Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/cross_sections/src/G4ComponentAntiNuclNuclearXS.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/hadronic/cross_sections/src/G4ComponentAntiNuclNuclearXS.cc (Version 11.3.0) and /processes/hadronic/cross_sections/src/G4ComponentAntiNuclNuclearXS.cc (Version 9.5.p1)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 //  Calculation of the total, elastic and inel     26 //  Calculation of the total, elastic and inelastic cross-sections
 27 //  of anti-nucleon and anti-nucleus interacti     27 //  of anti-nucleon and anti-nucleus interactions with nuclei
 28 //  based on Glauber approach and V. Grishine      28 //  based on Glauber approach and V. Grishine formulaes for
 29 //  interpolations (ref. V.M.Grichine, Eur.Phy     29 //  interpolations (ref. V.M.Grichine, Eur.Phys.J., C62(2009) 399;
 30 //  NIM, B267 (2009) 2460) and our parametriza     30 //  NIM, B267 (2009) 2460) and our parametrization of hadron-nucleon
 31 //  cross-sections                                 31 //  cross-sections
 32 //                                                 32 // 
 33 //                                                 33 // 
 34 //   Created by A.Galoyan and V. Uzhinsky, 18.     34 //   Created by A.Galoyan and V. Uzhinsky, 18.11.2010
 35                                                    35 
 36                                                    36 
 37 #include "G4ComponentAntiNuclNuclearXS.hh"         37 #include "G4ComponentAntiNuclNuclearXS.hh"
 38                                                    38 
 39 #include "G4PhysicalConstants.hh"              << 
 40 #include "G4SystemOfUnits.hh"                  << 
 41 #include "G4ParticleTable.hh"                      39 #include "G4ParticleTable.hh"
 42 #include "G4IonTable.hh"                           40 #include "G4IonTable.hh"
 43 #include "G4ParticleDefinition.hh"                 41 #include "G4ParticleDefinition.hh"
 44 #include "G4HadronicException.hh"              << 
 45                                                    42 
                                                   >>  43 ///////////////////////////////////////////////////////////////////////////////
 46                                                    44 
 47 ////////////////////////////////////////////// << 
 48                                                    45 
 49 G4ComponentAntiNuclNuclearXS::G4ComponentAntiN     46 G4ComponentAntiNuclNuclearXS::G4ComponentAntiNuclNuclearXS() 
 50 : G4VComponentCrossSection("AntiAGlauber"),    <<  47 : G4VComponentCrossSection("AntiAGlauber"), fUpperLimit( 10000 * GeV ),
 51   fRadiusEff(0.0),                             <<  48   fLowerLimit( 10 * MeV )
 52   fTotalXsc(0.0), fElasticXsc(0.0), fInelastic << 
 53   fAntiHadronNucleonTotXsc(0.0), fAntiHadronNu << 
 54   Elab(0.0), S(0.0), SqrtS(0)                  << 
 55 {                                                  49 {
 56   theAProton   = G4AntiProton::AntiProton();   <<  50   theAProton       = G4AntiProton::AntiProton();
 57   theANeutron  = G4AntiNeutron::AntiNeutron(); <<  51   theANeutron      = G4AntiNeutron::AntiNeutron();
 58   theADeuteron = G4AntiDeuteron::AntiDeuteron( <<  52   theADeuteron     = G4AntiDeuteron::AntiDeuteron();
 59   theATriton   = G4AntiTriton::AntiTriton();   <<  53   theATriton       = G4AntiTriton::AntiTriton();
 60   theAAlpha    = G4AntiAlpha::AntiAlpha();     <<  54   theAAlpha        = G4AntiAlpha::AntiAlpha();
 61   theAHe3      = G4AntiHe3::AntiHe3();         <<  55   theAHe3          = G4AntiHe3::AntiHe3();
 62   Mn     = 0.93827231;           // GeV        <<  56 
 63   b0     = 11.92;                // GeV^(-2)   <<  57  Mn       = 0.93827231;           // GeV
 64   b2     = 0.3036;               // GeV^(-2)   <<  58  b0       = 11.92;                // GeV^(-2)
 65   SqrtS0 = 20.74;                // GeV        <<  59  b2       = 0.3036;               // GeV^(-2)
 66   S0     = 33.0625;              // GeV^2      <<  60  SqrtS0   = 20.74;                // GeV
 67   R0     = 1.0;                  // default va <<  61  S0       = 33.0625;              // GeV^2
 68 }                                              << 
 69                                                    62 
                                                   >>  63 }
 70                                                    64 
 71 ////////////////////////////////////////////// <<  65 ///////////////////////////////////////////////////////////////////////////////////////
