Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/cross_sections/src/G4ComponentAntiNuclNuclearXS.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/hadronic/cross_sections/src/G4ComponentAntiNuclNuclearXS.cc (Version 11.3.0) and /processes/hadronic/cross_sections/src/G4ComponentAntiNuclNuclearXS.cc (Version 9.6.p3)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 //  Calculation of the total, elastic and inel     26 //  Calculation of the total, elastic and inelastic cross-sections
 27 //  of anti-nucleon and anti-nucleus interacti     27 //  of anti-nucleon and anti-nucleus interactions with nuclei
 28 //  based on Glauber approach and V. Grishine      28 //  based on Glauber approach and V. Grishine formulaes for
 29 //  interpolations (ref. V.M.Grichine, Eur.Phy     29 //  interpolations (ref. V.M.Grichine, Eur.Phys.J., C62(2009) 399;
 30 //  NIM, B267 (2009) 2460) and our parametriza     30 //  NIM, B267 (2009) 2460) and our parametrization of hadron-nucleon
 31 //  cross-sections                                 31 //  cross-sections
 32 //                                                 32 // 
 33 //                                                 33 // 
 34 //   Created by A.Galoyan and V. Uzhinsky, 18.     34 //   Created by A.Galoyan and V. Uzhinsky, 18.11.2010
 35                                                    35 
 36                                                    36 
 37 #include "G4ComponentAntiNuclNuclearXS.hh"         37 #include "G4ComponentAntiNuclNuclearXS.hh"
 38                                                    38 
 39 #include "G4PhysicalConstants.hh"                  39 #include "G4PhysicalConstants.hh"
 40 #include "G4SystemOfUnits.hh"                      40 #include "G4SystemOfUnits.hh"
 41 #include "G4ParticleTable.hh"                      41 #include "G4ParticleTable.hh"
 42 #include "G4IonTable.hh"                           42 #include "G4IonTable.hh"
 43 #include "G4ParticleDefinition.hh"                 43 #include "G4ParticleDefinition.hh"
 44 #include "G4HadronicException.hh"              << 
 45                                                    44 
 46                                                <<  45 ///////////////////////////////////////////////////////////////////////////////
 47 ////////////////////////////////////////////// << 
 48                                                    46 
 49 G4ComponentAntiNuclNuclearXS::G4ComponentAntiN     47 G4ComponentAntiNuclNuclearXS::G4ComponentAntiNuclNuclearXS() 
 50 : G4VComponentCrossSection("AntiAGlauber"),    <<  48 : G4VComponentCrossSection("AntiAGlauber"), fUpperLimit(10000*GeV),
 51   fRadiusEff(0.0),                             <<  49   fLowerLimit(10*MeV), fRadiusEff(0.0), fRadiusNN2(0.0),
 52   fTotalXsc(0.0), fElasticXsc(0.0), fInelastic     50   fTotalXsc(0.0), fElasticXsc(0.0), fInelasticXsc(0.0),
 53   fAntiHadronNucleonTotXsc(0.0), fAntiHadronNu     51   fAntiHadronNucleonTotXsc(0.0), fAntiHadronNucleonElXsc(0.0),
 54   Elab(0.0), S(0.0), SqrtS(0)                      52   Elab(0.0), S(0.0), SqrtS(0) 
 55 {                                                  53 {
 56   theAProton   = G4AntiProton::AntiProton();   <<  54   theAProton       = G4AntiProton::AntiProton();
 57   theANeutron  = G4AntiNeutron::AntiNeutron(); <<  55   theANeutron      = G4AntiNeutron::AntiNeutron();
 58   theADeuteron = G4AntiDeuteron::AntiDeuteron( <<  56   theADeuteron     = G4AntiDeuteron::AntiDeuteron();
 59   theATriton   = G4AntiTriton::AntiTriton();   <<  57   theATriton       = G4AntiTriton::AntiTriton();
 60   theAAlpha    = G4AntiAlpha::AntiAlpha();     <<  58   theAAlpha        = G4AntiAlpha::AntiAlpha();
 61   theAHe3      = G4AntiHe3::AntiHe3();         <<  59   theAHe3          = G4AntiHe3::AntiHe3();
 62   Mn     = 0.93827231;           // GeV        <<  60 
 63   b0     = 11.92;                // GeV^(-2)   <<  61  Mn       = 0.93827231;           // GeV
 64   b2     = 0.3036;               // GeV^(-2)   <<  62  b0       = 11.92;                // GeV^(-2)
 65   SqrtS0 = 20.74;                // GeV        <<  63  b2       = 0.3036;               // GeV^(-2)
 66   S0     = 33.0625;              // GeV^2      <<  64  SqrtS0   = 20.74;                // GeV
 67   R0     = 1.0;                  // default va <<  65  S0       = 33.0625;              // GeV^2
 68 }                                              << 
 69                                                    66 
                                                   >>  67 }
