleDefinition* theParticle = aParticle->GetDefinition(); 197 static const G4double cofTotal = 2.0; << 284 198 G4double sigma(0.0), hpInXsc(0.0), hnInXsc(0 << 285 if( theParticle == theProton || 199 << 286 theParticle == theNeutron || 200 G4int N = std::max(A - Z, 0); // number of << 287 theParticle == thePiPlus || >> 288 theParticle == thePiMinus ) >> 289 { >> 290 // sigma = GetHadronNucleonXscNS(aParticle, A, Z); >> 291 >> 292 sigma = Z*hnXsc->GetHadronNucleonXscNS(aParticle, theProton); >> 293 >> 294 hpInXsc = hnXsc->GetInelasticHadronNucleonXsc(); >> 295 >> 296 sigma += N*hnXsc->GetHadronNucleonXscNS(aParticle, theNeutron); >> 297 >> 298 hnInXsc = hnXsc->GetInelasticHadronNucleonXsc(); 201 299 202 if( aParticle == theKPlus || aParticle == th << 300 cofInelastic = 2.4; 203 aParticle == theK0S || aParticle == th << 301 cofTotal = 2.0; >> 302 } >> 303 else if( theParticle == theKPlus || >> 304 theParticle == theKMinus || >> 305 theParticle == theK0S || >> 306 theParticle == theK0L ) 204 { 307 { 205 sigma = (1 == Z) << 308 // sigma = GetKaonNucleonXscVector(aParticle, A, Z); 206 ? hnXsc->KaonNucleonXscNS(aParticle, the << 309 207 : Z*hnXsc->KaonNucleonXscGG(aParticle, t << 310 sigma = Z*hnXsc->GetKaonNucleonXscGG(aParticle, theProton); >> 311 208 hpInXsc = hnXsc->GetInelasticHadronNucleon 312 hpInXsc = hnXsc->GetInelasticHadronNucleonXsc(); 209 313 210 if(N > 0) { << 314 sigma += N*hnXsc->GetKaonNucleonXscGG(aParticle, theNeutron); 211 sigma += N*hnXsc->KaonNucleonXscGG(aPart << 315 212 hnInXsc = hnXsc->GetInelasticHadronNucle << 316 hnInXsc = hnXsc->GetInelasticHadronNucleonXsc(); 213 } << 317 214 R = G4NuclearRadii::RadiusKNGG(A); << 215 cofInelastic = 2.2; 318 cofInelastic = 2.2; >> 319 cofTotal = 2.0; >> 320 R = 1.3*fermi; >> 321 R *= std::pow(G4double(A), 0.3333); 216 } 322 } 217 else 323 else 218 { 324 { 219 sigma = Z*hnXsc->HadronNucleonXsc(aParticl << 325 sigma = GetHadronNucleonXscNS(aParticle, A, Z); 220 hpInXsc = hnXsc->GetInelasticHadronNucleon << 326 cofInelastic = 2.2; 221 << 327 cofTotal = 2.0; 222 if(N > 0) { << 223 sigma += N*hnXsc->HadronNucleonXsc(aPart << 224 hnInXsc = hnXsc->GetInelasticHadronNucle << 225 } << 226 R = G4NuclearRadii::RadiusHNGG(A); << 227 if( nL > 0 ) { << 228 G4double mp = theProton->GetPDGMass(); << 229 G4double ml = theLambda->GetPDGMass(); << 230 G4double kinCof = ml/mp; // moving hyper << 231 G4double cHN(0.88); << 232 sigma += nL*hnXsc->HadronNucleonXsc(theL << 233 R *= std::sqrt( pG4Pow->Z23( A - nL ) + << 234 } << 235 } 328 } 236 << 329 // cofInelastic = 2.0; 237 G4double nucleusSquare = cofTotal*pi*R*R; << 238 G4double ratio = sigma/nucleusSquare; << 239 G4double difratio = ratio/(1.+ratio); << 240 fDiffractionXsc = 0.5*nucleusSquare*( difrat << 241 330 242 if( A > 1 ) 331 if( A > 1 ) 243 { 332 { 244 fTotalXsc = nucleusSquare*G4Log( 1. + rati << 333 nucleusSquare = cofTotal*pi*R*R; // basically 2piRR 245 *GetParticleBarCorTot(aParticle, Z); << 334 ratio = sigma/nucleusSquare; 246 335 247 // inelastic xsc << 336 xsection = nucleusSquare*std::log( 1. + ratio ); 248 fAxsc2piR2 = cofInelastic*ratio; << 337 249 fModelInLog = G4Log( 1. + fAxsc2piR2 ); << 338 xsection *= GetParticleBarCorTot(theParticle, Z); 250 fInelasticXsc = nucleusSquare*fModelInLog/ << 339 251 G4double barcorr = GetParticleBarCorIn(aPa << 340 fTotalXsc = xsection; 252 fInelasticXsc *= barcorr; << 341 253 fElasticXsc = std::max(fTotalXsc - fInelas << 342 254 << 343 255 G4double xratio = (Z*hpInXsc + N*hnInXsc)/ << 344 fInelasticXsc = nucleusSquare*std::log( 1. + cofInelastic*ratio )/cofInelastic; 256 fProductionXsc = << 345 257 nucleusSquare*G4Log(1. + cofInelastic*xr << 346 fInelasticXsc *= GetParticleBarCorIn(theParticle, Z); 258 fProductionXsc = std::min(fProductionXsc, << 347 >> 348 fElasticXsc = fTotalXsc - fInelasticXsc; >> 349 >> 350 if(fElasticXsc < 0.) fElasticXsc = 0.; >> 351 >> 352 G4double difratio = ratio/(1.+ratio); >> 353 >> 354 fDiffractionXsc = 0.5*nucleusSquare*( difratio - std::log( 1. + difratio ) ); >> 355 >> 356 >> 357 // sigma = GetHNinelasticXsc(aParticle, A, Z); >> 358 >> 359 sigma = Z*hpInXsc + N*hnInXsc; >> 360 >> 361 ratio = sigma/nucleusSquare; >> 362 >> 363 fProductionXsc = nucleusSquare*std::log( 1. + cofInelastic*ratio )/cofInelastic; >> 364 >> 365 fProductionXsc *= GetParticleBarCorIn(theParticle, Z); >> 366 >> 367 if (fElasticXsc < 0.) fElasticXsc = 0.; 259 } 368 } 260 else // H 369 else // H 261 { 370 { 262 fTotalXsc = sigma; 371 fTotalXsc = sigma; 263 fInelasticXsc = hpInXsc; << 372 xsection = sigma; 264 fElasticXsc = std::max(fTotalXsc - fInel << 373 265 fProductionXsc = fInelasticXsc; << 374 if ( theParticle != theAProton ) 266 fDiffractionXsc = 0.2*fInelasticXsc; << 375 { 267 // G4double xratio = hpInXsc/nucleusSquare << 376 sigma = GetHNinelasticXsc(aParticle, A, Z); 268 // fProductionXsc = nucleusSquare*G4Log(1. << 377 fInelasticXsc = sigma; 269 // fProductionXsc = std::min(fProductionXs << 378 fElasticXsc = fTotalXsc - fInelasticXsc; >> 379 } >> 380 else >> 381 { >> 382 fElasticXsc = fTotalXsc - fInelasticXsc; >> 383 } >> 384 if (fElasticXsc < 0.) fElasticXsc = 0.; >> 385 270 } 386 } 271 /* << 387 return xsection; 272 G4cout << "GGXsc: Z= " << Z << " A= " << A < << 273 << " xtot(b)= " << fTotalXsc/barn << 274 << " xel(b)= " << fElasticXsc/barn << " xi << 275 << G4endl; << 276 */ << 277 } 388 } 278 389 279 ////////////////////////////////////////////// 390 ////////////////////////////////////////////////////////////////////////// 280 // 391 // 281 // Return single-diffraction/inelastic cross-s 392 // Return single-diffraction/inelastic cross-section ratio 282 393 283 G4double G4ComponentGGHadronNucleusXsc::GetRat << 394 G4double G4ComponentGGHadronNucleusXsc:: 284 const G4DynamicParticle* aParticle, G << 395 GetRatioSD(const G4DynamicParticle* aParticle, G4int A, G4int Z) 285 { 396 { 286 ComputeCrossSections(aParticle->GetDefinitio << 397 G4double sigma, cofInelastic, cofTotal, nucleusSquare, ratio; 287 aParticle->GetKineticEnergy(), Z, A << 398 G4double R = GetNucleusRadius(A); 288 399 289 return (fInelasticXsc > 0.0) ? fDiffractionX << 400 const G4ParticleDefinition* theParticle = aParticle->GetDefinition(); >> 401 >> 402 if( theParticle == theProton || >> 403 theParticle == theNeutron || >> 404 theParticle == thePiPlus || >> 405 theParticle == thePiMinus ) >> 406 { >> 407 sigma = GetHadronNucleonXscNS(aParticle, A, Z); >> 408 cofInelastic = 2.4; >> 409 cofTotal = 2.0; >> 410 } >> 411 else >> 412 { >> 413 sigma = GetHadronNucleonXscNS(aParticle, A, Z); >> 414 cofInelastic = 2.2; >> 415 cofTotal = 2.0; >> 416 } >> 417 nucleusSquare = cofTotal*pi*R*R; // basically 2piRR >> 418 ratio = sigma/nucleusSquare; >> 419 >> 420 fInelasticXsc = nucleusSquare*std::log( 1. + cofInelastic*ratio )/cofInelastic; >> 421 >> 422 G4double difratio = ratio/(1.+ratio); >> 423 >> 424 fDiffractionXsc = 0.5*nucleusSquare*( difratio - std::log( 1. + difratio ) ); >> 425 >> 426 if (fInelasticXsc > 0.) ratio = fDiffractionXsc/fInelasticXsc; >> 427 else ratio = 0.; >> 428 >> 429 return ratio; 290 } 430 } 291 431 292 ////////////////////////////////////////////// 432 ////////////////////////////////////////////////////////////////////////// 293 // 433 // 294 // Return quasi-elastic/inelastic cross-sectio << 434 // Return suasi-elastic/inelastic cross-section ratio 295 435 296 G4double G4ComponentGGHadronNucleusXsc:: 436 G4double G4ComponentGGHadronNucleusXsc:: 297 GetRatioQE(const G4DynamicParticle* aParticle, 437 GetRatioQE(const G4DynamicParticle* aParticle, G4int A, G4int Z) 298 { 438 { 299 ComputeCrossSections(aParticle->GetDefinitio << 439 G4double sigma, cofInelastic, cofTotal, nucleusSquare, ratio; 300 aParticle->GetKineticEnergy(), Z, A << 440 G4double R = GetNucleusRadius(A); >> 441 >> 442 const G4ParticleDefinition* theParticle = aParticle->GetDefinition(); >> 443 >> 444 if( theParticle == theProton || >> 445 theParticle == theNeutron || >> 446 theParticle == thePiPlus || >> 447 theParticle == thePiMinus ) >> 448 { >> 449 sigma = GetHadronNucleonXscNS(aParticle, A, Z); >> 450 cofInelastic = 2.4; >> 451 cofTotal = 2.0; >> 452 } >> 453 else >> 454 { >> 455 sigma = GetHadronNucleonXscNS(aParticle, A, Z); >> 456 cofInelastic = 2.2; >> 457 cofTotal = 2.0; >> 458 } >> 459 nucleusSquare = cofTotal*pi*R*R; // basically 2piRR >> 460 ratio = sigma/nucleusSquare; 301 461 302 return (fInelasticXsc > std::max(fProduction << 462 fInelasticXsc = nucleusSquare*std::log( 1. + cofInelastic*ratio )/cofInelastic; 303 ? 