Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // Calculation of the total, elastic and inel 26 // Calculation of the total, elastic and inelastic cross-sections 27 // of anti-nucleon and anti-nucleus interacti 27 // of anti-nucleon and anti-nucleus interactions with nuclei 28 // based on Glauber approach and V. Grishine 28 // based on Glauber approach and V. Grishine formulaes for 29 // interpolations (ref. V.M.Grichine, Eur.Phy 29 // interpolations (ref. V.M.Grichine, Eur.Phys.J., C62(2009) 399; 30 // NIM, B267 (2009) 2460) and our parametriza 30 // NIM, B267 (2009) 2460) and our parametrization of hadron-nucleon 31 // cross-sections 31 // cross-sections 32 // 32 // 33 // 33 // 34 // Created by A.Galoyan and V. Uzhinsky, 18. 34 // Created by A.Galoyan and V. Uzhinsky, 18.11.2010 35 35 36 36 37 #include "G4ComponentAntiNuclNuclearXS.hh" 37 #include "G4ComponentAntiNuclNuclearXS.hh" 38 38 39 #include "G4PhysicalConstants.hh" 39 #include "G4PhysicalConstants.hh" 40 #include "G4SystemOfUnits.hh" 40 #include "G4SystemOfUnits.hh" 41 #include "G4ParticleTable.hh" 41 #include "G4ParticleTable.hh" 42 #include "G4IonTable.hh" 42 #include "G4IonTable.hh" 43 #include "G4ParticleDefinition.hh" 43 #include "G4ParticleDefinition.hh" 44 #include "G4HadronicException.hh" << 45 44 46 << 45 /////////////////////////////////////////////////////////////////////////////// 47 ////////////////////////////////////////////// << 48 46 49 G4ComponentAntiNuclNuclearXS::G4ComponentAntiN 47 G4ComponentAntiNuclNuclearXS::G4ComponentAntiNuclNuclearXS() 50 : G4VComponentCrossSection("AntiAGlauber"), << 48 : G4VComponentCrossSection("AntiAGlauber"), fUpperLimit(10000*GeV), 51 fRadiusEff(0.0), << 49 fLowerLimit(10*MeV), fRadiusEff(0.0), fRadiusNN2(0.0), 52 fTotalXsc(0.0), fElasticXsc(0.0), fInelastic 50 fTotalXsc(0.0), fElasticXsc(0.0), fInelasticXsc(0.0), 53 fAntiHadronNucleonTotXsc(0.0), fAntiHadronNu 51 fAntiHadronNucleonTotXsc(0.0), fAntiHadronNucleonElXsc(0.0), 54 Elab(0.0), S(0.0), SqrtS(0) 52 Elab(0.0), S(0.0), SqrtS(0) 55 { 53 { 56 theAProton = G4AntiProton::AntiProton(); << 54 theAProton = G4AntiProton::AntiProton(); 57 theANeutron = G4AntiNeutron::AntiNeutron(); << 55 theANeutron = G4AntiNeutron::AntiNeutron(); 58 theADeuteron = G4AntiDeuteron::AntiDeuteron( << 56 theADeuteron = G4AntiDeuteron::AntiDeuteron(); 59 theATriton = G4AntiTriton::AntiTriton(); << 57 theATriton = G4AntiTriton::AntiTriton(); 60 theAAlpha = G4AntiAlpha::AntiAlpha(); << 58 theAAlpha = G4AntiAlpha::AntiAlpha(); 61 theAHe3 = G4AntiHe3::AntiHe3(); << 59 theAHe3 = G4AntiHe3::AntiHe3(); 62 Mn = 0.93827231; // GeV << 60 63 b0 = 11.92; // GeV^(-2) << 61 Mn = 0.93827231; // GeV 64 b2 = 0.3036; // GeV^(-2) << 62 b0 = 11.92; // GeV^(-2) 65 SqrtS0 = 20.74; // GeV << 63 b2 = 0.3036; // GeV^(-2) 66 S0 = 33.0625; // GeV^2 << 64 SqrtS0 = 