 70                                                    68 
 71 ////////////////////////////////////////////// <<  69 ///////////////////////////////////////////////////////////////////////////////////////
                                                   >>  70 //
                                                   >>  71 //
 72                                                    72 
 73 G4ComponentAntiNuclNuclearXS::~G4ComponentAnti     73 G4ComponentAntiNuclNuclearXS::~G4ComponentAntiNuclNuclearXS()
 74 {                                                  74 {
 75 }                                                  75 }
 76                                                    76 
                                                   >>  77 ////////////////////////////////////////////////////////////////////////////////
 77                                                    78 
 78 ////////////////////////////////////////////// <<  79 
                                                   >>  80 
                                                   >>  81 ////////////////////////////////////////////////////////////////////////////////
 79 //                                                 82 //
 80 // Calculation of total CrossSection of Anti-N     83 // Calculation of total CrossSection of Anti-Nucleus - Nucleus 
 81                                                    84 
                                                   >>  85 
 82 G4double G4ComponentAntiNuclNuclearXS::GetTota     86 G4double G4ComponentAntiNuclNuclearXS::GetTotalElementCrossSection
 83 (const G4ParticleDefinition* aParticle, G4doub     87 (const G4ParticleDefinition* aParticle, G4double kinEnergy, G4int Z, G4double A)
 84 {                                                  88 {
 85   if ( aParticle == nullptr ) {                <<  89   G4double xsection,   sigmaTotal, sigmaElastic;
 86     G4ExceptionDescription ed;                 << 
 87     ed << "anti-nucleus with nullptr particle  << 
 88     G4Exception( "G4ComponentAntiNuclNuclearXS << 
 89                  "antiNuclNuclearXS001", JustW << 
 90     return 0.0;                                << 
 91   }                                            << 
 92                                                << 
 93   const G4ParticleDefinition* theParticle = aP << 
 94   G4double sigmaTotal = GetAntiHadronNucleonTo << 
 95                                                    90 
 96   // calculation of squared radius of  NN-coll <<  91  const G4ParticleDefinition* theParticle = aParticle;
 97   G4int i(-1), j(-1);                          <<  92 
 98   if      ( theParticle == theAProton  ||      <<  93     sigmaTotal        = GetAntiHadronNucleonTotCrSc(theParticle,kinEnergy);
 99       theParticle == theANeutron )  { i=0; }   <<  94     sigmaElastic      = GetAntiHadronNucleonElCrSc(theParticle,kinEnergy);
100   else if ( theParticle == theADeuteron ) { i= << 
101   else if ( theParticle == theATriton   ) { i= << 
102   else if ( theParticle == theAHe3      ) { i= << 
103   else if ( theParticle == theAAlpha    ) { i= << 
104   else {};                                     << 
105                                                << 
106   if ( i < 0  && ( ! theParticle->IsAntiHypern << 
107     G4ExceptionDescription ed;                 << 
108     ed << "Unknown anti-nucleus : " << thePart << 
109        << "Target (Z, A)=(" << Z << "," << A < << 
110     G4Exception( "G4ComponentAntiNuclNuclearXS << 
111                  "antiNuclNuclearXS002", JustW << 
112   }                                            << 
113                                                    95 
114   G4int intA = static_cast<G4int>( A );        <<  96 // calculation of squared radius of  NN-collision
                                                   >>  97    fRadiusNN2=sigmaTotal*sigmaTotal*0.1/(8.*sigmaElastic*pi) ;  //fm^2   
115                                                    98 
116   if      ( Z == 1  &&  intA == 1 ) { j=0; }   <<  99 // calculation of effective nuclear radius for Pbar and Nbar interactions (can be changed)
117   else if ( Z == 1  &&  intA == 2 ) { j=1; }   << 100 
118   else if ( Z == 1  &&  intA == 3 ) { j=2; }   << 101   //A.R. 29-Jan-2013 : use antiprotons/antineutrons as the default case,
119   else if ( Z == 2  &&  intA == 3 ) { j=3; }   << 102   //                   to be used for instance, as first approximation
120   else if ( Z == 2  &&  intA == 4 ) { j=4; }   << 103   //                   without validation, for anti-hyperons. 