1.0 - fProductionXsc/fInelasticXsc : 0.0 << 463 >> 464 sigma = GetHNinelasticXsc(aParticle, A, Z); >> 465 ratio = sigma/nucleusSquare; >> 466 >> 467 fProductionXsc = nucleusSquare*std::log( 1. + cofInelastic*ratio )/cofInelastic; >> 468 >> 469 if (fInelasticXsc > fProductionXsc) ratio = (fInelasticXsc-fProductionXsc)/fInelasticXsc; >> 470 else ratio = 0.; >> 471 if ( ratio < 0. ) ratio = 0.; >> 472 >> 473 return ratio; 304 } 474 } 305 475 306 ////////////////////////////////////////////// 476 ///////////////////////////////////////////////////////////////////////////////////// 307 // 477 // 308 // Returns hadron-nucleon total Xsc according << 478 // Returns hadron-nucleon Xsc according to differnt parametrisations: >> 479 // [2] E. Levin, hep-ph/9710546 >> 480 // [3] U. Dersch, et al, hep-ex/9910052 >> 481 // [4] M.J. Longo, et al, Phys.Rev.Lett. 33 (1974) 725 309 482 310 G4double G4ComponentGGHadronNucleusXsc::GetHad << 483 G4double 311 const G4DynamicParticle* aParticle, c << 484 G4ComponentGGHadronNucleusXsc::GetHadronNucleonXsc(const G4DynamicParticle* aParticle, >> 485 const G4Element* anElement) 312 { 486 { 313 G4int At = G4lrint(anElement->GetN()); // n 487 G4int At = G4lrint(anElement->GetN()); // number of nucleons 314 G4int Zt = anElement->GetZasInt(); // numbe << 488 G4int Zt = G4lrint(anElement->GetZ()); // number of protons 315 489 316 return GetHadronNucleonXsc(aParticle, At, Zt 490 return GetHadronNucleonXsc(aParticle, At, Zt); 317 } 491 } 318 492 319 ////////////////////////////////////////////// 493 ///////////////////////////////////////////////////////////////////////////////////// 320 // 494 // 321 // Returns hadron-nucleon total Xsc according << 495 // Returns hadron-nucleon Xsc according to differnt parametrisations: >> 496 // [2] E. Levin, hep-ph/9710546 >> 497 // [3] U. Dersch, et al, hep-ex/9910052 >> 498 // [4] M.J. Longo, et al, Phys.Rev.Lett. 33 (1974) 725 322 499 323 G4double G4ComponentGGHadronNucleusXsc::GetHad << 500 G4double 324 const G4DynamicParticle* aParticle, G << 501 G4ComponentGGHadronNucleusXsc::GetHadronNucleonXsc(const G4DynamicParticle* aParticle, >> 502 G4int At, G4int /*Zt*/) 325 { 503 { 326 return hnXsc->HadronNucleonXscEL(aParticle-> << 504 G4double xsection; 327 aParticle->GetKineticEnergy()); << 505 >> 506 //G4double targ_mass = G4NucleiProperties::GetNuclearMass(At, Zt); >> 507 >> 508 G4double targ_mass = 0.939*GeV; // ~mean neutron and proton ??? >> 509 >> 510 G4double proj_mass = aParticle->GetMass(); >> 511 G4double proj_momentum = aParticle->GetMomentum().mag(); >> 512 G4double sMand = CalcMandelstamS ( proj_mass , targ_mass , proj_momentum ); >> 513 >> 514 sMand /= GeV*GeV; // in GeV for parametrisation >> 515 proj_momentum /= GeV; >> 516 >> 517 const G4ParticleDefinition* theParticle = aParticle->GetDefinition(); >> 518 >> 519 G4double aa = At; >> 520 >> 521 if(theParticle == theGamma) >> 522 { >> 523 xsection = aa*(0.0677*std::pow(sMand,0.0808) + 0.129*std::pow(sMand,-0.4525)); >> 524 } >> 525 else if(theParticle == theNeutron) // as proton ??? >> 526 { >> 527 xsection = aa*(21.70*std::pow(sMand,0.0808) + 56.08*std::pow(sMand,-0.4525)); >> 528 } >> 529 else if(theParticle == theProton) >> 530 { >> 531 xsection = aa*(21.70*std::pow(sMand,0.0808) + 56.08*std::pow(sMand,-0.4525)); >> 532 // xsection = At*( 49.51*std::pow(sMand,-0.097) + 0.314*std::log(sMand)*std::log(sMand) ); >> 533 // xsection = At*( 38.4 + 0.85*std::abs(std::pow(log(sMand),1.47)) ); >> 534 } >> 535 else if(theParticle == theAProton) >> 536 { >> 537 xsection = aa*( 21.70*std::pow(sMand,0.0808) + 98.39*std::pow(sMand,-0.4525)); >> 538 } >> 539 else if(theParticle == thePiPlus) >> 540 { >> 541 xsection = aa*(13.63*std::pow(sMand,0.0808) + 27.56*std::pow(sMand,-0.4525)); >> 542 } >> 543 else if(theParticle == thePiMinus) >> 544 { >> 545 // xsection = At*( 55.2*std::pow(sMand,-0.255) + 0.346*std::log(sMand)*std::log(sMand) ); >> 546 xsection = aa*(13.63*std::pow(sMand,0.0808) + 36.02*std::pow(sMand,-0.4525)); >> 547 } >> 548 else if(theParticle == theKPlus) >> 549 { >> 550 xsection = aa*(11.82*std::pow(sMand,0.0808) + 8.15*std::pow(sMand,-0.4525)); >> 551 } >> 552 else if(theParticle == theKMinus) >> 553 { >> 554 xsection = aa*(11.82*std::pow(sMand,0.0808) + 26.36*std::pow(sMand,-0.4525)); >> 555 } >> 556 else // as proton ??? >> 557 { >> 558 xsection = aa*(21.70*std::pow(sMand,0.0808) + 56.08*std::pow(sMand,-0.4525)); >> 559 } >> 560 xsection *= millibarn; >> 561 return xsection; 328 } 562 } 329 563 >> 564 330 ////////////////////////////////////////////// 565 ///////////////////////////////////////////////////////////////////////////////////// 331 // 566 // 332 // Returns hadron-nucleon total Xsc according << 567 // Returns hadron-nucleon Xsc according to PDG parametrisation (2005): 333 // << 568 // http://pdg.lbl.gov/2006/reviews/hadronicrpp.pdf 334 569 335 G4double G4ComponentGGHadronNucleusXsc::GetHad << 570 G4double 336 const G4DynamicParticle* aParticle, c << 571 G4ComponentGGHadronNucleusXsc::GetHadronNucleonXscPDG(const G4DynamicParticle* aParticle, >> 572 const G4Element* anElement) 337 { 573 { 338 G4int At = G4lrint(anElement->GetN()); // n 574 G4int At = G4lrint(anElement->GetN()); // number of nucleons 339 G4int Zt = anElement->GetZasInt(); // n << 575 G4int Zt = G4lrint(anElement->GetZ()); // number of protons 340 576 341 return GetHadronNucleonXscPDG(aParticle, At, 577 return GetHadronNucleonXscPDG(aParticle, At, Zt); 342 } 578 } 343 579 >> 580 >> 581 >> 582 344 ////////////////////////////////////////////// 583 ///////////////////////////////////////////////////////////////////////////////////// 345 // 584 // 346 // Returns hadron-nucleon total Xsc according << 585 // Returns hadron-nucleon Xsc according to PDG parametrisation (2005): 347 // << 586 // http://pdg.lbl.gov/2006/reviews/hadronicrpp.pdf >> 587 // At = number of nucleons, Zt = number of protons 348 588 349 G4double G4ComponentGGHadronNucleusXsc::GetHad << 589 G4double 350 const G4DynamicParticle* aParticle, G << 590 G4ComponentGGHadronNucleusXsc::GetHadronNucleonXscPDG(const G4DynamicParticle* aParticle, >> 591 G4int At, G4int Zt) 351 { 592 { 352 G4double res = 0.0; << 593 G4double xsection; 353 if(1 == At && 1 == Zt) { << 594 354 res = hnXsc->HadronNucleonXscPDG(aParticle << 595 G4int Nt = At-Zt; // number of neutrons 355 aParticle->GetKineticEnergy()); << 596 if (Nt < 0) Nt = 0; 356 } else if(1 == At && 0 == Zt) { << 597 357 res = hnXsc->HadronNucleonXscPDG(aParticle << 598 G4double zz = Zt; 358 aParticle->GetKineticEnergy()); << 599 G4double aa = At; 359 } else { << 600 G4double nn = Nt; 360 ComputeCrossSections(aParticle->GetDefinit << 601 361 aParticle->GetKineticEnergy(), Zt, At); << 602 G4double targ_mass = G4ParticleTable::GetParticleTable()-> 362 res = fTotalXsc; << 603 GetIonTable()->GetIonMass(Zt, At); >> 604 >> 605 targ_mass = 0.939*GeV; // ~mean neutron and proton ??? >> 606 >> 607 G4double proj_mass = aParticle->GetMass(); >> 608 G4double proj_momentum = aParticle->GetMomentum().mag(); >> 609 >> 610 G4double sMand = CalcMandelstamS ( proj_mass , targ_mass , proj_momentum ); >> 611 >> 612 sMand /= GeV*GeV; // in GeV for parametrisation >> 613 >> 614 // General PDG fit constants >> 615 >> 616 G4double s0 = 5.38*5.38; // in Gev^2 >> 617 G4double eta1 = 0.458; >> 618 G4double eta2 = 0.458; >> 619 G4double B = 0.308; >> 620 >> 621 >> 622 const G4ParticleDefinition* theParticle = aParticle->GetDefinition(); >> 623 >> 624 >> 625 if(theParticle == theNeutron) // proton-neutron fit >> 626 { >> 627 xsection = zz*( 35.80 + B*std::pow(std::log(sMand/s0),2.) >> 628 + 40.15*std::pow(sMand,-eta1) - 30.*std::pow(sMand,-eta2)); >> 629 xsection += nn*( 35.45 + B*std::pow(std::log(sMand/s0),2.) >> 630 + 42.53*std::pow(sMand,-eta1) - 33.34*std::pow(sMand,-eta2)); // pp for nn >> 631 } >> 632 else if(theParticle == theProton) >> 633 { >> 634 >> 635 xsection = zz*( 35.45 + B*std::pow(std::log(sMand/s0),2.) >> 636 + 42.53*std::pow(sMand,-eta1) - 33.34*std::pow(sMand,-eta2)); >> 637 >> 638 xsection += nn*( 35.80 + B*std::pow(std::log(sMand/s0),2.) >> 639 + 40.15*std::pow(sMand,-eta1) - 30.*std::pow(sMand,-eta2)); >> 640 } >> 641 else if(theParticle == theAProton) >> 642 { >> 643 xsection = zz*( 35.45 + B*std::pow(std::log(sMand/s0),2.) >> 644 + 42.53*std::pow(sMand,-eta1) + 33.34*std::pow(sMand,-eta2)); >> 645 >> 646 xsection += nn*( 35.80 + B*std::pow(std::log(sMand/s0),2.) >> 647 + 40.15*std::pow(sMand,-eta1) + 30.