                                                   >>  66 //
                                                   >>  67 //
 72                                                    68 
 73 G4ComponentAntiNuclNuclearXS::~G4ComponentAnti     69 G4ComponentAntiNuclNuclearXS::~G4ComponentAntiNuclNuclearXS()
 74 {                                                  70 {
 75 }                                                  71 }
 76                                                    72 
                                                   >>  73 ////////////////////////////////////////////////////////////////////////////////
 77                                                    74 
 78 ////////////////////////////////////////////// <<  75 void
                                                   >>  76 G4ComponentAntiNuclNuclearXS::CrossSectionDescription(std::ostream& outFile) const
                                                   >>  77 {
                                                   >>  78   outFile << "G4ComponentAntiNuclNuclearXS describes the total, elastic\n"
                                                   >>  79           << "and inelastic cross sections for the scattering of light\n"
                                                   >>  80           << "antinuclei from nuclei using the Glauber approach and Grichine\n"
                                                   >>  81           << "parameterization.  It is valid from 10 MeV to 10 TeV incident\n"
                                                   >>  82           << "energies and applies to antiprotons, antineutrons, antideuterons,\n"
                                                   >>  83           << "anti3He, antitritons and antialphas.  This is a cross section\n"
                                                   >>  84           << "component which is to be used as part of a cross section data\n"
                                                   >>  85           << "set.\n";
                                                   >>  86 } 
                                                   >>  87 
                                                   >>  88 ////////////////////////////////////////////////////////////////////////////////
 79 //                                                 89 //
 80 // Calculation of total CrossSection of Anti-N     90 // Calculation of total CrossSection of Anti-Nucleus - Nucleus 
 81                                                    91 
                                                   >>  92 
 82 G4double G4ComponentAntiNuclNuclearXS::GetTota     93 G4double G4ComponentAntiNuclNuclearXS::GetTotalElementCrossSection
 83 (const G4ParticleDefinition* aParticle, G4doub     94 (const G4ParticleDefinition* aParticle, G4double kinEnergy, G4int Z, G4double A)
 84 {                                                  95 {
 85   if ( aParticle == nullptr ) {                <<  96   G4double xsection,   sigmaTotal, sigmaElastic;
 86     G4ExceptionDescription ed;                 <<  97 
 87     ed << "anti-nucleus with nullptr particle  <<  98  const G4ParticleDefinition* theParticle = aParticle;
 88     G4Exception( "G4ComponentAntiNuclNuclearXS <<  99 
 89                  "antiNuclNuclearXS001", JustW << 100   sigmaTotal        = GetAntiHadronNucleonTotCrSc(theParticle,kinEnergy);
 90     return 0.0;                                << 101   sigmaElastic      = GetAntiHadronNucleonElCrSc(theParticle,kinEnergy);
 91   }                                            << 
 92                                                << 
 93   const G4ParticleDefinition* theParticle = aP << 
 94   G4double sigmaTotal = GetAntiHadronNucleonTo << 
 95                                                   102 
 96   // calculation of squared radius of  NN-coll << 103 // calculation of squared radius of  NN-collision
 97   G4int i(-1), j(-1);                          << 104   fRadiusNN2=sigmaTotal*sigmaTotal*0.1/(8.*sigmaElastic*pi) ;  //fm^2   
 98   if      ( theParticle == theAProton  ||      << 105 
 99       theParticle == theANeutron )  { i=0; }   << 106 // calculation of effective nuclear radius for Pbar and Nbar interactions (can be changed)
100   else if ( theParticle == theADeuteron ) { i= << 107 
101   else if ( theParticle == theATriton   ) { i= << 108   if ( (theParticle == theAProton) || (theParticle == theANeutron) )
102   else if ( theParticle == theAHe3      ) { i= << 109   {   