20.74; // GeV 67 R0 = 1.0; // default va << 65 S0 = 33.0625; // GeV^2 68 } << 69 66 >> 67 } 70 68 71 ////////////////////////////////////////////// << 69 /////////////////////////////////////////////////////////////////////////////////////// >> 70 // >> 71 // 72 72 73 G4ComponentAntiNuclNuclearXS::~G4ComponentAnti 73 G4ComponentAntiNuclNuclearXS::~G4ComponentAntiNuclNuclearXS() 74 { 74 { 75 } 75 } 76 76 >> 77 //////////////////////////////////////////////////////////////////////////////// 77 78 78 ////////////////////////////////////////////// << 79 >> 80 >> 81 //////////////////////////////////////////////////////////////////////////////// 79 // 82 // 80 // Calculation of total CrossSection of Anti-N 83 // Calculation of total CrossSection of Anti-Nucleus - Nucleus 81 84 >> 85 82 G4double G4ComponentAntiNuclNuclearXS::GetTota 86 G4double G4ComponentAntiNuclNuclearXS::GetTotalElementCrossSection 83 (const G4ParticleDefinition* aParticle, G4doub 87 (const G4ParticleDefinition* aParticle, G4double kinEnergy, G4int Z, G4double A) 84 { 88 { 85 if ( aParticle == nullptr ) { << 89 G4double xsection, sigmaTotal, sigmaElastic; 86 G4ExceptionDescription ed; << 87 ed << "anti-nucleus with nullptr particle << 88 G4Exception( "G4ComponentAntiNuclNuclearXS << 89 "antiNuclNuclearXS001", JustW << 90 return 0.0; << 91 } << 92 << 93 const G4ParticleDefinition* theParticle = aP << 94 G4double sigmaTotal = GetAntiHadronNucleonTo << 95 90 96 // calculation of squared radius of NN-coll << 91 const G4ParticleDefinition* theParticle = aParticle; 97 G4int i(-1), j(-1); << 92 98 if ( theParticle == theAProton || << 93 sigmaTotal = GetAntiHadronNucleonTotCrSc(theParticle,kinEnergy); 99 theParticle == theANeutron ) { i=0; } << 94 sigmaElastic = GetAntiHadronNucleonElCrSc(theParticle,kinEnergy); 100 else if ( theParticle == theADeuteron ) { i= << 101 else if ( theParticle == theATriton ) { i= << 102 else if ( theParticle == theAHe3 ) { i= << 103 else if ( theParticle == theAAlpha ) { i= << 104 else {}; << 105 << 106 if ( i < 0 && ( ! theParticle->IsAntiHypern << 107 G4ExceptionDescription ed; << 108 ed << "Unknown anti-nucleus : " << thePart << 109 << "Target (Z, A)=(" << Z << "," << A < << 110 G4Exception( "G4ComponentAntiNuclNuclearXS << 111 "antiNuclNuclearXS002", JustW << 112 } << 113 95 114 G4int intA = static_cast<G4int>( A ); << 96 // calculation of squared radius of NN-collision >> 97 fRadiusNN2=sigmaTotal*sigmaTotal*0.1/(8.*sigmaElastic*pi) ; //fm^2 115 98 116 if ( Z == 1 && intA == 1 ) { j=0; } << 99 // calculation of effective nuclear radius for Pbar and Nbar interactions (can be changed) 117 else if ( Z == 1 && intA == 2 ) { j=1; } << 100 118 else if ( Z == 1 && intA == 3 ) { j=2; } << 101 //A.R. 29-Jan-2013 : use antiprotons/antineutrons as the default case, 119 else if ( Z == 2 && intA == 3 ) { j=3; } << 102 // to be used for instance, as first approximation 120 else if ( Z == 2 && intA == 4 ) { j=4; } << 103 // without validation, for anti-hyperons. 