*std::pow(sMand,-eta2)); >> 648 } >> 649 else if(theParticle == thePiPlus) >> 650 { >> 651 xsection = aa*( 20.86 + B*std::pow(std::log(sMand/s0),2.) >> 652 + 19.24*std::pow(sMand,-eta1) - 6.03*std::pow(sMand,-eta2)); >> 653 } >> 654 else if(theParticle == thePiMinus) >> 655 { >> 656 xsection = aa*( 20.86 + B*std::pow(std::log(sMand/s0),2.) >> 657 + 19.24*std::pow(sMand,-eta1) + 6.03*std::pow(sMand,-eta2)); >> 658 } >> 659 else if(theParticle == theKPlus || theParticle == theK0L ) >> 660 { >> 661 xsection = zz*( 17.91 + B*std::pow(std::log(sMand/s0),2.) >> 662 + 7.14*std::pow(sMand,-eta1) - 13.45*std::pow(sMand,-eta2)); >> 663 >> 664 xsection += nn*( 17.87 + B*std::pow(std::log(sMand/s0),2.) >> 665 + 5.17*std::pow(sMand,-eta1) - 7.23*std::pow(sMand,-eta2)); >> 666 } >> 667 else if(theParticle == theKMinus || theParticle == theK0S ) >> 668 { >> 669 xsection = zz*( 17.91 + B*std::pow(std::log(sMand/s0),2.) >> 670 + 7.14*std::pow(sMand,-eta1) + 13.45*std::pow(sMand,-eta2)); >> 671 >> 672 xsection += nn*( 17.87 + B*std::pow(std::log(sMand/s0),2.) >> 673 + 5.17*std::pow(sMand,-eta1) + 7.23*std::pow(sMand,-eta2)); 363 } 674 } 364 return res; << 675 else if(theParticle == theSMinus) >> 676 { >> 677 xsection = aa*( 35.20 + B*std::pow(std::log(sMand/s0),2.) >> 678 - 199.*std::pow(sMand,-eta1) + 264.*std::pow(sMand,-eta2)); >> 679 } >> 680 else if(theParticle == theGamma) // modify later on >> 681 { >> 682 xsection = aa*( 0.0 + B*std::pow(std::log(sMand/s0),2.) >> 683 + 0.032*std::pow(sMand,-eta1) - 0.0*std::pow(sMand,-eta2)); >> 684 >> 685 } >> 686 else // as proton ??? >> 687 { >> 688 xsection = zz*( 35.45 + B*std::pow(std::log(sMand/s0),2.) >> 689 + 42.53*std::pow(sMand,-eta1) - 33.34*std::pow(sMand,-eta2)); >> 690 >> 691 xsection += nn*( 35.80 + B*std::pow(std::log(sMand/s0),2.) >> 692 + 40.15*std::pow(sMand,-eta1) - 30.*std::pow(sMand,-eta2)); >> 693 } >> 694 xsection *= millibarn; // parametrised in mb >> 695 return xsection; 365 } 696 } 366 697 >> 698 367 ////////////////////////////////////////////// 699 ///////////////////////////////////////////////////////////////////////////////////// 368 // 700 // 369 // Returns hadron-nucleon total cross-section << 701 // Returns hadron-nucleon cross-section based on N. Starkov parametrisation of 370 // data from mainly http://wwwppds.ihep.su:800 702 // data from mainly http://wwwppds.ihep.su:8001/c5-6A.html database 371 703 372 G4double G4ComponentGGHadronNucleusXsc::GetHad << 704 G4double 373 const G4DynamicParticle* aParticle, c << 705 G4ComponentGGHadronNucleusXsc::GetHadronNucleonXscNS(const G4DynamicParticle* aParticle, >> 706 const G4Element* anElement) 374 { 707 { 375 G4int At = G4lrint(anElement->GetN()); // n 708 G4int At = G4lrint(anElement->GetN()); // number of nucleons 376 G4int Zt = anElement->GetZasInt(); // n << 709 G4int Zt = G4lrint(anElement->GetZ()); // number of protons 377 710 378 return GetHadronNucleonXscNS(aParticle, At, 711 return GetHadronNucleonXscNS(aParticle, At, Zt); 379 } 712 } 380 713 381 ////////////////////////////////////////////// << 714 >> 715 >> 716 >> 717 ///////////////////////////////////////////////////////////////////////////////////// 382 // 718 // 383 // Returns hadron-nucleon total cross-section << 719 // Returns hadron-nucleon cross-section based on N. Starkov parametrisation of 384 // data from mainly http://wwwppds.ihep.su:800 720 // data from mainly http://wwwppds.ihep.su:8001/c5-6A.html database 385 721 386 G4double G4ComponentGGHadronNucleusXsc::GetHad << 722 G4double 387 const G4DynamicParticle* aParticle, G << 723 G4ComponentGGHadronNucleusXsc::GetHadronNucleonXscNS(const G4DynamicParticle* aParticle, >> 724 G4int At, G4int Zt) 388 { 725 { 389 G4double res = 0.0; << 726 G4double xsection(0); 390 if(1 == At && 1 == Zt) { << 727 // G4double Delta; DHW 19 May 2011: variable set but not used 391 res = hnXsc->HadronNucleonXscNS(aParticle- << 728 G4double A0, B0; 392 aParticle->GetKineticEnergy()); << 729 G4double hpXscv(0); 393 } else if(1 == At && 0 == Zt) { << 730 G4double hnXscv(0); 394 res = hnXsc->HadronNucleonXscNS(aParticle- << 731 395 aParticle->GetKineticEnergy()); << 732 G4int Nt = At-Zt; // number of neutrons >> 733 if (Nt < 0) Nt = 0; >> 734 >> 735 G4double aa = At; >> 736 G4double zz = Zt; >> 737 G4double nn = Nt; >> 738 >> 739 G4double targ_mass = G4ParticleTable::GetParticleTable()-> >> 740 GetIonTable()->GetIonMass(Zt, At); >> 741 >> 742 targ_mass = 0.939*GeV; // ~mean neutron and proton ??? >> 743 >> 744 G4double proj_mass = aParticle->GetMass(); >> 745 G4double proj_energy = aParticle->GetTotalEnergy(); >> 746 G4double proj_momentum = aParticle->GetMomentum().mag(); >> 747 >> 748 G4double sMand = CalcMandelstamS ( proj_mass , targ_mass , proj_momentum ); >> 749 >> 750 sMand /= GeV*GeV; // in GeV for parametrisation >> 751 proj_momentum /= GeV; >> 752 proj_energy /= GeV; >> 753 proj_mass /= GeV; >> 754 >> 755 // General PDG fit constants >> 756 >> 757 G4double s0 = 5.38*5.38; // in Gev^2 >> 758 G4double eta1 = 0.458; >> 759 G4double eta2 = 0.458; >> 760 G4double B = 0.308; >> 761 >> 762 >> 763 const G4ParticleDefinition* theParticle = aParticle->GetDefinition(); >> 764 >> 765 >> 766 if(theParticle == theNeutron) >> 767 { >> 768 if( proj_momentum >= 373.) >> 769 { >> 770 return GetHadronNucleonXscPDG(aParticle,At,Zt); >> 771 } >> 772 else if( proj_momentum >= 10.) >> 773 // if( proj_momentum >= 2.) >> 774 { >> 775 // Delta = 1.; // DHW 19 May 2011: variable set but not used >> 776 // if( proj_energy < 40. ) Delta = 0.916+0.0021*proj_energy; >> 777 >> 778 if(proj_momentum >= 10.) >> 779 { >> 780 B0 = 7.5; >> 781 A0 = 100. - B0*std::log(3.0e7); >> 782 >> 783 xsection = A0 + B0*std::log(proj_energy) - 11 >> 784 + 103*std::pow(2*0.93827*proj_energy + proj_mass*proj_mass+ >> 785 0.93827*0.93827,-0.165); // mb >> 786 } >> 787 xsection *= zz + nn; >> 788 } >> 789 else >> 790 { >> 791 // nn to be pp >> 792 >> 793 if( proj_momentum < 0.73 ) >> 794 { >> 795 hnXscv = 23 + 50*( std::pow( std::log(0.73/proj_momentum), 3.5 ) ); >> 796 } >> 797 else if( proj_momentum < 1.05 ) >> 798 { >> 799 hnXscv = 23 + 40*(std::log(proj_momentum/0.73))* >> 800 (std::log(proj_momentum/0.73)); >> 801 } >> 802 else // if( proj_momentum < 10. ) >> 803 { >> 804 hnXscv = 39.0+ >> 805 75*(proj_momentum - 1.2)/(std::pow(proj_momentum,3.0) + 0.15); >> 806 } >> 807 // pn to be np >> 808 >> 809 if( proj_momentum < 0.8 ) >> 810 { >> 811 hpXscv = 33+30*std::pow(std::log(proj_momentum/1.3),4.0); >> 812 } >> 813 else if( proj_momentum < 1.4 ) >> 814 { >> 815 hpXscv = 33+30*std::pow(std::log(proj_momentum/0.95),2.0); >> 816 } >> 817 else // if( proj_momentum < 10. ) >> 818 { >> 819 hpXscv = 33.3+ >> 820 20.8*(std::pow(proj_momentum,2.0)-1.35)/ >> 821 (std::pow(proj_momentum,2.50)+0.95); >> 822 } >> 823 xsection = hpXscv*zz + hnXscv*nn; >> 824 } >> 825 } >> 826 else if(theParticle == theProton) >> 827 { >> 828 if( proj_momentum >= 373.) >> 829 { >> 830 return GetHadronNucleonXscPDG(aParticle,At,Zt); >> 831 } >> 832 else if( proj_momentum >= 10.) >> 833 // if( proj_momentum >= 2.) >> 834 { >> 835 // Delta = 1.; DHW 19 May 2011: variable set but not used >> 836 // if( proj_energy < 40. ) Delta = 0.916+0.0021*proj_energy; >> 837 >> 838 if(proj_momentum >= 10.) >> 839 { >> 840 B0 = 7.5; >> 841 A0 = 100. - B0*std::log(3.0e7); >> 842 >> 843 xsection = A0 + B0*std::log(proj_energy) - 11 >> 844 + 103*std::pow(2*0.93827*proj_energy + proj_mass*proj_mass+ >> 845 0.93827*0.93827,-0.165); // mb >> 846 } >> 847 xsection *= zz + nn; >> 848 } >> 849 else >> 850 { >> 851 // pp >> 852 >> 853 if( proj_momentum < 0.73 ) >> 854 { >> 855 hpXscv = 23 + 50*( std::pow( std::log(0.73/proj_momentum), 3.5 ) ); >> 856 } >> 857 else if( proj_momentum < 1.05 ) >> 858 { >> 859 hpXscv = 23 + 40*(std::log(proj_momentum/0.73))* >> 860 (std::log(proj_momentum/0.73)); >> 861 } >> 862 else // if( proj_momentum < 10. ) >> 863 { >> 864 hpXscv = 39.0+ >> 865 75*(proj_momentum - 1.2)/(std::pow(proj_momentum,3.0) + 0.15); >> 866 } >> 867 // pn to be np >> 868 >> 869 if( proj_momentum < 0.8 ) >> 870 { >> 871 hnXscv = 33+30*std::pow(std::log(proj_momentum/1.3),4.0); >> 872 } >> 873 else if( proj_momentum < 1.4 ) >> 874 { >> 875 hnXscv = 33+30*std::pow(std::log(proj_momentum/0.95),2.0); >> 876 } >> 877 else // if( proj_momentum < 10. ) >> 878 { >> 879 hnXscv = 33.3+ >> 880 20.8*(std::pow(proj_momentum,2.0)-1.35)/ >> 881 (std::pow(proj_momentum,2.50)+0.95); >> 882 } >> 883 xsection = hpXscv*zz + hnXscv*nn; >> 884 // xsection = hpXscv*(Zt + Nt); >> 885 // xsection = hnXscv*(Zt + Nt); >> 886 } >> 887 // xsection *= 0.95; >> 888 } >> 889 else if( theParticle == theAProton ) >> 890 { >> 891 // xsection = Zt*( 35.45 + B*std::pow(std::log(sMand/s0),2.) >> 892 // + 42.53*std::pow(sMand,-eta1) + 33.34*std::pow(sMand,-eta2)); >> 893 >> 894 // xsection += Nt*( 35.80 + B*std::pow(std::log(sMand/s0),2.) >> 895 // + 40.15*std::pow(sMand,-eta1) + 30.