103   else if ( theParticle == theAAlpha    ) { i= << 110      if(A==1)
104   else {};                                     << 111      { fTotalXsc = sigmaTotal * millibarn;
105                                                << 112         return fTotalXsc;  }
106   if ( i < 0  && ( ! theParticle->IsAntiHypern << 113  
107     G4ExceptionDescription ed;                 << 114      fRadiusEff = 1.34*std::pow(A,0.23)+1.35/std::pow(A,1./3.);   //fm
108     ed << "Unknown anti-nucleus : " << thePart << 115   
109        << "Target (Z, A)=(" << Z << "," << A < << 116      if( (Z==1) && (A==2) ) fRadiusEff = 3.800;     //fm
110     G4Exception( "G4ComponentAntiNuclNuclearXS << 117      if( (Z==1) && (A==3) ) fRadiusEff = 3.300;  
111                  "antiNuclNuclearXS002", JustW << 118      if( (Z==2) && (A==3) ) fRadiusEff = 3.300;  
                                                   >> 119      if( (Z==2) && (A==4) ) fRadiusEff = 2.376;     
112   }                                               120   }
                                                   >> 121       
                                                   >> 122 //calculation of effective nuclear radius for AntiDeuteron interaction (can be changed)
                                                   >> 123   if (theParticle == theADeuteron) 
                                                   >> 124   { fRadiusEff = 1.46 * std::pow(A,0.21) + 1.45 / std::pow(A,1./3.);
                                                   >> 125 
                                                   >> 126     if( (Z==1) && (A==2) ) fRadiusEff = 3.238;     //fm
                                                   >> 127     if( (Z==1) && (A==3) ) fRadiusEff = 3.144;     
                                                   >> 128     if( (Z==2) && (A==3) ) fRadiusEff = 3.144;      
                                                   >> 129     if( (Z==2) && (A==4) ) fRadiusEff = 2.544;     
                                                   >> 130   }
                                                   >> 131 // calculation of effective nuclear radius for AntiHe3 interaction (can be changed)
113                                                   132 
114   G4int intA = static_cast<G4int>( A );        << 133   if( (theParticle ==theAHe3) || (theParticle ==theATriton) )
                                                   >> 134   { fRadiusEff = 1.40* std::pow(A,0.21)+1.63/std::pow(A,1./3.);
115                                                   135 
116   if      ( Z == 1  &&  intA == 1 ) { j=0; }   << 136     if( (Z==1) && (A==2) ) fRadiusEff = 3.144;     //fm
117   else if ( Z == 1  &&  intA == 2 ) { j=1; }   << 137     if( (Z==1) && (A==3) ) fRadiusEff = 3.075;  
118   else if ( Z == 1  &&  intA == 3 ) { j=2; }   << 138     if( (Z==2) && (A==3) ) fRadiusEff = 3.075;  
119   else if ( Z == 2  &&  intA == 3 ) { j=3; }   << 139     if( (Z==2) && (A==4) ) fRadiusEff = 2.589;  
120   else if ( Z == 2  &&  intA == 4 ) { j=4; }   << 
121   else {}                                      << 
122                                                << 
123   if ( i <  0  &&  j >= 0 ) { fRadiusEff = Ref << 
124   if ( i == 0  &&  j == 0 ) return sigmaTotal  << 
125   if ( i >= 0  &&  j >= 0 ) { fRadiusEff = Ref << 
126                                                << 
127   if ( j < 0 ) {                               << 
128     if      ( i  == 0 ) { fRadiusEff = 1.34 *  << 
129                                      + 1.35 /  << 
130     else if ( i  == 1 ) { fRadiusEff = 1.46 *  << 
131                                      + 1.45 /  << 
132     else if ( i  == 2 ) { fRadiusEff = 1.40 *  << 
133                                      + 1.63 /  << 
134     else if ( i  == 3 ) { fRadiusEff = 1.40 *  << 
135                                      + 1.63 /  << 
136     else if ( i  == 4 ) { fRadiusEff = 1.35 *  << 
137                                      + 1.10 /  << 
138     else if ( i  <  0 ) { fRadiusEff = 1.35 *  << 
139                                + 1.10 / theG4P << 
140     else {}                                    << 
141   }                                               140   }
142                                                   141 
143   G4double R2   = fRadiusEff*fRadiusEff;       << 142 //calculation of effective nuclear radius for AntiAlpha interaction (can be changed)
144   G4double ApAt = std::abs(theParticle->GetBar << 143 