121 else {} << 104 //if ( (theParticle == theAProton) || (theParticle == theANeutron) ) { 122 << 105 if(A==1) 123 if ( i < 0 && j >= 0 ) { fRadiusEff = Ref << 106 { fTotalXsc = sigmaTotal * millibarn; 124 if ( i == 0 && j == 0 ) return sigmaTotal << 107 return fTotalXsc; } 125 if ( i >= 0 && j >= 0 ) { fRadiusEff = Ref << 108 126 << 109 fRadiusEff = 1.34*std::pow(A,0.23)+1.35/std::pow(A,1./3.); //fm 127 if ( j < 0 ) { << 110 128 if ( i == 0 ) { fRadiusEff = 1.34 * << 111 if( (Z==1) && (A==2) ) fRadiusEff = 3.800; //fm 129 + 1.35 / << 112 if( (Z==1) && (A==3) ) fRadiusEff = 3.300; 130 else if ( i == 1 ) { fRadiusEff = 1.46 * << 113 if( (Z==2) && (A==3) ) fRadiusEff = 3.300; 131 + 1.45 / << 114 if( (Z==2) && (A==4) ) fRadiusEff = 2.376; 132 else if ( i == 2 ) { fRadiusEff = 1.40 * << 115 //} 133 + 1.63 / << 116 134 else if ( i == 3 ) { fRadiusEff = 1.40 * << 117 //calculation of effective nuclear radius for AntiDeuteron interaction (can be changed) 135 + 1.63 / << 118 if (theParticle == theADeuteron) 136 else if ( i == 4 ) { fRadiusEff = 1.35 * << 119 { fRadiusEff = 1.46 * std::pow(A,0.21) + 1.45 / std::pow(A,1./3.); 137 + 1.10 / << 120 138 else if ( i < 0 ) { fRadiusEff = 1.35 * << 121 if( (Z==1) && (A==2) ) fRadiusEff = 3.238; //fm 139 + 1.10 / theG4P << 122 if( (Z==1) && (A==3) ) fRadiusEff = 3.144; 140 else {} << 123 if( (Z==2) && (A==3) ) fRadiusEff = 3.144; >> 124 if( (Z==2) && (A==4) ) fRadiusEff = 2.544; >> 125 } >> 126 // calculation of effective nuclear radius for AntiHe3 interaction (can be changed) >> 127 >> 128 if( (theParticle ==theAHe3) || (theParticle ==theATriton) ) >> 129 { fRadiusEff = 1.40* std::pow(A,0.21)+1.63/std::pow(A,1./3.); >> 130 >> 131 if( (Z==1) && (A==2) ) fRadiusEff = 3.144; //fm >> 132 if( (Z==1) && (A==3) ) fRadiusEff = 3.075; >> 133 if( (Z==2) && (A==3) ) fRadiusEff = 3.075; >> 134 if( (Z==2) && (A==4) ) fRadiusEff = 2.589; 141 } 135 } 142 136 143 G4double R2 = fRadiusEff*fRadiusEff; << 137 //calculation of effective nuclear radius for AntiAlpha interaction (can be changed) 144 G4double ApAt = std::abs(theParticle->GetBar << 145 138 146 G4double xsection = millibarn*2.*pi*R2*10.*G << 139 if (theParticle == theAAlpha) 147 fTotalXsc = xsection; << 140 { >> 141 fRadiusEff = 1.35* std::pow(A,0.21)+1.1/std::pow(A,1./3.); >> 142 >> 143 if( (Z==1) && (A==2) ) fRadiusEff = 2.544; //fm >> 144 if( (Z==1) && (A==3) ) fRadiusEff = 2.589; >> 145 if( (Z==2) && (A==3) ) fRadiusEff = 2.589; >> 146 if( (Z==2) && (A==4) ) fRadiusEff = 2.241; >> 147 >> 148 } >> 149 >> 150 G4double R2 = fRadiusEff*fRadiusEff; >> 151 G4double REf2 = R2+fRadiusNN2; >> 152 G4double ApAt = std::abs(theParticle->GetBaryonNumber()) * A; >> 153 >> 154 xsection = 2*pi*REf2*10.