*std::pow(sMand,-eta2)); >> 896 >> 897 G4double logP = std::log(proj_momentum); >> 898 >> 899 if( proj_momentum <= 1.0 ) >> 900 { >> 901 xsection = zz*(65.55 + 53.84/(proj_momentum+1.e-6) ); >> 902 } >> 903 else >> 904 { >> 905 xsection = zz*( 41.1 + 77.2*std::pow( proj_momentum, -0.68) >> 906 + 0.293*logP*logP - 1.82*logP ); >> 907 } >> 908 if ( nn > 0.) >> 909 { >> 910 xsection += nn*( 41.9 + 96.2*std::pow( proj_momentum, -0.99) - 0.154*logP); >> 911 } >> 912 else // H >> 913 { >> 914 fInelasticXsc = 38.0 + 38.0*std::pow( proj_momentum, -0.96) >> 915 - 0.169*logP*logP; >> 916 fInelasticXsc *= millibarn; >> 917 } >> 918 } >> 919 else if( theParticle == thePiPlus ) >> 920 { >> 921 if(proj_momentum < 0.4) >> 922 { >> 923 G4double Ex3 = 180*std::exp(-(proj_momentum-0.29)*(proj_momentum-0.29)/0.085/0.085); >> 924 hpXscv = Ex3+20.0; >> 925 } >> 926 else if( proj_momentum < 1.15 ) >> 927 { >> 928 G4double Ex4 = 88*(std::log(proj_momentum/0.75))*(std::log(proj_momentum/0.75)); >> 929 hpXscv = Ex4+14.0; >> 930 } >> 931 else if(proj_momentum < 3.5) >> 932 { >> 933 G4double Ex1 = 3.2*std::exp(-(proj_momentum-2.55)*(proj_momentum-2.55)/0.55/0.55); >> 934 G4double Ex2 = 12*std::exp(-(proj_momentum-1.47)*(proj_momentum-1.47)/0.225/0.225); >> 935 hpXscv = Ex1+Ex2+27.5; >> 936 } >> 937 else // if(proj_momentum > 3.5) // mb >> 938 { >> 939 hpXscv = 10.6+2.*std::log(proj_energy)+25*std::pow(proj_energy,-0.43); >> 940 } >> 941 // pi+n = pi-p?? >> 942 >> 943 if(proj_momentum < 0.37) >> 944 { >> 945 hnXscv = 28.0 + 40*std::exp(-(proj_momentum-0.29)*(proj_momentum-0.29)/0.07/0.07); >> 946 } >> 947 else if(proj_momentum<0.65) >> 948 { >> 949 hnXscv = 26+110*(std::log(proj_momentum/0.48))*(std::log(proj_momentum/0.48)); >> 950 } >> 951 else if(proj_momentum<1.3) >> 952 { >> 953 hnXscv = 36.1+ >> 954 10*std::exp(-(proj_momentum-0.72)*(proj_momentum-0.72)/0.06/0.06)+ >> 955 24*std::exp(-(proj_momentum-1.015)*(proj_momentum-1.015)/0.075/0.075); >> 956 } >> 957 else if(proj_momentum<3.0) >> 958 { >> 959 hnXscv = 36.1+0.079-4.313*std::log(proj_momentum)+ >> 960 3*std::exp(-(proj_momentum-2.1)*(proj_momentum-2.1)/0.4/0.4)+ >> 961 1.5*std::exp(-(proj_momentum-1.4)*(proj_momentum-1.4)/0.12/0.12); >> 962 } >> 963 else // mb >> 964 { >> 965 hnXscv = 10.6+2*std::log(proj_energy)+30*std::pow(proj_energy,-0.43); >> 966 } >> 967 xsection = hpXscv*zz + hnXscv*nn; >> 968 } >> 969 else if(theParticle == thePiMinus) >> 970 { >> 971 // pi-n = pi+p?? >> 972 >> 973 if(proj_momentum < 0.4) >> 974 { >> 975 G4double Ex3 = 180*std::exp(-(proj_momentum-0.29)*(proj_momentum-0.29)/0.085/0.085); >> 976 hnXscv = Ex3+20.0; >> 977 } >> 978 else if(proj_momentum < 1.15) >> 979 { >> 980 G4double Ex4 = 88*(std::log(proj_momentum/0.75))*(std::log(proj_momentum/0.75)); >> 981 hnXscv = Ex4+14.0; >> 982 } >> 983 else if(proj_momentum < 3.5) >> 984 { >> 985 G4double Ex1 = 3.2*std::exp(-(proj_momentum-2.55)*(proj_momentum-2.55)/0.55/0.55); >> 986 G4double Ex2 = 12*std::exp(-(proj_momentum-1.47)*(proj_momentum-1.47)/0.225/0.225); >> 987 hnXscv = Ex1+Ex2+27.5; >> 988 } >> 989 else // if(proj_momentum > 3.5) // mb >> 990 { >> 991 hnXscv = 10.6+2.*std::log(proj_energy)+25*std::pow(proj_energy,-0.43); >> 992 } >> 993 // pi-p >> 994 >> 995 if(proj_momentum < 0.37) >> 996 { >> 997 hpXscv = 28.0 + 40*std::exp(-(proj_momentum-0.29)*(proj_momentum-0.29)/0.07/0.07); >> 998 } >> 999 else if(proj_momentum<0.65) >> 1000 { >> 1001 hpXscv = 26+110*(std::log(proj_momentum/0.48))*(std::log(proj_momentum/0.48)); >> 1002 } >> 1003 else if(proj_momentum<1.3) >> 1004 { >> 1005 hpXscv = 36.1+ >> 1006 10*std::exp(-(proj_momentum-0.72)*(proj_momentum-0.72)/0.06/0.06)+ >> 1007 24*std::exp(-(proj_momentum-1.015)*(proj_momentum-1.015)/0.075/0.075); >> 1008 } >> 1009 else if(proj_momentum<3.0) >> 1010 { >> 1011 hpXscv = 36.1+0.079-4.313*std::log(proj_momentum)+ >> 1012 3*std::exp(-(proj_momentum-2.1)*(proj_momentum-2.1)/0.4/0.4)+ >> 1013 1.5*std::exp(-(proj_momentum-1.4)*(proj_momentum-1.4)/0.12/0.12); >> 1014 } >> 1015 else // mb >> 1016 { >> 1017 hpXscv = 10.6+2*std::log(proj_energy)+30*std::pow(proj_energy,-0.43); >> 1018 } >> 1019 xsection = hpXscv*zz + hnXscv*nn; >> 1020 } >> 1021 else if(theParticle == theKPlus) >> 1022 { >> 1023 xsection = zz*( 17.91 + B*std::pow(std::log(sMand/s0),2.) >> 1024 + 7.14*std::pow(sMand,-eta1) - 13.45*std::pow(sMand,-eta2)); >> 1025 >> 1026 xsection += nn*( 17.87 + B*std::pow(std::log(sMand/s0),2.) >> 1027 + 5.17*std::pow(sMand,-eta1) - 7.23*std::pow(sMand,-eta2)); >> 1028 } >> 1029 else if(theParticle == theKMinus) >> 1030 { >> 1031 xsection = zz*( 17.91 + B*std::pow(std::log(sMand/s0),2.) >> 1032 + 7.14*std::pow(sMand,-eta1) + 13.45*std::pow(sMand,-eta2)); >> 1033 >> 1034 xsection += nn*( 17.87 + B*std::pow(std::log(sMand/s0),2.) >> 1035 + 5.17*std::pow(sMand,-eta1) + 7.23*std::pow(sMand,-eta2)); 396 } 1036 } 397 return res; << 1037 else if(theParticle == theSMinus) >> 1038 { >> 1039 xsection = aa*( 35.20 + B*std::pow(std::log(sMand/s0),2.) >> 1040 - 199.*std::pow(sMand,-eta1) + 264.*std::pow(sMand,-eta2)); >> 1041 } >> 1042 else if(theParticle == theGamma) // modify later on >> 1043 { >> 1044 xsection = aa*( 0.0 + B*std::pow(std::log(sMand/s0),2.) >> 1045 + 0.032*std::pow(sMand,-eta1) - 0.0*std::pow(sMand,-eta2)); >> 1046 >> 1047 } >> 1048 else // as proton ??? >> 1049 { >> 1050 xsection = zz*( 35.45 + B*std::pow(std::log(sMand/s0),2.) >> 1051 + 42.53*std::pow(sMand,-eta1) - 33.34*std::pow(sMand,-eta2)); >> 1052 >> 1053 xsection += nn*( 35.80 + B*std::pow(std::log(sMand/s0),2.) >> 1054 + 40.15*std::pow(sMand,-eta1) - 30.*std::pow(sMand,-eta2)); >> 1055 } >> 1056 xsection *= millibarn; // parametrised in mb >> 1057 return xsection; 398 } 1058 } 399 1059 >> 1060 G4double >> 1061 G4ComponentGGHadronNucleusXsc::GetKaonNucleonXscVector(const G4DynamicParticle* aParticle, >> 1062 G4int At, G4int Zt) >> 1063 { >> 1064 G4double Tkin, logTkin, xsc, xscP, xscN; >> 1065 const G4ParticleDefinition* theParticle = aParticle->GetDefinition(); >> 1066 >> 1067 G4int Nt = At-Zt; // number of neutrons >> 1068 if (Nt < 0) Nt = 0; >> 1069 >> 1070 Tkin = aParticle->GetKineticEnergy(); // Tkin in MeV >> 1071 >> 1072 if( Tkin > 70*GeV ) return GetHadronNucleonXscPDG(aParticle,At,Zt); >> 1073 >> 1074 logTkin = std::log(Tkin); // Tkin in MeV!!! >> 1075 >> 1076 if( theParticle == theKPlus ) >> 1077 { >> 1078 xscP = hnXsc->GetKpProtonTotXscVector(logTkin); >> 1079 xscN = hnXsc->GetKpNeutronTotXscVector(logTkin); >> 1080 } >> 1081 else if( theParticle == theKMinus ) >> 1082 { >> 1083 xscP = hnXsc->GetKmProtonTotXscVector(logTkin); >> 1084 xscN = hnXsc->GetKmNeutronTotXscVector(logTkin); >> 1085 } >> 1086 else // K-zero as half of K+ and K- >> 1087 { >> 1088 xscP = (hnXsc->GetKpProtonTotXscVector(logTkin)+hnXsc->GetKmProtonTotXscVector(logTkin))*0.5; >> 1089 xscN = (hnXsc->GetKpNeutronTotXscVector(logTkin)+hnXsc->GetKmNeutronTotXscVector(logTkin))*0.5; >> 1090 } >> 1091 xsc = xscP*Zt + xscN*Nt; >> 1092 return xsc; >> 1093 } 400 ////////////////////////////////////////////// 1094 ///////////////////////////////////////////////////////////////////////////////////// 401 // 1095 // 402 // Returns hadron-nucleon inelastic cross-sect 1096 // Returns hadron-nucleon inelastic cross-section based on proper parametrisation 403 1097 404 G4double 1098 G4double 405 G4ComponentGGHadronNucleusXsc::GetHNinelasticX 1099 G4ComponentGGHadronNucleusXsc::GetHNinelasticXsc(const G4DynamicParticle* aParticle, 406 << 1100 const G4Element* anElement) 407 { 1101 { 408 G4int At = G4lrint(anElement->GetN()); // n 1102 G4int At = G4lrint(anElement->GetN()); // number of nucleons 409 G4int Zt = anElement->GetZasInt(); // n << 1103 G4int Zt = G4lrint(anElement->GetZ()); // number of protons 410 1104 411 return GetHNinelasticXsc(aParticle, At, Zt); 1105 return GetHNinelasticXsc(aParticle, At, Zt); 412 } 1106 } 413 1107 414 ////////////////////////////////////////////// 1108 ///////////////////////////////////////////////////////////////////////////////////// 415 // 1109 // 416 // Returns hadron-nucleon inelastic cross-sect << 1110 // Returns hadron-nucleon inelastic cross-section based on FTF-parametrisation 417 1111 418 G4double G4ComponentGGHadronNucleusXsc::GetHNi << 1112 