121   else {}                                      << 104   //if ( (theParticle == theAProton) || (theParticle == theANeutron) ) {   
122                                                << 105      if(A==1)
123   if ( i <  0  &&  j >= 0 ) { fRadiusEff = Ref << 106      { fTotalXsc = sigmaTotal * millibarn;
124   if ( i == 0  &&  j == 0 ) return sigmaTotal  << 107         return fTotalXsc;  }
125   if ( i >= 0  &&  j >= 0 ) { fRadiusEff = Ref << 108  
126                                                << 109    fRadiusEff = 1.34*std::pow(A,0.23)+1.35/std::pow(A,1./3.);   //fm
127   if ( j < 0 ) {                               << 110   
128     if      ( i  == 0 ) { fRadiusEff = 1.34 *  << 111    if( (Z==1) && (A==2) ) fRadiusEff = 3.800;     //fm
129                                      + 1.35 /  << 112    if( (Z==1) && (A==3) ) fRadiusEff = 3.300;  
130     else if ( i  == 1 ) { fRadiusEff = 1.46 *  << 113    if( (Z==2) && (A==3) ) fRadiusEff = 3.300;  
131                                      + 1.45 /  << 114    if( (Z==2) && (A==4) ) fRadiusEff = 2.376;     
132     else if ( i  == 2 ) { fRadiusEff = 1.40 *  << 115  //}
133                                      + 1.63 /  << 116       
134     else if ( i  == 3 ) { fRadiusEff = 1.40 *  << 117 //calculation of effective nuclear radius for AntiDeuteron interaction (can be changed)
135                                      + 1.63 /  << 118   if (theParticle == theADeuteron) 
136     else if ( i  == 4 ) { fRadiusEff = 1.35 *  << 119  { fRadiusEff = 1.46 * std::pow(A,0.21) + 1.45 / std::pow(A,1./3.);
137                                      + 1.10 /  << 120 
138     else if ( i  <  0 ) { fRadiusEff = 1.35 *  << 121     if( (Z==1) && (A==2) ) fRadiusEff = 3.238;     //fm
139                                + 1.10 / theG4P << 122     if( (Z==1) && (A==3) ) fRadiusEff = 3.144;     
140     else {}                                    << 123     if( (Z==2) && (A==3) ) fRadiusEff = 3.144;      
                                                   >> 124     if( (Z==2) && (A==4) ) fRadiusEff = 2.544;     
                                                   >> 125  }
                                                   >> 126 // calculation of effective nuclear radius for AntiHe3 interaction (can be changed)
                                                   >> 127 
                                                   >> 128   if( (theParticle ==theAHe3) || (theParticle ==theATriton) )
                                                   >> 129  { fRadiusEff = 1.40* std::pow(A,0.21)+1.63/std::pow(A,1./3.);
                                                   >> 130 
                                                   >> 131     if( (Z==1) && (A==2) ) fRadiusEff = 3.144;     //fm
                                                   >> 132     if( (Z==1) && (A==3) ) fRadiusEff = 3.075;  
                                                   >> 133     if( (Z==2) && (A==3) ) fRadiusEff = 3.075;  
                                                   >> 134     if( (Z==2) && (A==4) ) fRadiusEff = 2.589;  
141   }                                               135   }
142                                                   136 
143   G4double R2   = fRadiusEff*fRadiusEff;       << 137 //calculation of effective nuclear radius for AntiAlpha interaction (can be changed)
144   G4double ApAt = std::abs(theParticle->GetBar << 
145                                                   138 
146   G4double xsection = millibarn*2.*pi*R2*10.*G << 139   if (theParticle == theAAlpha) 
147   fTotalXsc = xsection;                        << 140  {
                                                   >> 141   fRadiusEff = 1.35* std::pow(A,0.21)+1.1/std::pow(A,1./3.);
                                                   >> 142   
                                                   >> 143     if( (Z==1) && (A==2) ) fRadiusEff = 2.544;     //fm
                                                   >> 144     if( (Z==1) && (A==3) ) fRadiusEff = 2.589;   
                                                   >> 145     if( (Z==2) && (A==3) ) fRadiusEff = 2.589;   
                                                   >> 146     if( (Z==2) && (A==4) ) fRadiusEff = 2.241;    
                                                   >> 147   
                                                   >> 148  }
                                                   >> 149 
                                                   >> 150    G4double R2 = fRadiusEff*fRadiusEff;
                                                   >> 151    G4double REf2  = R2+fRadiusNN2;
                                                   >> 152    G4double ApAt = std::abs(theParticle->GetBaryonNumber())  *  A;
                                                   >> 153 