*std::log(1+(ApAt*sigmaTotal/(2*pi*REf2*10.))); //mb >> 155 xsection =xsection *millibarn; >> 156 fTotalXsc = xsection; 148 157 149 return fTotalXsc; 158 return fTotalXsc; 150 } 159 } 151 160 152 161 153 ////////////////////////////////////////////// << 162 //////////////////////////////////////////////////////////////////////////////// 154 // 163 // 155 // Calculation of total CrossSection of Anti-N 164 // Calculation of total CrossSection of Anti-Nucleus - Nucleus 156 << 165 ////////////////////////////////////////////////////////////////////////////// 157 G4double G4ComponentAntiNuclNuclearXS::GetTota 166 G4double G4ComponentAntiNuclNuclearXS::GetTotalIsotopeCrossSection 158 (const G4ParticleDefinition* aParticle, G4doub 167 (const G4ParticleDefinition* aParticle, G4double kinEnergy, G4int Z, G4int A ) 159 { << 168 { return GetTotalElementCrossSection(aParticle, kinEnergy, Z, (G4double) A); } 160 return GetTotalElementCrossSection(aParticle << 161 } << 162 << 163 169 164 ////////////////////////////////////////////// << 170 //////////////////////////////////////////////////////////////// 165 // Calculation of inelastic CrossSection of An 171 // Calculation of inelastic CrossSection of Anti-Nucleus - Nucleus >> 172 //////////////////////////////////////////////////////////////// 166 173 167 G4double G4ComponentAntiNuclNuclearXS::GetInel 174 G4double G4ComponentAntiNuclNuclearXS::GetInelasticElementCrossSection 168 (const G4ParticleDefinition* aParticle, G4doub 175 (const G4ParticleDefinition* aParticle, G4double kinEnergy, G4int Z, G4double A) 169 { 176 { 170 if ( aParticle == nullptr ) { << 177 G4double inelxsection, sigmaTotal, sigmaElastic; 171 G4ExceptionDescription ed; << 178 172 ed << "anti-nucleus with nullptr particle << 173 G4Exception( "G4ComponentAntiNuclNuclearXS << 174 "antiNuclNuclearXS003", JustW << 175 return 0.0; << 176 } << 177 << 178 const G4ParticleDefinition* theParticle = aP 179 const G4ParticleDefinition* theParticle = aParticle; 179 G4double sigmaTotal = GetAntiHadronNucleon << 180 180 G4double sigmaElastic = GetAntiHadronNucleon << 181 sigmaTotal = GetAntiHadronNucleonTotCrSc(theParticle,kinEnergy); >> 182 sigmaElastic = GetAntiHadronNucleonElCrSc(theParticle,kinEnergy); 181 183 182 // calculation of sqr of radius NN-collision << 184 // calculation of sqr of radius NN-collision 183 G4int i(-1), j(-1); << 185 fRadiusNN2=sigmaTotal*sigmaTotal*0.1/(8.