G4double 419 const G4DynamicParticle* aParticle, G << 1113 G4ComponentGGHadronNucleusXsc::GetHNinelasticXsc(const G4DynamicParticle* aParticle, >> 1114 G4int At, G4int Zt) 420 { 1115 { 421 const G4ParticleDefinition* hadron = aPartic << 1116 G4ParticleDefinition* hadron = aParticle->GetDefinition(); 422 G4double e = aParticle->GetKineticEnergy(); << 1117 G4double sumInelastic; 423 G4int Nt = std::max(At - Zt, 0); << 1118 G4int Nt = At - Zt; 424 << 1119 if(Nt < 0) Nt = 0; 425 hnXsc->HadronNucleonXscNS(hadron, theProton, << 1120 426 G4double sumInelastic = Zt*hnXsc->GetInelast << 1121 if( hadron == theKPlus ) 427 if(Nt > 0) { << 1122 { 428 hnXsc->HadronNucleonXscNS(hadron, theNeutr << 1123 sumInelastic = GetHNinelasticXscVU(aParticle, At, Zt); 429 sumInelastic += Nt*hnXsc->GetInelasticHadr << 430 } 1124 } >> 1125 else >> 1126 { >> 1127 //sumInelastic = Zt*GetHadronNucleonXscMK(aParticle, theProton); >> 1128 // sumInelastic += Nt*GetHadronNucleonXscMK(aParticle, theNeutron); >> 1129 sumInelastic = G4double(Zt)*GetHadronNucleonXscNS(aParticle, 1, 1); >> 1130 sumInelastic += G4double(Nt)*GetHadronNucleonXscNS(aParticle, 1, 0); >> 1131 } 431 return sumInelastic; 1132 return sumInelastic; 432 } 1133 } 433 1134 >> 1135 434 ////////////////////////////////////////////// 1136 ///////////////////////////////////////////////////////////////////////////////////// 435 // 1137 // 436 // Returns hadron-nucleon inelastic cross-sect 1138 // Returns hadron-nucleon inelastic cross-section based on FTF-parametrisation 437 1139 438 G4double G4ComponentGGHadronNucleusXsc::GetHNi << 1140 G4double 439 const G4DynamicParticle* aParticle, G << 1141 G4ComponentGGHadronNucleusXsc::GetHNinelasticXscVU(const G4DynamicParticle* aParticle, >> 1142 G4int At, G4int Zt) 440 { 1143 { 441 const G4ParticleDefinition* hadron = aPartic << 1144 G4int PDGcode = aParticle->GetDefinition()->GetPDGEncoding(); 442 G4double e = aParticle->GetKineticEnergy(); << 1145 G4int absPDGcode = std::abs(PDGcode); 443 G4int Nt = std::max(At - Zt, 0); << 1146 444 << 1147 G4double Elab = aParticle->GetTotalEnergy(); 445 hnXsc->HadronNucleonXscVU(hadron, theProton, << 1148 // (s - 2*0.88*GeV*GeV)/(2*0.939*GeV)/GeV; 446 G4double sumInelastic = Zt*hnXsc->GetInelast << 1149 G4double Plab = aParticle->GetMomentum().mag(); 447 if(Nt > 0) { << 1150 // std::sqrt(Elab * Elab - 0.88); 448 hnXsc->HadronNucleonXscVU(hadron, theNeutr << 1151 449 sumInelastic += Nt*hnXsc->GetInelasticHadr << 1152 Elab /= GeV; >> 1153 Plab /= GeV; >> 1154 >> 1155 G4double LogPlab = std::log( Plab ); >> 1156 G4double sqrLogPlab = LogPlab * LogPlab; >> 1157 >> 1158 //G4cout<<"Plab = "<<Plab<<G4endl; >> 1159 >> 1160 G4double NumberOfTargetProtons = G4double(Zt); >> 1161 G4double NumberOfTargetNucleons = G4double(At); >> 1162 G4double NumberOfTargetNeutrons = NumberOfTargetNucleons - NumberOfTargetProtons; >> 1163 >> 1164 if(NumberOfTargetNeutrons < 0.0) NumberOfTargetNeutrons = 0.0; >> 1165 >> 1166 G4double Xtotal, Xelastic, Xinelastic; >> 1167 >> 1168 if( absPDGcode > 1000 ) //------Projectile is baryon -------- >> 1169 { >> 1170 G4double XtotPP = 48.0 + 0. *std::pow(Plab, 0. ) + >> 1171 0.522*sqrLogPlab - 4.51*LogPlab; >> 1172 >> 1173 G4double XtotPN = 47.3 + 0. *std::pow(Plab, 0. ) + >> 1174 0.513*sqrLogPlab - 4.27*LogPlab; >> 1175 >> 1176 G4double XelPP = 11.9 + 26.9*std::pow(Plab,-1.21) + >> 1177 0.169*sqrLogPlab - 1.85*LogPlab; >> 1178 >> 1179 G4double XelPN = 11.9 + 26.9*std::pow(Plab,-1.21) + >> 1180 0.169*sqrLogPlab - 1.85*LogPlab; >> 1181 >> 1182 Xtotal = (NumberOfTargetProtons * XtotPP + >> 1183 NumberOfTargetNeutrons * XtotPN); >> 1184 >> 1185 Xelastic = (NumberOfTargetProtons * XelPP + >> 1186 NumberOfTargetNeutrons * XelPN); 450 } 1187 } 451 return sumInelastic; << 1188 else if( PDGcode == 211 ) //------Projectile is PionPlus ------- >> 1189 { >> 1190 G4double XtotPiP = 16.4 + 19.3 *std::pow(Plab,-0.42) + >> 1191 0.19 *sqrLogPlab - 0.0 *LogPlab; >> 1192 >> 1193 G4double XtotPiN = 33.0 + 14.0 *std::pow(Plab,-1.36) + >> 1194 0.456*sqrLogPlab - 4.03*LogPlab; >> 1195 >> 1196 G4double XelPiP = 0.0 + 11.4*std::pow(Plab,-0.40) + >> 1197 0.079*sqrLogPlab - 0.0 *LogPlab; >> 1198 >> 1199 G4double XelPiN = 1.76 + 11.2*std::pow(Plab,-0.64) + >> 1200 0.043*sqrLogPlab - 0.0 *LogPlab; >> 1201 >> 1202 Xtotal = ( NumberOfTargetProtons * XtotPiP + >> 1203 NumberOfTargetNeutrons * XtotPiN ); >> 1204 >> 1205 Xelastic = ( NumberOfTargetProtons * XelPiP + >> 1206 NumberOfTargetNeutrons * XelPiN ); >> 1207 } >> 1208 else if( PDGcode == -211 ) //------Projectile is PionMinus ------- >> 1209 { >> 1210 G4double XtotPiP = 33.0 + 14.0 *std::pow(Plab,-1.36) + >> 1211 0.456*sqrLogPlab - 4.03*LogPlab; >> 1212 >> 1213 G4double XtotPiN = 16.4 + 19.3 *std::pow(Plab,-0.42) + >> 1214 0.19 *sqrLogPlab - 0.0 *LogPlab; >> 1215 >> 1216 G4double XelPiP = 1.76 + 11.2*std::pow(Plab,-0.64) + >> 1217 0.043*sqrLogPlab - 0.0 *LogPlab; >> 1218 >> 1219 G4double XelPiN = 0.0 + 11.4*std::pow(Plab,-0.40) + >> 1220 0.079*sqrLogPlab - 0.0 *LogPlab; >> 1221 >> 1222 Xtotal = ( NumberOfTargetProtons * XtotPiP + >> 1223 NumberOfTargetNeutrons * XtotPiN ); >> 1224 >> 1225 Xelastic = ( NumberOfTargetProtons * XelPiP + >> 1226 NumberOfTargetNeutrons * XelPiN ); >> 1227 } >> 1228 else if( PDGcode == 111 ) //------Projectile is PionZero ------- >> 1229 { >> 1230 G4double XtotPiP =(16.4 + 19.3 *std::pow(Plab,-0.42) + >> 1231 0.19 *sqrLogPlab - 0.0 *LogPlab + //Pi+ >> 1232 33.0 + 14.0 *std::pow(Plab,-1.36) + >> 1233 0.456*sqrLogPlab - 4.03*LogPlab)/2; //Pi- >> 1234 >> 1235 G4double XtotPiN =(33.0 + 14.0 *std::pow(Plab,-1.36) + >> 1236 0.456*sqrLogPlab - 4.03*LogPlab + //Pi+ >> 1237 16.4 + 19.3 *std::pow(Plab,-0.42) + >> 1238 0.19 *sqrLogPlab - 0.0 *LogPlab)/2; //Pi- >> 1239 >> 1240 G4double XelPiP =( 0.0 + 11.4*std::pow(Plab,-0.40) + >> 1241 0.079*sqrLogPlab - 0.0 *LogPlab + //Pi+ >> 1242 1.76 + 11.2*std::pow(Plab,-0.64) + >> 1243 0.043*sqrLogPlab - 0.0 *LogPlab)/2; //Pi- >> 1244 >> 1245 G4double XelPiN =( 1.76 + 11.2*std::pow(Plab,-0.64) + >> 1246 0.043*sqrLogPlab - 0.0 *LogPlab + //Pi+ >> 1247 0.0 + 11.4*std::pow(Plab,-0.40) + >> 1248 0.079*sqrLogPlab - 0.0 *LogPlab)/2; //Pi- >> 1249 >> 1250 Xtotal = ( NumberOfTargetProtons * XtotPiP + >> 1251 NumberOfTargetNeutrons * XtotPiN ); >> 1252 >> 1253 Xelastic = ( NumberOfTargetProtons * XelPiP + >> 1254 NumberOfTargetNeutrons * XelPiN ); >> 1255 } >> 1256 else if( PDGcode == 321 ) //------Projectile is KaonPlus ------- >> 1257 { >> 1258 G4double XtotKP = 18.1 + 0. *std::pow(Plab, 0. ) + >> 1259 0.26 *sqrLogPlab - 1.0 *LogPlab; >> 1260 G4double XtotKN = 18.7 + 0. *std::pow(Plab, 0. ) + >> 1261 0.21 *sqrLogPlab - 0.89*LogPlab; >> 1262 >> 1263 G4double XelKP = 5.0 + 8.1*std::pow(Plab,-1.8 ) + >> 1264 0.16 *sqrLogPlab - 1.3 *LogPlab; >> 1265 >> 1266 G4double XelKN = 7.3 + 0. *std::pow(Plab,-0. ) + >> 1267 0.29 *sqrLogPlab - 2.4 *LogPlab; >> 1268 >> 1269 Xtotal = ( NumberOfTargetProtons * XtotKP + >> 1270 NumberOfTargetNeutrons * XtotKN ); >> 1271 >> 1272 Xelastic = ( NumberOfTargetProtons * XelKP + >> 1273 NumberOfTargetNeutrons * XelKN ); >> 1274 } >> 1275 else if( PDGcode ==-321 ) //------Projectile is KaonMinus ------ >> 1276 { >> 1277 G4double XtotKP = 32.1 + 0. *std::pow(Plab, 0. ) + >> 1278 0.66 *sqrLogPlab - 5.6 *LogPlab; >> 1279 G4double XtotKN = 25.2 + 0. *std::pow(Plab, 0. ) + >> 1280 0.38 *sqrLogPlab - 2.9 *LogPlab; >> 1281 >> 1282 G4double XelKP = 7.3 + 0. *std::pow(Plab,-0. ) + >> 1283 0.29 *sqrLogPlab - 2.4 *LogPlab; >> 1284 >> 1285 G4double XelKN = 5.0 + 8.1*std::pow(Plab,-1.8 ) + >> 1286 0.16 *sqrLogPlab - 1.3 *LogPlab; >> 1287 >> 1288 Xtotal = ( NumberOfTargetProtons * XtotKP + >> 1289 NumberOfTargetNeutrons * XtotKN ); >> 1290 >> 1291 Xelastic = ( NumberOfTargetProtons * XelKP + >> 1292 NumberOfTargetNeutrons * XelKN ); >> 1293 } >> 1294 else if( PDGcode == 311 ) //------Projectile is KaonZero ------ >> 1295 { >> 1296 G4double XtotKP = ( 18.1 + 0. *std::pow(Plab, 0. ) + >> 1297 0.26 *sqrLogPlab - 1.0 *LogPlab + //K+ >> 1298 32.1 + 0. *std::pow(Plab, 0. ) + >> 1299 0.66 *sqrLogPlab - 5.6 *LogPlab)/2; //K- >> 1300 >> 1301 G4double XtotKN = ( 18.7 + 0. *std::pow(Plab, 0. ) + >> 1302 0.21 *sqrLogPlab - 0.89*LogPlab + //K+ >> 1303 25.2 + 0. *std::pow(Plab, 0. ) + >> 1304 0.38 *sqrLogPlab - 2.9 *LogPlab)/2; //K- >> 1305 >> 1306 G4double XelKP = ( 5.0 + 8.1*std::pow(Plab,-1.8 ) >> 1307 + 0.16 *sqrLogPlab - 1.3 *LogPlab + //K+ >> 1308 7.3 + 0. *std::pow(Plab,-0. ) + >> 1309 0.29 *sqrLogPlab - 2.4 *LogPlab)/2; //K- >> 1310 >> 1311 G4double XelKN = ( 7.3 + 