                                                   >> 154  xsection = 2*pi*REf2*10.*std::log(1+(ApAt*sigmaTotal/(2*pi*REf2*10.)));  //mb
                                                   >> 155  xsection =xsection *millibarn; 
                                                   >> 156  fTotalXsc   = xsection;
148                                                   157 
149   return fTotalXsc;                               158   return fTotalXsc; 
150 }                                                 159 }
151                                                   160 
152                                                   161 
153 ////////////////////////////////////////////// << 162 ////////////////////////////////////////////////////////////////////////////////
154 //                                                163 // 
155 // Calculation of total CrossSection of Anti-N    164 // Calculation of total CrossSection of Anti-Nucleus - Nucleus 
156                                                << 165 //////////////////////////////////////////////////////////////////////////////
157 G4double G4ComponentAntiNuclNuclearXS::GetTota    166 G4double G4ComponentAntiNuclNuclearXS::GetTotalIsotopeCrossSection
158 (const G4ParticleDefinition* aParticle, G4doub    167 (const G4ParticleDefinition* aParticle, G4double kinEnergy, G4int Z, G4int A )
159 {                                              << 168 { return GetTotalElementCrossSection(aParticle, kinEnergy, Z, (G4double) A);  }
160   return GetTotalElementCrossSection(aParticle << 
161 }                                              << 
162                                                << 
163                                                   169 
164 ////////////////////////////////////////////// << 170 ////////////////////////////////////////////////////////////////
165 // Calculation of inelastic CrossSection of An    171 // Calculation of inelastic CrossSection of Anti-Nucleus - Nucleus
                                                   >> 172 ////////////////////////////////////////////////////////////////
166                                                   173 
167 G4double G4ComponentAntiNuclNuclearXS::GetInel    174 G4double G4ComponentAntiNuclNuclearXS::GetInelasticElementCrossSection
168 (const G4ParticleDefinition* aParticle, G4doub    175 (const G4ParticleDefinition* aParticle, G4double kinEnergy, G4int Z, G4double A)
169 {                                                 176 {
170   if ( aParticle == nullptr ) {                << 177   G4double  inelxsection,  sigmaTotal, sigmaElastic;
171     G4ExceptionDescription ed;                 << 178 
172     ed << "anti-nucleus with nullptr particle  << 
173     G4Exception( "G4ComponentAntiNuclNuclearXS << 
174                  "antiNuclNuclearXS003", JustW << 
175     return 0.0;                                << 
176   }                                            << 
177                                                << 
178   const G4ParticleDefinition* theParticle = aP    179   const G4ParticleDefinition* theParticle = aParticle;
179   G4double sigmaTotal   = GetAntiHadronNucleon << 180 
180   G4double sigmaElastic = GetAntiHadronNucleon << 181     sigmaTotal        = GetAntiHadronNucleonTotCrSc(theParticle,kinEnergy);
                                                   >> 182     sigmaElastic      = GetAntiHadronNucleonElCrSc(theParticle,kinEnergy);
181                                                   183   
182   // calculation of sqr of radius NN-collision << 184 // calculation of sqr of radius NN-collision
183   G4int i(-1), j(-1);                          << 185    fRadiusNN2=sigmaTotal*sigmaTotal*0.1/(8.*sigmaElastic*pi);   // fm^2   
184   if      ( theParticle == theAProton  ||      << 
185       theParticle == theANeutron )  { i=0; }   << 
186   else if ( theParticle == theADeuteron ) { i= << 
187   else if ( theParticle == theATriton   ) { i= << 
188   else if ( theParticle == theAHe3      ) { i= << 
189   else if ( theParticle == theAAlpha    ) { i= << 
190   else {};                                     << 
191                                                << 
192   if ( i < 0  && ( ! theParticle->IsAntiHypern << 
193     G4ExceptionDescription ed;                 << 
194     ed << "Unknown anti-nucleus : " << thePart << 
195        << "Target (Z, A)=(" << Z << "," << A < << 
196     G4Exception( "G4ComponentAntiNuclNuclearXS << 
197                  "antiNuclNuclearXS004", JustW << 
198   }                                            << 
199                                                   186 
200   G4int intA = static_cast<G4int>( A );        << 
201                                                   187 
202   if      ( Z == 1  &&  intA == 1 ) { j=0; }   << 188 // calculation of effective nuclear radius for Pbar and Nbar interaction (can be changed)