                                                   >> 144   if (theParticle == theAAlpha) 
                                                   >> 145   {
                                                   >> 146     fRadiusEff = 1.35* std::pow(A,0.21)+1.1/std::pow(A,1./3.);
                                                   >> 147   
                                                   >> 148     if( (Z==1) && (A==2) ) fRadiusEff = 2.544;     //fm
                                                   >> 149     if( (Z==1) && (A==3) ) fRadiusEff = 2.589;   
                                                   >> 150     if( (Z==2) && (A==3) ) fRadiusEff = 2.589;   
                                                   >> 151     if( (Z==2) && (A==4) ) fRadiusEff = 2.241;    
                                                   >> 152   
                                                   >> 153   }
145                                                   154 
146   G4double xsection = millibarn*2.*pi*R2*10.*G << 155   G4double R2 = fRadiusEff*fRadiusEff;
147   fTotalXsc = xsection;                        << 156   G4double REf2  = R2+fRadiusNN2;
                                                   >> 157   G4double ApAt = std::abs(theParticle->GetBaryonNumber())  *  A;
                                                   >> 158 
                                                   >> 159   xsection = 2*pi*REf2*10.*std::log(1+(ApAt*sigmaTotal/(2*pi*REf2*10.)));  //mb
                                                   >> 160   xsection =xsection *millibarn; 
                                                   >> 161   fTotalXsc   = xsection;
148                                                   162 
149   return fTotalXsc;                               163   return fTotalXsc; 
150 }                                                 164 }
151                                                   165 
152                                                   166 
153 ////////////////////////////////////////////// << 167 ////////////////////////////////////////////////////////////////////////////////
154 //                                                168 // 
155 // Calculation of total CrossSection of Anti-N    169 // Calculation of total CrossSection of Anti-Nucleus - Nucleus 
156                                                << 170 //////////////////////////////////////////////////////////////////////////////
157 G4double G4ComponentAntiNuclNuclearXS::GetTota    171 G4double G4ComponentAntiNuclNuclearXS::GetTotalIsotopeCrossSection
158 (const G4ParticleDefinition* aParticle, G4doub    172 (const G4ParticleDefinition* aParticle, G4double kinEnergy, G4int Z, G4int A )
159 {                                              << 173 { return GetTotalElementCrossSection(aParticle, kinEnergy, Z, (G4double) A);  }
160   return GetTotalElementCrossSection(aParticle << 
161 }                                              << 
162                                                << 
163                                                   174 
164 ////////////////////////////////////////////// << 175 ////////////////////////////////////////////////////////////////
165 // Calculation of inelastic CrossSection of An    176 // Calculation of inelastic CrossSection of Anti-Nucleus - Nucleus
                                                   >> 177 ////////////////////////////////////////////////////////////////
166                                                   178 
167 G4double G4ComponentAntiNuclNuclearXS::GetInel    179 G4double G4ComponentAntiNuclNuclearXS::GetInelasticElementCrossSection
168 (const G4ParticleDefinition* aParticle, G4doub    180 (const G4ParticleDefinition* aParticle, G4double kinEnergy, G4int Z, G4double A)
169 {                                                 181 {
170   if ( aParticle == nullptr ) {                << 182   G4double  inelxsection,  sigmaTotal, sigmaElastic;
171     G4ExceptionDescription ed;                 << 183 
172     ed << "anti-nucleus with nullptr particle  << 
173     G4Exception( "G4ComponentAntiNuclNuclearXS << 
174                  "antiNuclNuclearXS003", JustW << 
175     return 0.0;                                << 
176   }                                            << 
177                                                << 
178   const G4ParticleDefinition* theParticle = aP    184   const G4ParticleDefinition* theParticle = aParticle;
179   G4double sigmaTotal   = GetAntiHadronNucleon << 185 