*sigmaElastic*pi); // fm^2 184 if ( theParticle == theAProton || << 185 theParticle == theANeutron ) { i=0; } << 186 else if ( theParticle == theADeuteron ) { i= << 187 else if ( theParticle == theATriton ) { i= << 188 else if ( theParticle == theAHe3 ) { i= << 189 else if ( theParticle == theAAlpha ) { i= << 190 else {}; << 191 << 192 if ( i < 0 && ( ! theParticle->IsAntiHypern << 193 G4ExceptionDescription ed; << 194 ed << "Unknown anti-nucleus : " << thePart << 195 << "Target (Z, A)=(" << Z << "," << A < << 196 G4Exception( "G4ComponentAntiNuclNuclearXS << 197 "antiNuclNuclearXS004", JustW << 198 } << 199 186 200 G4int intA = static_cast<G4int>( A ); << 201 187 202 if ( Z == 1 && intA == 1 ) { j=0; } << 188 // calculation of effective nuclear radius for Pbar and Nbar interaction (can be changed) 203 else if ( Z == 1 && intA == 2 ) { j=1; } << 204 else if ( Z == 1 && intA == 3 ) { j=2; } << 205 else if ( Z == 2 && intA == 3 ) { j=3; } << 206 else if ( Z == 2 && intA == 4 ) { j=4; } << 207 else {} << 208 << 209 if ( i < 0 && j >= 0 ) { fRadiusEff = Ref << 210 if ( i == 0 && j == 0 ) return (sigmaTotal << 211 if ( i >= 0 && j >= 0 ) { fRadiusEff = Ref << 212 << 213 if ( j < 0) { << 214 if ( i == 0 ) { fRadiusEff = 1.31*th << 215 + 0.90/th << 216 else if ( i == 1 ) { fRadiusEff = 1.38*th << 217 + 1.55/th << 218 else if ( i == 2 ) { fRadiusEff = 1.34*th << 219 + 1.51/th << 220 else if ( i == 3 ) { fRadiusEff = 1.34*th << 221 + 1.51/th << 222 else if ( i == 4 ) { fRadiusEff = 1.30*th << 223 + 1.05/th << 224 else if ( i < 0 ) { fRadiusEff = 1.30*th << 225 + 1.05/th << 226 else {} << 227 } << 228 189 229 G4double R2 = fRadiusEff*fRadiusEff; << 190 //A.R. 29-Jan-2013 : use antiprotons/antineutrons as the default case, 230 G4double ApAt = std::abs(theParticle->GetBar << 191 // to be used for instance, as first approximation >> 192 // without validation, for anti-hyperons. >> 193 //if ( (theParticle == theAProton) || (theParticle == theANeutron) ) { >> 194 if (A==1) >> 195 { fInelasticXsc = (sigmaTotal - sigmaElastic) * millibarn; >> 196 return fInelasticXsc; >> 197 } >> 198 fRadiusEff = 1.31*std::pow(A, 0.22)+0.9/std::pow(A, 1./3.); //fm >> 199 >> 200 if( (Z==1) && (A==2) ) fRadiusEff = 3.582; //fm >> 201 if( (Z==1) && (A==3) ) fRadiusEff = 3.105; >> 202 if( (Z==2) && (A==3) ) fRadiusEff = 3.105; >> 203 if( (Z==2) && (A==4) ) fRadiusEff = 2.209; >> 204 //} 231 205 232 G4double inelxsection = millibarn*pi*R2*10.* << 206 //calculation of effective nuclear radius for AntiDeuteron interaction (can be changed) 233 fInelasticXsc = inelxsection; << 234 207 235 return fInelasticXsc; << 208 if (theParticle ==theADeuteron) 236 } << 209 { >> 210 fRadiusEff = 1.38*std::pow(A, 0.21)+1.55/std::pow(A, 1./3.); >> 211 >> 212 if( (Z==1) && (A==2) ) fRadiusEff = 3.169; //fm >> 213 if( (Z==1) && (A==3) ) fRadiusEff = 3.066; >> 214 if( (Z==2) && (A==3) ) fRadiusEff = 3.066; >> 215 if( (Z==2) && (A==4) ) fRadiusEff = 2.498; >> 216 } >> 217 >> 218 //calculation of effective nuclear radius for AntiHe3 interaction (can be changed) >> 219 >> 220 if( (theParticle ==theAHe3) || (theParticle ==theATriton) ) >> 221 { >> 222 fRadiusEff = 1.34 * std::pow(A, 0.21)+1.51/std::pow(A, 1./3.); >> 223 >> 