203   else if ( Z == 1  &&  intA == 2 ) { j=1; }   << 
204   else if ( Z == 1  &&  intA == 3 ) { j=2; }   << 
205   else if ( Z == 2  &&  intA == 3 ) { j=3; }   << 
206   else if ( Z == 2  &&  intA == 4 ) { j=4; }   << 
207   else {}                                      << 
208                                                << 
209   if ( i <  0  &&  j >= 0 ) { fRadiusEff = Ref << 
210   if ( i == 0  &&  j == 0 ) return (sigmaTotal << 
211   if ( i >= 0  &&  j >= 0 ) { fRadiusEff = Ref << 
212                                                << 
213   if ( j < 0) {                                << 
214     if      ( i  == 0 ) { fRadiusEff = 1.31*th << 
215                                      + 0.90/th << 
216     else if ( i  == 1 ) { fRadiusEff = 1.38*th << 
217                                      + 1.55/th << 
218     else if ( i  == 2 ) { fRadiusEff = 1.34*th << 
219                                      + 1.51/th << 
220     else if ( i  == 3 ) { fRadiusEff = 1.34*th << 
221                                      + 1.51/th << 
222     else if ( i  == 4 ) { fRadiusEff = 1.30*th << 
223                                      + 1.05/th << 
224     else if ( i  <  0 ) { fRadiusEff = 1.30*th << 
225                                      + 1.05/th << 
226     else {}                                    << 
227   }                                            << 
228                                                   189 
229   G4double R2   = fRadiusEff*fRadiusEff;       << 190   //A.R. 29-Jan-2013 : use antiprotons/antineutrons as the default case,
230   G4double ApAt = std::abs(theParticle->GetBar << 191   //                   to be used for instance, as first approximation
                                                   >> 192   //                   without validation, for anti-hyperons. 
                                                   >> 193   //if ( (theParticle == theAProton) || (theParticle == theANeutron) ) {   
                                                   >> 194   if (A==1)
                                                   >> 195       { fInelasticXsc = (sigmaTotal - sigmaElastic) * millibarn;
                                                   >> 196         return fInelasticXsc;  
                                                   >> 197       } 
                                                   >> 198  fRadiusEff = 1.31*std::pow(A, 0.22)+0.9/std::pow(A, 1./3.);  //fm
                                                   >> 199     
                                                   >> 200     if( (Z==1) && (A==2) ) fRadiusEff = 3.582;               //fm
                                                   >> 201     if( (Z==1) && (A==3) ) fRadiusEff = 3.105;               
                                                   >> 202     if( (Z==2) && (A==3) ) fRadiusEff = 3.105;
                                                   >> 203     if( (Z==2) && (A==4) ) fRadiusEff = 2.209;
                                                   >> 204  //}
231                                                   205 
232   G4double inelxsection = millibarn*pi*R2*10.* << 206 //calculation of effective nuclear radius for AntiDeuteron interaction (can be changed)
233   fInelasticXsc = inelxsection;                << 
234                                                   207 
235   return fInelasticXsc;                        << 208   if (theParticle ==theADeuteron) 
236 }                                              << 209 { 
                                                   >> 210  fRadiusEff = 1.38*std::pow(A, 0.21)+1.55/std::pow(A, 1./3.);
                                                   >> 211   
                                                   >> 212     if( (Z==1) && (A==2) ) fRadiusEff = 3.169;            //fm
                                                   >> 213     if( (Z==1) && (A==3) ) fRadiusEff = 3.066;
                                                   >> 214     if( (Z==2) && (A==3) ) fRadiusEff = 3.066;
                                                   >> 215     if( (Z==2) && (A==4) ) fRadiusEff = 2.498;
                                                   >> 216  }
                                                   >> 217 
                                                   >> 218 //calculation of effective nuclear radius for AntiHe3 interaction (can be changed)
                                                   >> 219 
                                                   >> 220   if( (theParticle ==theAHe3) || (theParticle ==theATriton) )
                                                   >> 221  {
                                                   >> 222   fRadiusEff = 1.34 * std::pow(A, 0.21)+1.51/std::pow(A, 1./3.);
                                                   >> 223   