180   G4double sigmaElastic = GetAntiHadronNucleon << 186   sigmaTotal        = GetAntiHadronNucleonTotCrSc(theParticle,kinEnergy);
                                                   >> 187   sigmaElastic      = GetAntiHadronNucleonElCrSc(theParticle,kinEnergy);
181                                                   188   
182   // calculation of sqr of radius NN-collision << 189 // calculation of sqr of radius NN-collision
183   G4int i(-1), j(-1);                          << 190   fRadiusNN2=sigmaTotal*sigmaTotal*0.1/(8.*sigmaElastic*pi);   // fm^2   
184   if      ( theParticle == theAProton  ||      << 191 
185       theParticle == theANeutron )  { i=0; }   << 192 
186   else if ( theParticle == theADeuteron ) { i= << 193 // calculation of effective nuclear radius for Pbar and Nbar interaction (can be changed)
187   else if ( theParticle == theATriton   ) { i= << 194 
188   else if ( theParticle == theAHe3      ) { i= << 195   if ( (theParticle == theAProton) || (theParticle == theANeutron) )
189   else if ( theParticle == theAAlpha    ) { i= << 196   {
190   else {};                                     << 197    if (A==1)
191                                                << 198       { fInelasticXsc = (sigmaTotal - sigmaElastic) * millibarn;
192   if ( i < 0  && ( ! theParticle->IsAntiHypern << 199         return fInelasticXsc;  
193     G4ExceptionDescription ed;                 << 200       } 
194     ed << "Unknown anti-nucleus : " << thePart << 201    fRadiusEff = 1.31*std::pow(A, 0.22)+0.9/std::pow(A, 1./3.);  //fm
195        << "Target (Z, A)=(" << Z << "," << A < << 202     
196     G4Exception( "G4ComponentAntiNuclNuclearXS << 203    if( (Z==1) && (A==2) ) fRadiusEff = 3.582;               //fm
197                  "antiNuclNuclearXS004", JustW << 204    if( (Z==1) && (A==3) ) fRadiusEff = 3.105;               
                                                   >> 205    if( (Z==2) && (A==3) ) fRadiusEff = 3.105;
                                                   >> 206    if( (Z==2) && (A==4) ) fRadiusEff = 2.209;
198   }                                               207   }
199                                                   208 
200   G4int intA = static_cast<G4int>( A );        << 209 //calculation of effective nuclear radius for AntiDeuteron interaction (can be changed)
201                                                   210 
202   if      ( Z == 1  &&  intA == 1 ) { j=0; }   << 211   if (theParticle ==theADeuteron) 
203   else if ( Z == 1  &&  intA == 2 ) { j=1; }   << 212   { 
204   else if ( Z == 1  &&  intA == 3 ) { j=2; }   << 213     fRadiusEff = 1.38*std::pow(A, 0.21)+1.55/std::pow(A, 1./3.);
205   else if ( Z == 2  &&  intA == 3 ) { j=3; }   << 214   
206   else if ( Z == 2  &&  intA == 4 ) { j=4; }   << 215     if( (Z==1) && (A==2) ) fRadiusEff = 3.169;            //fm
207   else {}                                      << 216     if( (Z==1) && (A==3) ) fRadiusEff = 3.066;
208                                                << 217     if( (Z==2) && (A==3) ) fRadiusEff = 3.066;
209   if ( i <  0  &&  j >= 0 ) { fRadiusEff = Ref << 218     if( (Z==2) && (A==4) ) fRadiusEff = 2.498;
210   if ( i == 0  &&  j == 0 ) return (sigmaTotal << 
211   if ( i >= 0  &&  j >= 0 ) { fRadiusEff = Ref << 
212                                                << 
213   if ( j < 0) {                                << 
214     if      ( i  == 0 ) { fRadiusEff = 1.31*th << 
215                                      + 0.90/th << 
216     else if ( i  == 1 ) { fRadiusEff = 1.38*th << 
217                                      + 1.55/th << 
218     else if ( i  == 2 ) { fRadiusEff = 1.34*th << 
219                                      + 1.51/th << 
220     else if ( i  == 3 ) { fRadiusEff = 1.34*th << 
221                                      + 1.51/th << 
222     else if ( i  == 4 ) { fRadiusEff = 1.30*th << 
223                                      + 1.05/th << 
224     else if ( i  <  0 ) { fRadiusEff = 1.30*th << 
225                                      + 1.05/th << 
226     else {}                                    << 
227   }                                               219   }
228                                                   220 
229   G4double R2   = fRadiusEff*fRadiusEff;       << 221 //calculation of effective nuclear radius for AntiHe3 interaction (can be changed)
230   G4double ApAt = std::abs(theParticle->GetBar << 222 