224 if( (Z==1) && (A==2) ) fRadiusEff = 3.066; //fm >> 225 if( (Z==1) && (A==3) ) fRadiusEff = 2.973; >> 226 if( (Z==2) && (A==3) ) fRadiusEff = 2.973; >> 227 if( (Z==2) && (A==4) ) fRadiusEff = 2.508; >> 228 >> 229 } >> 230 >> 231 //calculation of effective nuclear radius for AntiAlpha interaction (can be changed) 237 232 >> 233 if (theParticle == theAAlpha) >> 234 { >> 235 fRadiusEff = 1.3*std::pow(A, 0.21)+1.05/std::pow(A, 1./3.); >> 236 >> 237 if( (Z==1) && (A==2) ) fRadiusEff = 2.498; //fm >> 238 if( (Z==1) && (A==3) ) fRadiusEff = 2.508; >> 239 if( (Z==2) && (A==3) ) fRadiusEff = 2.508; >> 240 if( (Z==2) && (A==4) ) fRadiusEff = 2.158; >> 241 } >> 242 G4double R2 = fRadiusEff*fRadiusEff; >> 243 G4double REf2 = R2+fRadiusNN2; >> 244 G4double ApAt= std::abs(theParticle->GetBaryonNumber()) * A; >> 245 >> 246 inelxsection = pi*REf2 *10* std::log(1+(ApAt*sigmaTotal/(pi*REf2*10.))); //mb >> 247 inelxsection = inelxsection * millibarn; >> 248 fInelasticXsc = inelxsection; >> 249 return fInelasticXsc; >> 250 } 238 251 239 ////////////////////////////////////////////// << 252 /////////////////////////////////////////////////////////////////////////////// 240 // 253 // 241 // Calculates Inelastic Anti-nucleus-Nucleus c 254 // Calculates Inelastic Anti-nucleus-Nucleus cross-section 242 << 255 // 243 G4double G4ComponentAntiNuclNuclearXS::GetInel 256 G4double G4ComponentAntiNuclNuclearXS::GetInelasticIsotopeCrossSection 244 (const G4ParticleDefinition* aParticle, G4doub 257 (const G4ParticleDefinition* aParticle, G4double kinEnergy, G4int Z, G4int A) 245 { << 258 {return GetInelasticElementCrossSection(aParticle, kinEnergy, Z, (G4double) A); } 246 return GetInelasticElementCrossSection(aPart << 259 247 } << 248 260 249 261 250 ////////////////////////////////////////////// << 262 /////////////////////////////////////////////////////////////////////////////// 251 // 263 // 252 // Calculates elastic Anti-nucleus-Nucleus cro 264 // Calculates elastic Anti-nucleus-Nucleus cross-section as Total - Inelastic 253 << 265 // 254 G4double G4ComponentAntiNuclNuclearXS::GetElas 266 G4double G4ComponentAntiNuclNuclearXS::GetElasticElementCrossSection 255 (const G4ParticleDefinition* aParticle, G4doub 267 (const G4ParticleDefinition* aParticle, G4double kinEnergy, G4int Z, G4double A) 256 { 268 { 257 fElasticXsc = GetTotalElementCrossSection(aP << 269 fElasticXsc = GetTotalElementCrossSection(aParticle, kinEnergy, Z, A)- 258 GetInelasticElementCrossSectio << 270 GetInelasticElementCrossSection(aParticle, kinEnergy, Z, A); 259 if (fElasticXsc < 0.) fElasticXsc = 0.; << 271 260 return fElasticXsc; << 272 if (fElasticXsc < 0.) fElasticXsc = 0.; 261 } << 262 273 >> 274 return fElasticXsc; >> 275 } 263 276 264 ////////////////////////////////////////////// << 277 /////////////////////////////////////////////////////////////////////////////// 