                                                   >> 224     if( (Z==1) && (A==2) ) fRadiusEff = 3.066;           //fm
                                                   >> 225     if( (Z==1) && (A==3) ) fRadiusEff = 2.973;
                                                   >> 226     if( (Z==2) && (A==3) ) fRadiusEff = 2.973;
                                                   >> 227     if( (Z==2) && (A==4) ) fRadiusEff = 2.508;
                                                   >> 228   
                                                   >> 229  }
                                                   >> 230 
                                                   >> 231 //calculation of effective nuclear radius for AntiAlpha interaction (can be changed)
237                                                   232 
                                                   >> 233   if (theParticle == theAAlpha) 
                                                   >> 234  {
                                                   >> 235   fRadiusEff = 1.3*std::pow(A, 0.21)+1.05/std::pow(A, 1./3.);
                                                   >> 236     
                                                   >> 237     if( (Z==1) && (A==2) ) fRadiusEff = 2.498;            //fm
                                                   >> 238     if( (Z==1) && (A==3) ) fRadiusEff = 2.508;
                                                   >> 239     if( (Z==2) && (A==3) ) fRadiusEff = 2.508;
                                                   >> 240     if( (Z==2) && (A==4) ) fRadiusEff = 2.158;
                                                   >> 241  }
                                                   >> 242   G4double R2 = fRadiusEff*fRadiusEff;
                                                   >> 243   G4double REf2  = R2+fRadiusNN2;
                                                   >> 244   G4double  ApAt= std::abs(theParticle->GetBaryonNumber())  *  A;
                                                   >> 245 
                                                   >> 246  inelxsection  = pi*REf2 *10* std::log(1+(ApAt*sigmaTotal/(pi*REf2*10.))); //mb
                                                   >> 247  inelxsection  = inelxsection * millibarn;  
                                                   >> 248    fInelasticXsc =  inelxsection; 
                                                   >> 249    return fInelasticXsc;
                                                   >> 250 }
238                                                   251 
239 ////////////////////////////////////////////// << 252 ///////////////////////////////////////////////////////////////////////////////
240 //                                                253 //
241 // Calculates Inelastic Anti-nucleus-Nucleus c    254 // Calculates Inelastic Anti-nucleus-Nucleus cross-section   
242                                                << 255 //
243 G4double G4ComponentAntiNuclNuclearXS::GetInel    256 G4double G4ComponentAntiNuclNuclearXS::GetInelasticIsotopeCrossSection
244 (const G4ParticleDefinition* aParticle, G4doub    257 (const G4ParticleDefinition* aParticle, G4double kinEnergy, G4int Z, G4int A)
245 {                                              << 258 {return GetInelasticElementCrossSection(aParticle, kinEnergy, Z, (G4double) A); }
246   return GetInelasticElementCrossSection(aPart << 259  
247 }                                              << 
248                                                   260 
249                                                   261 
250 ////////////////////////////////////////////// << 262 ///////////////////////////////////////////////////////////////////////////////
251 //                                                263 //
252 // Calculates elastic Anti-nucleus-Nucleus cro    264 // Calculates elastic Anti-nucleus-Nucleus cross-section  as Total - Inelastic 
253                                                << 265 //
254 G4double G4ComponentAntiNuclNuclearXS::GetElas    266 G4double G4ComponentAntiNuclNuclearXS::GetElasticElementCrossSection
255 (const G4ParticleDefinition* aParticle, G4doub    267 (const G4ParticleDefinition* aParticle, G4double kinEnergy, G4int Z, G4double A)
256 {                                                 268 {
257   fElasticXsc = GetTotalElementCrossSection(aP << 269  fElasticXsc = GetTotalElementCrossSection(aParticle, kinEnergy, Z, A)-
258                 GetInelasticElementCrossSectio << 270    GetInelasticElementCrossSection(aParticle, kinEnergy, Z, A);
259   if (fElasticXsc < 0.) fElasticXsc = 0.;      << 271 
260   return fElasticXsc;                          << 272  if (fElasticXsc < 0.) fElasticXsc = 0.;
261 }                                              << 
262                                                   273 