                                                   >> 223   if( (theParticle ==theAHe3) || (theParticle ==theATriton) )
                                                   >> 224   {
                                                   >> 225     fRadiusEff = 1.34 * std::pow(A, 0.21)+1.51/std::pow(A, 1./3.);
                                                   >> 226   
                                                   >> 227     if( (Z==1) && (A==2) ) fRadiusEff = 3.066;           //fm
                                                   >> 228     if( (Z==1) && (A==3) ) fRadiusEff = 2.973;
                                                   >> 229     if( (Z==2) && (A==3) ) fRadiusEff = 2.973;
                                                   >> 230     if( (Z==2) && (A==4) ) fRadiusEff = 2.508;
                                                   >> 231   
                                                   >> 232   }
231                                                   233 
232   G4double inelxsection = millibarn*pi*R2*10.* << 234 //calculation of effective nuclear radius for AntiAlpha interaction (can be changed)
233   fInelasticXsc = inelxsection;                << 
234                                                   235 
                                                   >> 236   if (theParticle == theAAlpha) 
                                                   >> 237   {
                                                   >> 238     fRadiusEff = 1.3*std::pow(A, 0.21)+1.05/std::pow(A, 1./3.);
                                                   >> 239     
                                                   >> 240     if( (Z==1) && (A==2) ) fRadiusEff = 2.498;            //fm
                                                   >> 241     if( (Z==1) && (A==3) ) fRadiusEff = 2.508;
                                                   >> 242     if( (Z==2) && (A==3) ) fRadiusEff = 2.508;
                                                   >> 243     if( (Z==2) && (A==4) ) fRadiusEff = 2.158;
                                                   >> 244   }
                                                   >> 245   G4double R2 = fRadiusEff*fRadiusEff;
                                                   >> 246   G4double REf2  = R2+fRadiusNN2;
                                                   >> 247   G4double  ApAt= std::abs(theParticle->GetBaryonNumber())  *  A;
                                                   >> 248 
                                                   >> 249   inelxsection  = pi*REf2 *10* std::log(1+(ApAt*sigmaTotal/(pi*REf2*10.))); //mb
                                                   >> 250   inelxsection  = inelxsection * millibarn;  
                                                   >> 251   fInelasticXsc =  inelxsection; 
235   return fInelasticXsc;                           252   return fInelasticXsc;
236 }                                                 253 }
237                                                   254 
238                                                << 255 ///////////////////////////////////////////////////////////////////////////////
239 ////////////////////////////////////////////// << 
240 //                                                256 //
241 // Calculates Inelastic Anti-nucleus-Nucleus c    257 // Calculates Inelastic Anti-nucleus-Nucleus cross-section   
242                                                << 258 //
243 G4double G4ComponentAntiNuclNuclearXS::GetInel    259 G4double G4ComponentAntiNuclNuclearXS::GetInelasticIsotopeCrossSection
244 (const G4ParticleDefinition* aParticle, G4doub    260 (const G4ParticleDefinition* aParticle, G4double kinEnergy, G4int Z, G4int A)
245 {                                              << 261 {return GetInelasticElementCrossSection(aParticle, kinEnergy, Z, (G4double) A); }
246   return GetInelasticElementCrossSection(aPart << 262  
247 }                                              << 
248                                                   263 
249                                                   264 
250 ////////////////////////////////////////////// << 265 ///////////////////////////////////////////////////////////////////////////////
251 //                                                266 //
252 // Calculates elastic Anti-nucleus-Nucleus cro    267 // Calculates elastic Anti-nucleus-Nucleus cross-section  as Total - Inelastic 
253                                                << 268 //
254 G4double G4ComponentAntiNuclNuclearXS::GetElas    269 G4double G4ComponentAntiNuclNuclearXS::GetElasticElementCrossSection