265 // 278 // 266 // Calculates elastic Anti-nucleus-Nucleus cro 279 // Calculates elastic Anti-nucleus-Nucleus cross-section 267 << 280 // 268 G4double G4ComponentAntiNuclNuclearXS::GetElas 281 G4double G4ComponentAntiNuclNuclearXS::GetElasticIsotopeCrossSection 269 (const G4ParticleDefinition* aParticle, G4doub 282 (const G4ParticleDefinition* aParticle, G4double kinEnergy, G4int Z, G4int A) 270 { << 283 { return GetElasticElementCrossSection(aParticle, kinEnergy, Z, (G4double) A); } 271 return GetElasticElementCrossSection(aPartic << 272 } << 273 284 274 285 275 ////////////////////////////////////////////// << 286 /////////////////////////////////////////////////////////////////////////////////// 276 // Calculation of Antihadron - hadron Total C 287 // Calculation of Antihadron - hadron Total Cross-section 277 288 278 G4double G4ComponentAntiNuclNuclearXS::GetAnti 289 G4double G4ComponentAntiNuclNuclearXS::GetAntiHadronNucleonTotCrSc 279 (const G4ParticleDefinition* aParticle, G4doub 290 (const G4ParticleDefinition* aParticle, G4double kinEnergy) 280 { 291 { 281 G4double xsection, Pmass, Energy, momentum; 292 G4double xsection, Pmass, Energy, momentum; 282 const G4ParticleDefinition* theParticle = aP 293 const G4ParticleDefinition* theParticle = aParticle; 283 Pmass=theParticle->GetPDGMass(); 294 Pmass=theParticle->GetPDGMass(); 284 Energy=Pmass+kinEnergy; 295 Energy=Pmass+kinEnergy; 285 momentum=std::sqrt(Energy*Energy-Pmass*Pmass 296 momentum=std::sqrt(Energy*Energy-Pmass*Pmass)/std::abs(theParticle->GetBaryonNumber()); 286 G4double Plab = momentum / GeV; 297 G4double Plab = momentum / GeV; 287 298 288 G4double B, SigAss; << 299 G4double B, SigAss; 289 G4double C, d1, d2, d3; << 300 G4double C, d1, d2, d3 ; 290 Elab = std::sqrt(Mn*Mn + Plab*Plab); / << 291 S = 2.*Mn*Mn + 2. *Mn*Elab; / << 292 SqrtS = std::sqrt(S); / << 293 B = b0+b2*G4Log(SqrtS/SqrtS0)*G4Log(S << 294 SigAss = 36.04 +0.304*G4Log(S/S0)*G4Log(S/ << 295 R0 = std::sqrt(0.40874044*SigAss - B); << 296 C = 13.55; << 297 d1 = -4.47; << 298 d2 = 12.38; << 299 d3 = -12.43; << 300 << 301 xsection = SigAss * ( 1 + 1./(std::sqrt(S-4. << 302 * C * ( 1 + d1/SqrtS + << 303 + d3/(theG4Pow << 304 301 305 //xsection *= millibarn; << 302 Elab = std::sqrt(Mn*Mn + Plab*Plab); // GeV 306 fAntiHadronNucleonTotXsc = xsection; << 303 S = 2.*Mn*Mn + 2. *Mn*Elab; // GeV^2 >> 304 SqrtS = std::sqrt(S); // GeV >> 305 >> 306 B = b0+b2*std::log(SqrtS/SqrtS0)*std::log(SqrtS/SqrtS0); //GeV^(-2) >> 307 SigAss = 36.04 +0.304*std::log(S/S0)*std::log(S/S0); //mb >> 308 R0 = std::sqrt(0.40874044*SigAss - B); //GeV^(-2) >> 309 >> 310 C = 13.55; >> 311 d1 = -4.47; >> 312 d2 = 12.38; >> 313 d3 = -12.43; >> 314 xsection = SigAss*(1 + 1./(std::sqrt(S-4.*Mn*Mn)) / (std::pow(R0, 3.)) >> 315 *C* (1+d1/SqrtS+d2/(std::pow(SqrtS,2.))