0. *std::pow(Plab,-0. ) + >> 1312 0.29 *sqrLogPlab - 2.4 *LogPlab + //K+ >> 1313 5.0 + 8.1*std::pow(Plab,-1.8 ) + >> 1314 0.16 *sqrLogPlab - 1.3 *LogPlab)/2; //K- >> 1315 >> 1316 Xtotal = ( NumberOfTargetProtons * XtotKP + >> 1317 NumberOfTargetNeutrons * XtotKN ); >> 1318 >> 1319 Xelastic = ( NumberOfTargetProtons * XelKP + >> 1320 NumberOfTargetNeutrons * XelKN ); >> 1321 } >> 1322 else //------Projectile is undefined, Nucleon assumed >> 1323 { >> 1324 G4double XtotPP = 48.0 + 0. *std::pow(Plab, 0. ) + >> 1325 0.522*sqrLogPlab - 4.51*LogPlab; >> 1326 >> 1327 G4double XtotPN = 47.3 + 0. *std::pow(Plab, 0. ) + >> 1328 0.513*sqrLogPlab - 4.27*LogPlab; >> 1329 >> 1330 G4double XelPP = 11.9 + 26.9*std::pow(Plab,-1.21) + >> 1331 0.169*sqrLogPlab - 1.85*LogPlab; >> 1332 G4double XelPN = 11.9 + 26.9*std::pow(Plab,-1.21) + >> 1333 0.169*sqrLogPlab - 1.85*LogPlab; >> 1334 >> 1335 Xtotal = ( NumberOfTargetProtons * XtotPP + >> 1336 NumberOfTargetNeutrons * XtotPN ); >> 1337 >> 1338 Xelastic = ( NumberOfTargetProtons * XelPP + >> 1339 NumberOfTargetNeutrons * XelPN ); >> 1340 } >> 1341 Xinelastic = Xtotal - Xelastic; >> 1342 >> 1343 if( Xinelastic < 0.) Xinelastic = 0.; >> 1344 >> 1345 return Xinelastic*= millibarn; 452 } 1346 } 453 1347 454 ////////////////////////////////////////////// << 1348 //////////////////////////////////////////////////////////////////////////////////// 455 // 1349 // 456 // 1350 // 457 1351 458 void G4ComponentGGHadronNucleusXsc::Descriptio << 1352 G4double >> 1353 G4ComponentGGHadronNucleusXsc::GetNucleusRadius(const G4DynamicParticle* , >> 1354 const G4Element* anElement) >> 1355 { >> 1356 G4int At = G4lrint(anElement->GetN()); >> 1357 G4double oneThird = 1.0/3.0; >> 1358 G4double cubicrAt = std::pow(G4double(At), oneThird); >> 1359 >> 1360 G4double R; // = fRadiusConst*cubicrAt; >> 1361 /* >> 1362 G4double tmp = std::pow( cubicrAt-1., 3.); >> 1363 tmp += At; >> 1364 tmp *= 0.5; >> 1365 >> 1366 if (At > 20.) // 20. >> 1367 { >> 1368 R = fRadiusConst*std::pow (tmp, oneThird); >> 1369 } >> 1370 else >> 1371 { >> 1372 R = fRadiusConst*cubicrAt; >> 1373 } >> 1374 */ >> 1375 >> 1376 R = fRadiusConst*cubicrAt; >> 1377 >> 1378 G4double meanA = 21.; >> 1379 >> 1380 G4double tauA1 = 40.; >> 1381 G4double tauA2 = 10.; >> 1382 G4double tauA3 = 5.; >> 1383 >> 1384 G4double a1 = 0.85; >> 1385 G4double b1 = 1. - a1; >> 1386 >> 1387 G4double b2 = 0.3; >> 1388 G4double b3 = 4.; >> 1389 >> 1390 if (At > 20) // 20. >> 1391 { >> 1392 R *= ( a1 + b1*std::exp( -(At - meanA)/tauA1) ); >> 1393 } >> 1394 else if (At > 3) >> 1395 { >> 1396 R *= ( 1.0 + b2*( 1. - std::exp( (At - meanA)/tauA2) ) ); >> 1397 } >> 1398 else >> 1399 { >> 1400 R *= ( 1.0 + b3*( 1. - std::exp( (At - meanA)/tauA3) ) ); >> 1401 } >> 1402 return R; >> 1403 >> 1404 } >> 1405 //////////////////////////////////////////////////////////////////////////////////// >> 1406 // >> 1407 // >> 1408 >> 1409 G4double >> 1410 G4ComponentGGHadronNucleusXsc::GetNucleusRadius(G4int At) >> 1411 { >> 1412 G4double oneThird = 1.0/3.0; >> 1413 G4double cubicrAt = std::pow(G4double(At), oneThird); >> 1414 >> 1415 G4double R; // = fRadiusConst*cubicrAt; >> 1416 >> 1417 /* >> 1418 G4double tmp = std::pow( cubicrAt-1., 3.); >> 1419 tmp += At; >> 1420 tmp *= 0.5; >> 1421 >> 1422 if (At > 20.) >> 1423 { >> 1424 R = fRadiusConst*std::pow (tmp, oneThird); >> 1425 } >> 1426 else >> 1427 { >> 1428 R = fRadiusConst*cubicrAt; >> 1429 } >> 1430 */ >> 1431 >> 1432 R = fRadiusConst*cubicrAt; >> 1433 >> 1434 G4double meanA = 20.; >> 1435 G4double tauA = 20.; >> 1436 >> 1437 if (At > 20) // 20. >> 1438 { >> 1439 R *= ( 0.8 + 0.2*std::exp( -(G4double(At) - meanA)/tauA) ); >> 1440 } >> 1441 else >> 1442 { >> 1443 R *= ( 1.0 + 0.1*( 1. - std::exp( (G4double(At) - meanA)/tauA) ) ); >> 1444 } >> 1445 >> 1446 return R; >> 1447 } >> 1448 >> 1449 //////////////////////////////////////////////////////////////////////////////////// >> 1450 // >> 1451 // >> 1452 >> 1453 G4double G4ComponentGGHadronNucleusXsc::CalculateEcmValue( const G4double mp , >> 1454 const G4double mt , >> 1455 const G4double Plab ) >> 1456 { >> 1457 G4double Elab = std::sqrt ( mp * mp + Plab * Plab ); >> 1458 G4double Ecm = std::sqrt ( mp * mp + mt * mt + 2 * Elab * mt ); >> 1459 // G4double Pcm = Plab * mt / Ecm; >> 1460 // G4double KEcm = std::sqrt ( Pcm * Pcm + mp * mp ) - mp; >> 1461 >> 1462 return Ecm ; // KEcm; >> 1463 } >> 1464 >> 1465 //////////////////////////////////////////////////////////////////////////////////// >> 1466 // >> 1467 // >> 1468 >> 1469 G4double G4ComponentGGHadronNucleusXsc::CalcMandelstamS( const G4double mp , >> 1470 const G4double mt , >> 1471 const G4double Plab ) >> 1472 { >> 1473 G4double Elab = std::sqrt ( mp * mp + Plab * Plab ); >> 1474 G4double sMand = mp*mp + mt*mt + 2*Elab*mt ; >> 1475 >> 1476 return sMand; >> 1477 } >> 1478 >> 1479 //////////////////////////////////////////////////////////////////////////////////// >> 1480 // >> 1481 // >> 1482 >> 1483 void G4ComponentGGHadronNucleusXsc::CrossSectionDescription(std::ostream& outFile) const 459 { 1484 { 460 outFile << "G4ComponentGGHadronNucleusXsc ca 1485 outFile << "G4ComponentGGHadronNucleusXsc calculates total, inelastic and\n" 461 << "elastic cross sections for hadro 1486 << "elastic cross sections for hadron-nucleus cross sections using\n" 462 << "the Glauber model with Gribov co 1487 << "the Glauber model with Gribov corrections. It is valid for all\n" 463 << "targets except hydrogen, and for 1488 << "targets except hydrogen, and for incident p, pbar, n, sigma-,\n" 464 << "pi+, pi-, K+, K- and gammas with 1489 << "pi+, pi-, K+, K- and gammas with energies above 3 GeV. This is\n" 465 << "a cross section component which 1490 << "a cross section component which is to be used to build a cross\n" 466 << "data set.\n"; 1491 << "data set.\n"; 467 } 1492 } 468 1493 469 1494 470 ////////////////////////////////////////////// 1495 /////////////////////////////////////////////////////////////////////////////// 471 // 1496 // 472 // Correction arrays for GG <-> Bar changea at 1497 // Correction arrays for GG <-> Bar changea at ~ 90 GeV 473 1498 474 const G4double G4ComponentGGHadronNucleusXsc:: 1499 const G4double G4ComponentGGHadronNucleusXsc::fNeutronBarCorrectionTot[93] = { 475 1500 476 1.0, 1.0, 1.42517e+00, // 1.118517e+00, 1501 1.0, 1.0, 1.42517e+00, // 1.118517e+00, 477 1.082002e+00, 1.116171e+00, 1.078747e+00, 1.06 1502 1.082002e+00, 1.116171e+00, 1.078747e+00, 1.061315e+00, 478 1.058205e+00, 1.082663e+00, 1.068500e+00, 1.07 1503 1.058205e+00, 1.082663e+00, 1.068500e+00, 1.076912e+00, 1.083475e+00, 1.079117e+00, 479 1.071856e+00, 1.071990e+00, 1.073774e+00, 1.07 1504 1.071856e+00, 1.071990e+00, 1.073774e+00, 1.079356e+00, 1.081314e+00, 1.082056e+00, 480 1.090772e+00, 1.096776e+00, 1.095828e+00, 1.09 1505 1.090772e+00, 1.096776e+00, 1.095828e+00, 1.097678e+00, 1.099157e+00, 1.103677e+00, 481 1.105132e+00, 1.109806e+00, 1.110816e+00, 1.11 1506 1.105132e+00, 1.109806e+00, 1.110816e+00, 1.117378e+00, 1.115165e+00, 1.115710e+00, 482 1.111855e+00, 1.110482e+00, 1.110112e+00, 1.10 1507 1.111855e+00, 1.110482e+00, 1.110112e+00, 1.106676e+00, 1.108706e+00, 1.105549e+00, 483 1.106318e+00, 1.106242e+00, 1.107672e+00, 1.10 1508 1.106318e+00, 1.106242e+00, 1.107672e+00, 1.107342e+00, 1.108119e+00, 1.106655e+00, 484 1.102588e+00, 1.096657e+00, 1.092920e+00, 1.08 1509 1.102588e+00, 1.096657e+00, 1.092920e+00, 1.086629e+00, 1.083592e+00, 1.076030e+00, 485 1.083777e+00, 1.089460e+00, 1.086545e+00, 1.07 1510 1.083777e+00, 1.089460e+00, 1.086545e+00, 1.079924e+00, 1.082218e+00, 1.077798e+00, 486 1.077062e+00, 1.072825e+00, 1.072241e+00, 1.07 1511 1.077062e+00, 1.072825e+00, 1.072241e+00, 1.072104e+00, 1.072490e+00, 1.069829e+00, 487 1.070398e+00, 1.065458e+00, 1.064968e+00, 1.06 1512 1.070398e+00, 1.065458e+00, 1.064968e+00, 1.060524e+00, 1.060048e+00, 1.057620e+00, 488 1.056428e+00, 1.055366e+00, 1.055017e+00, 1.05 1513 1.056428e+00, 1.055366e+00, 1.055017e+00, 1.052304e+00, 1.051767e+00, 1.049728e+00, 489 1.048745e+00, 1.047399e+00, 1.045876e+00, 1.04 1514 1.048745e+00, 1.047399e+00, 1.045876e+00, 1.042972e+00, 1.041824e+00, 1.039993e+00, 490 1.039021e+00, 1.036627e+00, 1.034176e+00, 1.03 1515 1.039021e+00, 1.036627e+00, 1.034176e+00, 1.032526e+00, 1.033633e+00, 1.036107e+00, 491 1.037803e+00, 1.031266e+00, 1.032991e+00, 1.03 1516 1.037803e+00, 1.031266e+00, 1.032991e+00, 1.033284e+00, 1.035015e+00, 1.033945e+00, 492 1.037075e+00, 1.034721e+00 1517 1.037075e+00, 1.034721e+00 493 1518 494 }; 1519 }; 495 1520 496 const G4double G4ComponentGGHadronNucleusXsc:: 1521 const G4double G4ComponentGGHadronNucleusXsc::fNeutronBarCorrectionIn[93] = { 497 1522 498 1.0, 1.0, 1.167421e+00, 1.156250e+00, 1.20 1523 1.0, 1.0, 1.167421e+00, 1.156250e+00, 1.205364e+00, 1.154225e+00, 1.120391e+00, // 6 499 1.124632e+00, 1.129460e+00, 1.107863e+00, 1.10 1524 1.124632e+00, 1.129460e+00, 1.107863e+00, 1.102152e+00, 1.104593e+00, 1.100285e+00, // 12 500 1.098450e+00, 1.092677e+00, 1.101124e+00, 1.10 1525 1.098450e+00, 1.092677e+00, 1.101124e+00, 1.106461e+00, 1.115049e+00, 1.123903e+00, // 18 501 1.126661e+00, 1.131259e+00, 1.133949e+00, 1.13 1526 1.126661e+00, 1.131259e+00, 1.133949e+00, 1.134185e+00, 1.133767e+00, 1.132813e+00, // 24 502 1.131515e+00, 1.144338e+00, // 1.130338e+00, 1527 1.131515e+00, 1.144338e+00, // 1.130338e+00, 503 1.134171e+00, 1.139206e+00, 1.148474e+00, // 1 1528 1.134171e+00, 1.139206e+00, 1.148474e+00, // 1.141474e+00, 504 1.142189e+00, 1529 1.142189e+00, 505 1.140725e+00, 1.140100e+00, 1.139848e+00, 1.13 1530 1.140725e+00, 1.140100e+00, 1.139848e+00, 1.137674e+00, 1.138645e+00, 1.136339e+00, 506 1.136439e+00, 1.135946e+00, 1.136431e+00, 1.13 1531 1.136439e+00, 1.135946e+00, 1.136431e+00, 1.135702e+00, 1.135703e+00, 1.134113e+00, 507 1.131935e+00, 1.128381e+00, 1.126373e+00, 1.12 1532 1.131935e+00, 1.128381e+00, 1.126373e+00, 1.122453e+00, 1.120908e+00, 1.115953e+00, 508 1.115947e+00, 1.114426e+00, 1.111749e+00, 1.10 1533 1.115947e+00, 1.114426e+00, 1.111749e+00, 1.106207e+00, 1.107494e+00, 1.103622e+00, 509 1.102576e+00, 1.098816e+00, 1.097889e+00, 1.09 1534 1.102576e+00, 1.098816e+00, 1.097889e+00, 1.097306e+00, 1.097130e+00, 1.094578e+00, 510 1.094552e+00, 1.090222e+00, 1.089358e+00, 1.08 1535 1.094552e+00, 1.090222e+00, 1.089358e+00, 1.085409e+00, 1.084560e+00, 1.082182e+00, 511 1.080773e+00, 1.079464e+00, 1.078724e+00, 1.07 1536 1.080773e+00, 1.079464e+00, 1.078724e+00, 1.076121e+00, 1.075235e+00, 1.073159e+00, 512 1.071920e+00, 1.070395e+00, 1.069503e+00, 1.06 1537 1.071920e+00, 1.070395e+00, 1.069503e+00, 1.067525e+00, 1.066919e+00, 1.065779e+00, 513 1.065319e+00, 1.063730e+00, 1.062092e+00, 1.06 1538 1.065319e+00, 1.063730e+00, 1.062092e+00, 1.061085e+00, 1.059908e+00, 1.059815e+00, 514 1.059109e+00, 1.051920e+00, 1.051258e+00, 1.04 1539 1.059109e+00, 1.051920e+00, 1.051258e+00, 1.049473e+00, 1.048823e+00, 1.045984e+00, 515 1.046435e+00, 1.042614e+00 1540 1.046435e+00, 1.042614e+00 516 1541 517 }; 1542 }; 518 1543 519 const G4double G4ComponentGGHadronNucleusXsc:: 1544 const G4double G4ComponentGGHadronNucleusXsc::fProtonBarCorrectionTot[93] = { 520 1545 521 1.0, 1.0, 1546 1.0, 1.0, 522 1.118515e+00, 1.082000e+00, 1.116169e+00, 1.07 1547 1.118515e+00, 1.082000e+00, 1.116169e+00, 1.078745e+00, 1.061313e+00, 1.058203e+00, 523 1.082661e+00, 1.068498e+00, 1.076910e+00, 1.08 1548 1.082661e+00, 1.068498e+00, 1.076910e+00, 1.083474e+00, 1.079115e+00, 1.071854e+00, 524 1.071988e+00, 1.073772e+00, 1.079355e+00, 1.08 1549 1.071988e+00, 1.073772e+00, 1.079355e+00, 1.081312e+00, 1.082054e+00, 1.090770e+00, 525 1.096774e+00, 1.095827e+00, 1.097677e+00, 1.09 1550 1.096774e+00, 1.095827e+00, 1.097677e+00, 1.099156e+00, 1.103676e+00, 1.105130e+00, 526 1.109805e+00, 1.110814e+00, 1.117377e+00, 1.11 1551 1.109805e+00, 1.110814e+00, 1.117377e+00, 1.115163e+00, 1.115708e+00, 1.111853e+00, 527 1.110480e+00, 1.110111e+00, 1.106674e+00, 1.10 1552 1.110480e+00, 1.110111e+00, 1.106674e+00, 1.108705e+00, 1.105548e+00, 1.106317e+00, 528 1.106241e+00, 1.107671e+00, 1.107341e+00, 1.10 1553 1.106241e+00, 1.107671e+00, 1.107341e+00, 1.108118e+00, 1.106654e+00, 1.102586e+00, 529 1.096655e+00, 1.092918e+00, 1.086628e+00, 1.08 1554 1.096655e+00, 1.092918e+00, 1.086628e+00, 1.083590e+00, 1.076028e+00, 1.083776e+00, 530 1.089458e+00, 1.086543e+00, 1.079923e+00, 1.08 1555 1.089458e+00, 1.086543e+00, 1.079923e+00, 1.082216e+00, 1.077797e+00, 1.077061e+00, 531 1.072824e+00, 1.072239e+00, 1.072103e+00, 1.07 1556 1.072824e+00, 1.072239e+00, 1.072103e+00, 1.072488e+00, 1.069828e+00, 1.070396e+00, 532 1.065456e+00, 1.064966e+00, 1.060523e+00, 1.06 1557 1.065456e+00, 1.064966e+00, 1.060523e+00, 1.060047e+00, 1.057618e+00, 1.056427e+00, 533 1.055365e+00, 1.055016e+00, 1.052303e+00, 1.05 1558 1.055365e+00, 1.055016e+00, 1.052303e+00, 1.051766e+00, 1.049727e+00, 1.048743e+00, 534 1.047397e+00, 1.045875e+00, 1.042971e+00, 1.04 1559 1.047397e+00, 1.045875e+00, 1.042971e+00, 1.041823e+00, 1.039992e+00, 1.039019e+00, 535 1.036626e+00, 1.034175e+00, 1.032525e+00, 1.03 1560 1.036626e+00, 1.034175e+00, 1.032525e+00, 1.033632e+00, 1.036106e+00, 1.037802e+00, 536 1.031265e+00, 1.032990e+00, 1.033283e+00, 1.03 1561 1.031265e+00, 1.032990e+00, 1.033283e+00, 1.035014e+00, 1.033944e+00, 1.037074e+00, 537 1.034720e+00 1562 1.034720e+00 538 1563 539 }; 1564 }; 540 1565 541 const G4double G4ComponentGGHadronNucleusXsc:: 1566 const G4double G4ComponentGGHadronNucleusXsc::fProtonBarCorrectionIn[93] = { 542 1567 543 1.0, 1.0, 1568 1.0, 1.0, 544 1.147419e+00, // 1.167419e+00, 1569 1.147419e+00, // 1.167419e+00, 545 1.156248e+00, 1.205362e+00, 1.154224e+00, 1.12 1570 1.156248e+00, 1.205362e+00, 1.154224e+00, 1.120390e+00, 1.124630e+00, // 7 546 1.129459e+00, 1.107861e+00, 1.102151e+00, 1.10 1571 1.129459e+00, 1.107861e+00, 1.102151e+00, 1.104591e+00, 1.100284e+00, 1.098449e+00, // 13 547 1.092675e+00, 1.101122e+00, 1.106460e+00, 1.11 1572 1.092675e+00, 1.101122e+00, 1.106460e+00, 1.115048e+00, 1.123902e+00, 1.126659e+00, // 19 548 1.131258e+00, 1.133948e+00, 1.134183e+00, 1.13 1573 1.131258e+00, 1.133948e+00, 1.134183e+00, 1.133766e+00, 1.132812e+00, 1.131514e+00, // 25 549 1.140337e+00, // 1.130337e+00, 1574 1.140337e+00, // 1.130337e+00, 550 1575 551 1.134170e+00, 1.139205e+00, 1.151472e+00, // 1576 1.134170e+00, 1.139205e+00, 1.151472e+00, // 1.141472e+00, 552 1.142188e+00, 1.140724e+00, 1577 1.142188e+00, 1.140724e+00, 553 1.140099e+00, 1.139847e+00, 1.137672e+00, 1.13 1578 1.140099e+00, 1.139847e+00, 1.137672e+00, 1.138644e+00, 1.136338e+00, 1.136438e+00, 554 1.135945e+00, 1.136429e+00, 1.135701e+00, 1.13 1579 1.135945e+00, 1.136429e+00, 1.135701e+00, 1.135702e+00, 1.134112e+00, 1.131934e+00, 555 1.128380e+00, 1.126371e+00, 1.122452e+00, 1.12 1580 1.128380e+00, 1.126371e+00, 1.122452e+00, 1.120907e+00, 1.115952e+00, 1.115946e+00, 556 1.114425e+00, 1.111748e+00, 1.106205e+00, 1.10 1581 1.114425e+00, 1.111748e+00, 1.106205e+00, 1.107493e+00, 1.103621e+00, 1.102575e+00, 557 1.098815e+00, 1.097888e+00, 1.097305e+00, 1.09 1582 1.098815e+00, 1.097888e+00, 1.097305e+00, 1.097129e+00, 1.094577e+00, 1.094551e+00, 558 1.090221e+00, 1.089357e+00, 1.085408e+00, 1.08 1583 1.090221e+00, 1.089357e+00, 1.085408e+00, 1.084559e+00, 1.082181e+00, 1.080772e+00, 559 1.079463e+00, 1.078723e+00, 1.076120e+00, 1.07 1584 1.079463e+00, 1.078723e+00, 1.076120e+00, 1.075234e+00, 1.073158e+00, 1.071919e+00, 560 1.070394e+00, 1.069502e+00, 1.067524e+00, 1.06 1585 1.070394e+00, 1.069502e+00, 1.067524e+00, 1.066918e+00, 1.065778e+00, 1.065318e+00, 561 1.063729e+00, 1.062091e+00, 1.061084e+00, 1.05 1586 1.063729e+00, 1.062091e+00, 1.061084e+00, 1.059907e+00, 1.059814e+00, 1.059108e+00, 562 1.051919e+00, 1.051257e+00, 1.049472e+00, 1.04 1587 1.051919e+00, 1.051257e+00, 1.049472e+00, 1.048822e+00, 1.045983e+00, 1.046434e+00, 563 1.042613e+00 1588 1.042613e+00 564 1589 565 }; 1590 }; 566 1591 567 1592 568 const G4double G4ComponentGGHadronNucleusXsc:: 1593 const G4double G4ComponentGGHadronNucleusXsc::fPionPlusBarCorrectionTot[93] = { 569 1594 570 1.0, 1.0, 1595 1.0, 1.0, 571 1.075927e+00, 1.074407e+00, 1.126098e+00, 1.10 1596 1.075927e+00, 1.074407e+00, 1.126098e+00, 1.100127e+00, 1.089742e+00, 1.083536e+00, 572 1.089988e+00, 1.103566e+00, 1.096922e+00, 1.12 1597 1.089988e+00, 1.103566e+00, 1.096922e+00, 1.126573e+00, 1.132734e+00, 1.136512e+00, 573 1.136629e+00, 1.133086e+00, 1.132428e+00, 1.12 1598 1.136629e+00, 1.133086e+00, 1.132428e+00, 1.129299e+00, 1.125622e+00, 1.126992e+00, 574 1.127840e+00, 1.162670e+00, 1.160392e+00, 1.15 1599 1.127840e+00, 1.162670e+00, 1.160392e+00, 1.157864e+00, 1.157227e+00, 1.154627e+00, 575 1.192555e+00, 1.197243e+00, 1.197911e+00, 1.20 1600 1.192555e+00, 1.197243e+00, 1.197911e+00, 1.200326e+00, 1.220053e+00, 1.215019e+00, 576 1.211703e+00, 1.209080e+00, 1.204248e+00, 1.20 1601 1.211703e+00, 1.209080e+00, 1.204248e+00, 1.203328e+00, 1.198671e+00, 1.196840e+00, 577 1.194392e+00, 1.193037e+00, 1.190408e+00, 1.18 1602 1.194392e+00, 1.193037e+00, 1.190408e+00, 1.188583e+00, 1.206127e+00, 1.210028e+00, 578 