                                                   >> 274  return fElasticXsc;
                                                   >> 275 }
263                                                   276  
264 ////////////////////////////////////////////// << 277 ///////////////////////////////////////////////////////////////////////////////
265 //                                                278 //
266 // Calculates elastic Anti-nucleus-Nucleus cro    279 // Calculates elastic Anti-nucleus-Nucleus cross-section   
267                                                << 280 //
268 G4double G4ComponentAntiNuclNuclearXS::GetElas    281 G4double G4ComponentAntiNuclNuclearXS::GetElasticIsotopeCrossSection
269 (const G4ParticleDefinition* aParticle, G4doub    282 (const G4ParticleDefinition* aParticle, G4double kinEnergy, G4int Z, G4int A)
270 {                                              << 283 { return GetElasticElementCrossSection(aParticle, kinEnergy, Z, (G4double) A); }
271   return GetElasticElementCrossSection(aPartic << 
272 }                                              << 
273                                                   284 
274                                                   285 
275 ////////////////////////////////////////////// << 286 ///////////////////////////////////////////////////////////////////////////////////
276 // Calculation of  Antihadron - hadron Total C    287 // Calculation of  Antihadron - hadron Total Cross-section  
277                                                   288 
278 G4double G4ComponentAntiNuclNuclearXS::GetAnti    289 G4double G4ComponentAntiNuclNuclearXS::GetAntiHadronNucleonTotCrSc
279 (const G4ParticleDefinition* aParticle, G4doub    290 (const G4ParticleDefinition* aParticle, G4double kinEnergy)
280 {                                                 291 {
281   G4double xsection, Pmass, Energy, momentum;     292   G4double xsection, Pmass, Energy, momentum;
282   const G4ParticleDefinition* theParticle = aP    293   const G4ParticleDefinition* theParticle = aParticle;
283   Pmass=theParticle->GetPDGMass();                294   Pmass=theParticle->GetPDGMass();
284   Energy=Pmass+kinEnergy;                         295   Energy=Pmass+kinEnergy;
285   momentum=std::sqrt(Energy*Energy-Pmass*Pmass    296   momentum=std::sqrt(Energy*Energy-Pmass*Pmass)/std::abs(theParticle->GetBaryonNumber());
286   G4double Plab = momentum / GeV;                 297   G4double Plab = momentum / GeV;
287                                                   298 
288   G4double   B, SigAss;                        << 299  G4double   B, SigAss;
289   G4double   C, d1, d2, d3;                    << 300  G4double   C, d1, d2, d3  ;
290   Elab     = std::sqrt(Mn*Mn + Plab*Plab);   / << 
291   S        = 2.*Mn*Mn + 2. *Mn*Elab;         / << 
292   SqrtS    = std::sqrt(S);                   / << 
293   B        = b0+b2*G4Log(SqrtS/SqrtS0)*G4Log(S << 
294   SigAss   = 36.04 +0.304*G4Log(S/S0)*G4Log(S/ << 
295   R0       = std::sqrt(0.40874044*SigAss - B); << 
296   C        = 13.55;                            << 
297   d1       = -4.47;                            << 
298   d2       = 12.38;                            << 
299   d3       = -12.43;                           << 
300                                                << 
301   xsection = SigAss * ( 1 + 1./(std::sqrt(S-4. << 
302                         * C * ( 1 + d1/SqrtS + << 
303                                 + d3/(theG4Pow << 
304                                                   301 
305   //xsection *= millibarn;                     << 302  Elab     = std::sqrt(Mn*Mn + Plab*Plab);   // GeV
306   fAntiHadronNucleonTotXsc = xsection;         << 303  S        = 2.*Mn*Mn + 2. *Mn*Elab;         // GeV^2
                                                   >> 304  SqrtS    = std::sqrt(S);                   // GeV 
                                                   >> 305 
                                                   >> 306  B        = b0+b2*std::log(SqrtS/SqrtS0)*std::log(SqrtS/SqrtS0); //GeV^(-2)
                                                   >> 307  SigAss   = 36.04 +0.304*std::log(S/S0)*std::log(S/S0);          //mb 
                                                   >> 308  R0       = std::sqrt(0.40874044*SigAss - B);                   //GeV^(-2)
                                                   >> 309  
                                                   >> 310  C        = 13.55;
                                                   >> 311  d1       = -4.47;
                                                   >> 312  d2       = 12.38;
                                                   >> 313  d3       = -12.43;
                                                   >> 314  xsection = SigAss*(1 + 1./(std::sqrt(S-4.*Mn*Mn)) / (std::pow(R0, 3.))