+d3/(std::pow(SqrtS,3.)) )); >> 316 >> 317 // xsection *= millibarn; 307 318 >> 319 fAntiHadronNucleonTotXsc = xsection; 308 return fAntiHadronNucleonTotXsc; 320 return fAntiHadronNucleonTotXsc; 309 } 321 } 310 322 311 323 312 // /////////////////////////////////////////// << 324 // >> 325 // ///////////////////////////////////////////////////////////////////////////////// 313 // Calculation of Antihadron - hadron Elastic 326 // Calculation of Antihadron - hadron Elastic Cross-section 314 327 315 G4double G4ComponentAntiNuclNuclearXS :: 328 G4double G4ComponentAntiNuclNuclearXS :: 316 GetAntiHadronNucleonElCrSc(const G4ParticleDef 329 GetAntiHadronNucleonElCrSc(const G4ParticleDefinition* aParticle, G4double kinEnergy) 317 { 330 { 318 G4double xsection; << 331 G4double xsection; 319 G4double SigAss; << 320 G4double C, d1, d2, d3; << 321 GetAntiHadronNucleonTotCrSc(aParticle,kinEne << 322 SigAss = 4.5 + 0.101*G4Log(S/S0)*G4Log(S/S << 323 C = 59.27; << 324 d1 = -6.95; << 325 d2 = 23.54; << 326 d3 = -25.34; << 327 << 328 xsection = SigAss * ( 1 + 1. / (std::sqrt(S- << 329 * C * ( 1 + d1/SqrtS + << 330 + d3/(theG4Pow << 331 332 332 //xsection *= millibarn; << 333 G4double SigAss; 333 fAntiHadronNucleonElXsc = xsection; << 334 G4double C, d1, d2, d3 ; 334 335 335 return fAntiHadronNucleonElXsc; << 336 GetAntiHadronNucleonTotCrSc(aParticle,kinEnergy); 336 } << 337 >> 338 SigAss = 4.5 + 0.101*std::log(S/S0)*std::log(S/S0); //mb >> 339 >> 340 C = 59.27; >> 341 d1 = -6.95; >> 342 d2 = 23.54; >> 343 d3 = -25.34; >> 344 >> 345 xsection = SigAss* (1 + 1. / (std::sqrt(S-4.*Mn*Mn)) / (std::pow(R0, 3.)) >> 346 *C* ( 1+d1/SqrtS+d2/(std::pow(SqrtS,2.))+d3/(std::pow(SqrtS,3.)) )); 337 347 >> 348 // xsection *= millibarn; 338 349 339 ////////////////////////////////////////////// << 350 fAntiHadronNucleonElXsc = xsection; >> 351 return fAntiHadronNucleonElXsc; >> 352 } 340 353 341 void G4ComponentAntiNuclNuclearXS::CrossSectio 354 void G4ComponentAntiNuclNuclearXS::CrossSectionDescription(std::ostream& outFile) const 342 { 355 { 343 outFile << "The G4ComponentAntiNuclNuclearXS 356 outFile << "The G4ComponentAntiNuclNuclearXS calculates total,\n" 344 << "inelastic, elastic cross section 357 << "inelastic, elastic cross sections of anti-nucleons and light \n" 345 << "anti-nucleus interactions with n << 358 << "anti-nucleus interactions with nuclei using Glauber's approach.\n" 346 << "It uses parametrizations of anti 359 << "It uses parametrizations of antiproton-proton total and elastic \n" 347 << "cross sections and Wood-Saxon di << 360 << "cross sections and Wood-Saxon distribution of nuclear density.\n" >> 361 << "The lower limit is 10 MeV, the upper limit is 10 TeV. \n" 348 << "See details in Phys.Lett. B705 ( 362 << "See details in Phys.Lett. B705 (2011) 235. \n"; 349 } 363 } 350 << 351 364