1.206434e+00, 1.204456e+00, 1.200547e+00, 1.19 1603 1.206434e+00, 1.204456e+00, 1.200547e+00, 1.199058e+00, 1.200174e+00, 1.200276e+00, 579 1.198912e+00, 1.213048e+00, 1.207160e+00, 1.20 1604 1.198912e+00, 1.213048e+00, 1.207160e+00, 1.208020e+00, 1.203814e+00, 1.202380e+00, 580 1.198306e+00, 1.197002e+00, 1.196027e+00, 1.19 1605 1.198306e+00, 1.197002e+00, 1.196027e+00, 1.195449e+00, 1.192563e+00, 1.192135e+00, 581 1.187556e+00, 1.186308e+00, 1.182124e+00, 1.18 1606 1.187556e+00, 1.186308e+00, 1.182124e+00, 1.180900e+00, 1.178224e+00, 1.176471e+00, 582 1.174811e+00, 1.173702e+00, 1.170827e+00, 1.16 1607 1.174811e+00, 1.173702e+00, 1.170827e+00, 1.169581e+00, 1.167205e+00, 1.165626e+00, 583 1.180244e+00, 1.177626e+00, 1.175121e+00, 1.17 1608 1.180244e+00, 1.177626e+00, 1.175121e+00, 1.173903e+00, 1.172192e+00, 1.171128e+00, 584 1.168997e+00, 1.166826e+00, 1.164130e+00, 1.16 1609 1.168997e+00, 1.166826e+00, 1.164130e+00, 1.165412e+00, 1.165504e+00, 1.165020e+00, 585 1.158462e+00, 1.158014e+00, 1.156519e+00, 1.15 1610 1.158462e+00, 1.158014e+00, 1.156519e+00, 1.156081e+00, 1.153602e+00, 1.154190e+00, 586 1.152974e+00 1611 1.152974e+00 587 1612 588 }; 1613 }; 589 1614 590 const G4double G4ComponentGGHadronNucleusXsc:: 1615 const G4double G4ComponentGGHadronNucleusXsc::fPionPlusBarCorrectionIn[93] = { 591 1616 592 1.0, 1.0, 1617 1.0, 1.0, 593 1.140246e+00, 1.097872e+00, 1.104301e+00, 1.06 1618 1.140246e+00, 1.097872e+00, 1.104301e+00, 1.068722e+00, 1.056495e+00, 1.062622e+00, // 7 594 1.047987e+00, 1.037032e+00, 1.035686e+00, 1.04 1619 1.047987e+00, 1.037032e+00, 1.035686e+00, 1.042870e+00, 1.052222e+00, 1.075100e+00, // 13 595 1.084480e+00, 1.078286e+00, 1.081488e+00, 1.08 1620 1.084480e+00, 1.078286e+00, 1.081488e+00, 1.089713e+00, 1.099105e+00, 1.098003e+00, // 19 596 1.102175e+00, 1.117707e+00, 1.121734e+00, 1.12 1621 1.102175e+00, 1.117707e+00, 1.121734e+00, 1.125229e+00, 1.126457e+00, 1.128905e+00, // 25 597 1.163312e+00, 1.126263e+00, 1.126459e+00, 1.13 1622 1.163312e+00, 1.126263e+00, 1.126459e+00, 1.135191e+00, 1.116986e+00, 1.117184e+00, // 31 598 1.117037e+00, 1.116777e+00, 1.115858e+00, 1.11 1623 1.117037e+00, 1.116777e+00, 1.115858e+00, 1.115745e+00, 1.114489e+00, 1.113993e+00, // 37 599 1.113226e+00, 1.112818e+00, 1.111890e+00, 1.11 1624 1.113226e+00, 1.112818e+00, 1.111890e+00, 1.111238e+00, 1.111209e+00, 1.111775e+00, // 43 600 1.110256e+00, 1.109414e+00, 1.107647e+00, 1.10 1625 1.110256e+00, 1.109414e+00, 1.107647e+00, 1.106980e+00, 1.106096e+00, 1.107331e+00, // 49 601 1.107849e+00, 1.106407e+00, 1.103426e+00, 1.10 1626 1.107849e+00, 1.106407e+00, 1.103426e+00, 1.103896e+00, 1.101756e+00, 1.101031e+00, // 55 602 1.098915e+00, 1.098260e+00, 1.097768e+00, 1.09 1627 1.098915e+00, 1.098260e+00, 1.097768e+00, 1.097487e+00, 1.095964e+00, 1.095773e+00, // 61 603 1.093348e+00, 1.092687e+00, 1.090465e+00, 1.08 1628 1.093348e+00, 1.092687e+00, 1.090465e+00, 1.089821e+00, 1.088394e+00, 1.087462e+00, // 67 604 1.086571e+00, 1.085997e+00, 1.084451e+00, 1.08 1629 1.086571e+00, 1.085997e+00, 1.084451e+00, 1.083798e+00, 1.082513e+00, 1.081670e+00, // 73 605 1.080735e+00, 1.075659e+00, 1.074341e+00, 1.07 1630 1.080735e+00, 1.075659e+00, 1.074341e+00, 1.073689e+00, 1.072787e+00, 1.072237e+00, // 79 606 1.071107e+00, 1.069955e+00, 1.074856e+00, 1.06 1631 1.071107e+00, 1.069955e+00, 1.074856e+00, 1.065873e+00, 1.065938e+00, 1.065694e+00, 607 1.062192e+00, 1.061967e+00, 1.061180e+00, 1.06 1632 1.062192e+00, 1.061967e+00, 1.061180e+00, 1.060960e+00, 1.059646e+00, 1.059975e+00, 608 1.059658e+00 1633 1.059658e+00 609 1634 610 }; 1635 }; 611 1636 612 1637 613 const G4double G4ComponentGGHadronNucleusXsc:: 1638 const G4double G4ComponentGGHadronNucleusXsc::fPionMinusBarCorrectionTot[93] = { 614 1639 615 1.0, 1.0, 1640 1.0, 1.0, 616 1.3956e+00, 1.077959e+00, 1.129145e+00, 1.1020 1641 1.3956e+00, 1.077959e+00, 1.129145e+00, 1.102088e+00, 1.089765e+00, 1.083542e+00, // 7 617 1.089995e+00, 1.104895e+00, 1.097154e+00, 1.12 1642 1.089995e+00, 1.104895e+00, 1.097154e+00, 1.127663e+00, 1.133063e+00, 1.137425e+00, // 13 618 1.136724e+00, 1.133859e+00, 1.132498e+00, 1.13 1643 1.136724e+00, 1.133859e+00, 1.132498e+00, 1.130276e+00, 1.127896e+00, 1.127656e+00, // 19 619 1.127905e+00, 1.164210e+00, 1.162259e+00, 1.16 1644 1.127905e+00, 1.164210e+00, 1.162259e+00, 1.160075e+00, 1.158978e+00, 1.156649e+00, // 25 620 1.194157e+00, 1.199177e+00, 1.198983e+00, 1.20 1645 1.194157e+00, 1.199177e+00, 1.198983e+00, 1.202325e+00, 1.221967e+00, 1.217548e+00, 621 1.214389e+00, 1.211760e+00, 1.207335e+00, 1.20 1646 1.214389e+00, 1.211760e+00, 1.207335e+00, 1.206081e+00, 1.201766e+00, 1.199779e+00, 622 1.197283e+00, 1.195706e+00, 1.193071e+00, 1.19 1647 1.197283e+00, 1.195706e+00, 1.193071e+00, 1.191115e+00, 1.208838e+00, 1.212681e+00, 623 1.209235e+00, 1.207163e+00, 1.203451e+00, 1.20 1648 1.209235e+00, 1.207163e+00, 1.203451e+00, 1.201807e+00, 1.203283e+00, 1.203388e+00, 624 1.202244e+00, 1.216509e+00, 1.211066e+00, 1.21 1649 1.202244e+00, 1.216509e+00, 1.211066e+00, 1.211504e+00, 1.207539e+00, 1.205991e+00, 625 1.202143e+00, 1.200724e+00, 1.199595e+00, 1.19 1650 1.202143e+00, 1.200724e+00, 1.199595e+00, 1.198815e+00, 1.196025e+00, 1.195390e+00, 626 1.191137e+00, 1.189791e+00, 1.185888e+00, 1.18 1651 1.191137e+00, 1.189791e+00, 1.185888e+00, 1.184575e+00, 1.181996e+00, 1.180229e+00, 627 1.178545e+00, 1.177355e+00, 1.174616e+00, 1.17 1652 1.178545e+00, 1.177355e+00, 1.174616e+00, 1.173312e+00, 1.171016e+00, 1.169424e+00, 628 1.184120e+00, 1.181478e+00, 1.179085e+00, 1.17 1653 1.184120e+00, 1.181478e+00, 1.179085e+00, 1.177817e+00, 1.176124e+00, 1.175003e+00, 629 1.172947e+00, 1.170858e+00, 1.168170e+00, 1.16 1654 1.172947e+00, 1.170858e+00, 1.168170e+00, 1.169397e+00, 1.169304e+00, 1.168706e+00, 630 1.162774e+00, 1.162217e+00, 1.160740e+00, 1.16 1655 1.162774e+00, 1.162217e+00, 1.160740e+00, 1.160196e+00, 1.157857e+00, 1.158220e+00, 631 1.157267e+00 1656 1.157267e+00 632 }; 1657 }; >> 1658 633 1659 634 const G4double G4ComponentGGHadronNucleusXsc:: 1660 const G4double G4ComponentGGHadronNucleusXsc::fPionMinusBarCorrectionIn[93] = { 635 1661 636 1.0, 1.0, 1662 1.0, 1.0, 637 1.463e+00, 1.100898e+00, 1.106773e+00, 1.07 1663 1.463e+00, 1.100898e+00, 1.106773e+00, 1.070289e+00, 1.040514e+00, 1.062628e+00, // 7 638 1.047992e+00, 1.038041e+00, 1.035862e+00, 1.04 1664 1.047992e+00, 1.038041e+00, 1.035862e+00, 1.043679e+00, 1.052466e+00, 1.065780e+00, // 13 639 1.070551e+00, 1.078869e+00, 1.081541e+00, 1.09 1665 1.070551e+00, 1.078869e+00, 1.081541e+00, 1.090455e+00, 1.100847e+00, 1.098511e+00, // 19 640 1.102226e+00, 1.118865e+00, 1.123143e+00, 1.12 1666 1.102226e+00, 1.118865e+00, 1.123143e+00, 1.126904e+00, 1.127785e+00, 1.130444e+00, // 25 641 1.148502e+00, 1.127678e+00, 1.127244e+00, 1.12 1667 1.148502e+00, 1.127678e+00, 1.127244e+00, 1.123634e+00, 1.118347e+00, 1.118988e+00, 642 1.118957e+00, 1.118696e+00, 1.118074e+00, 1.11 1668 1.118957e+00, 1.118696e+00, 1.118074e+00, 1.117722e+00, 1.116717e+00, 1.116111e+00, 643 1.115311e+00, 1.114745e+00, 1.113814e+00, 1.11 1669 1.115311e+00, 1.114745e+00, 1.113814e+00, 1.113069e+00, 1.113141e+00, 1.113660e+00, 644 1.112249e+00, 1.111343e+00, 1.109718e+00, 1.10 1670 1.112249e+00, 1.111343e+00, 1.109718e+00, 1.108942e+00, 1.108310e+00, 1.109549e+00, 645 1.110227e+00, 1.108846e+00, 1.106183e+00, 1.10 1671 1.110227e+00, 1.108846e+00, 1.106183e+00, 1.106354e+00, 1.104388e+00, 1.103583e+00, 646 1.101632e+00, 1.100896e+00, 1.100296e+00, 1.09 1672 1.101632e+00, 1.100896e+00, 1.100296e+00, 1.099873e+00, 1.098420e+00, 1.098082e+00, 647 1.095892e+00, 1.095162e+00, 1.093144e+00, 1.09 1673 1.095892e+00, 1.095162e+00, 1.093144e+00, 1.092438e+00, 1.091083e+00, 1.090142e+00, 648 1.089236e+00, 1.088604e+00, 1.087159e+00, 1.08 1674 1.089236e+00, 1.088604e+00, 1.087159e+00, 1.086465e+00, 1.085239e+00, 1.084388e+00, 649 1.083473e+00, 1.078373e+00, 1.077136e+00, 1.07 1675 1.083473e+00, 1.078373e+00, 1.077136e+00, 1.076450e+00, 1.075561e+00, 1.074973e+00, 650 1.073898e+00, 1.072806e+00, 1.067706e+00, 1.06 1676 1.073898e+00, 1.072806e+00, 1.067706e+00, 1.068684e+00, 1.068618e+00, 1.068294e+00, 651 1.065241e+00, 1.064939e+00, 1.064166e+00, 1.06 1677 1.065241e+00, 1.064939e+00, 1.064166e+00, 1.063872e+00, 1.062659e+00, 1.062828e+00, 652 1.062699e+00 1678 1.062699e+00 653 1679 654 }; 1680 }; 655 1681 656 1682 657 // 1683 // 658 // 1684 // 659 ////////////////////////////////////////////// 1685 /////////////////////////////////////////////////////////////////////////////////////// 660 1686