                                                   >> 315   *C* (1+d1/SqrtS+d2/(std::pow(SqrtS,2.))+d3/(std::pow(SqrtS,3.)) ));  
                                                   >> 316 
                                                   >> 317 //  xsection *= millibarn;
307                                                   318 
                                                   >> 319   fAntiHadronNucleonTotXsc = xsection;
308   return fAntiHadronNucleonTotXsc;                320   return fAntiHadronNucleonTotXsc;
309 }                                                 321 }
310                                                   322 
311                                                   323 
312 // /////////////////////////////////////////// << 324 //
                                                   >> 325 // /////////////////////////////////////////////////////////////////////////////////
313 // Calculation of  Antihadron - hadron Elastic    326 // Calculation of  Antihadron - hadron Elastic Cross-section  
314                                                   327 
315 G4double G4ComponentAntiNuclNuclearXS ::          328 G4double G4ComponentAntiNuclNuclearXS :: 
316 GetAntiHadronNucleonElCrSc(const G4ParticleDef    329 GetAntiHadronNucleonElCrSc(const G4ParticleDefinition* aParticle, G4double kinEnergy)
317 {                                                 330 {
318   G4double xsection;                           << 331  G4double xsection;
319   G4double   SigAss;                           << 
320   G4double   C, d1, d2, d3;                    << 
321   GetAntiHadronNucleonTotCrSc(aParticle,kinEne << 
322   SigAss   = 4.5 + 0.101*G4Log(S/S0)*G4Log(S/S << 
323   C        = 59.27;                            << 
324   d1       = -6.95;                            << 
325   d2       = 23.54;                            << 
326   d3       = -25.34;                           << 
327                                                << 
328   xsection = SigAss * ( 1 + 1. / (std::sqrt(S- << 
329                         * C * ( 1 + d1/SqrtS + << 
330                                 + d3/(theG4Pow << 
331                                                   332 
332   //xsection *= millibarn;                     << 333  G4double   SigAss;
333   fAntiHadronNucleonElXsc = xsection;          << 334  G4double   C, d1, d2, d3  ;
334                                                   335 
335   return fAntiHadronNucleonElXsc;              << 336  GetAntiHadronNucleonTotCrSc(aParticle,kinEnergy);
336 }                                              << 337 
                                                   >> 338  SigAss   = 4.5 + 0.101*std::log(S/S0)*std::log(S/S0);            //mb
                                                   >> 339   
                                                   >> 340  C        = 59.27;
                                                   >> 341  d1       = -6.95;
                                                   >> 342  d2       = 23.54;
                                                   >> 343  d3       = -25.34;
                                                   >> 344 
                                                   >> 345  xsection = SigAss* (1 + 1. / (std::sqrt(S-4.*Mn*Mn)) / (std::pow(R0, 3.))
                                                   >> 346   *C* ( 1+d1/SqrtS+d2/(std::pow(SqrtS,2.))+d3/(std::pow(SqrtS,3.)) ));  
337                                                   347 
                                                   >> 348 //  xsection *= millibarn;
338                                                   349 
339 ////////////////////////////////////////////// << 350   fAntiHadronNucleonElXsc = xsection;
                                                   >> 351   return fAntiHadronNucleonElXsc;
                                                   >> 352 }
340                                                   353 
341 void G4ComponentAntiNuclNuclearXS::CrossSectio    354 void G4ComponentAntiNuclNuclearXS::CrossSectionDescription(std::ostream& outFile) const
342 {                                                 355 {
343   outFile << "The G4ComponentAntiNuclNuclearXS    356   outFile << "The G4ComponentAntiNuclNuclearXS calculates total,\n"
344           << "inelastic, elastic cross section    357           << "inelastic, elastic cross sections  of anti-nucleons and light \n"
345           << "anti-nucleus interactions with n << 358           << "anti-nucleus interactions with nuclei using Glauber's approach.\n"  
346           << "It uses parametrizations of anti    359           << "It uses parametrizations of antiproton-proton total and elastic \n"
347           << "cross sections and Wood-Saxon di << 360           << "cross sections and Wood-Saxon distribution of nuclear density.\n"   
                                                   >> 361           << "The lower limit is 10 MeV, the upper limit is 10 TeV.   \n"
348           << "See details in Phys.Lett. B705 (    362           << "See details in Phys.Lett. B705 (2011) 235. \n";
349 }                                                 363 }
350                                                << 
351                                                   364