255 (const G4ParticleDefinition* aParticle, G4doub    270 (const G4ParticleDefinition* aParticle, G4double kinEnergy, G4int Z, G4double A)
256 {                                                 271 {
257   fElasticXsc = GetTotalElementCrossSection(aP << 272  fElasticXsc = GetTotalElementCrossSection(aParticle, kinEnergy, Z, A)-
258                 GetInelasticElementCrossSectio << 273    GetInelasticElementCrossSection(aParticle, kinEnergy, Z, A);
259   if (fElasticXsc < 0.) fElasticXsc = 0.;      << 274 
260   return fElasticXsc;                          << 275  if (fElasticXsc < 0.) fElasticXsc = 0.;
261 }                                              << 
262                                                   276 
                                                   >> 277  return fElasticXsc;
                                                   >> 278 }
263                                                   279  
264 ////////////////////////////////////////////// << 280 ///////////////////////////////////////////////////////////////////////////////
265 //                                                281 //
266 // Calculates elastic Anti-nucleus-Nucleus cro    282 // Calculates elastic Anti-nucleus-Nucleus cross-section   
267                                                << 283 //
268 G4double G4ComponentAntiNuclNuclearXS::GetElas    284 G4double G4ComponentAntiNuclNuclearXS::GetElasticIsotopeCrossSection
269 (const G4ParticleDefinition* aParticle, G4doub    285 (const G4ParticleDefinition* aParticle, G4double kinEnergy, G4int Z, G4int A)
270 {                                              << 286 { return GetElasticElementCrossSection(aParticle, kinEnergy, Z, (G4double) A); }
271   return GetElasticElementCrossSection(aPartic << 
272 }                                              << 
273                                                   287 
274                                                   288 
275 ////////////////////////////////////////////// << 289 ///////////////////////////////////////////////////////////////////////////////////
276 // Calculation of  Antihadron - hadron Total C    290 // Calculation of  Antihadron - hadron Total Cross-section  
277                                                   291 
278 G4double G4ComponentAntiNuclNuclearXS::GetAnti    292 G4double G4ComponentAntiNuclNuclearXS::GetAntiHadronNucleonTotCrSc
279 (const G4ParticleDefinition* aParticle, G4doub    293 (const G4ParticleDefinition* aParticle, G4double kinEnergy)
280 {                                                 294 {
281   G4double xsection, Pmass, Energy, momentum;     295   G4double xsection, Pmass, Energy, momentum;
282   const G4ParticleDefinition* theParticle = aP    296   const G4ParticleDefinition* theParticle = aParticle;
283   Pmass=theParticle->GetPDGMass();                297   Pmass=theParticle->GetPDGMass();
284   Energy=Pmass+kinEnergy;                         298   Energy=Pmass+kinEnergy;
285   momentum=std::sqrt(Energy*Energy-Pmass*Pmass    299   momentum=std::sqrt(Energy*Energy-Pmass*Pmass)/std::abs(theParticle->GetBaryonNumber());
286   G4double Plab = momentum / GeV;              << 300   G4double Plab = momentum / GeV/std::abs(aParticle->GetBaryonNumber()); // Uzhi 24 Nov. 2011
                                                   >> 301 
                                                   >> 302   if(Plab < 0.1) { Plab = 0.1; }    // Uzhi 24 Nov. 2011
287                                                   303 
288   G4double   B, SigAss;                           304   G4double   B, SigAss;
289   G4double   C, d1, d2, d3;                    << 305   G4double   C, d1, d2, d3  ;
                                                   >> 306 
290   Elab     = std::sqrt(Mn*Mn + Plab*Plab);   /    307   Elab     = std::sqrt(Mn*Mn + Plab*Plab);   // GeV
291   S        = 2.*Mn*Mn + 2. *Mn*Elab;         /    308   S        = 2.*Mn*Mn + 2. *Mn*Elab;         // GeV^2
292   SqrtS    = std::sqrt(S);                   /    309   SqrtS    = std::sqrt(S);                   // GeV 
293   B        = b0+b2*G4Log(SqrtS/SqrtS0)*G4Log(S << 310 
294   SigAss   = 36.04 +0.304*G4Log(S/S0)*G4Log(S/ << 311   B        = b0+b2*std::log(SqrtS/SqrtS0)*std::log(SqrtS/SqrtS0); //GeV^(-2)
                                                   >> 312   SigAss   = 36.04 +0.304*std::log(S/S0)*std::log(S/S0);          //mb 
295   R0       = std::sqrt(0.40874044*SigAss - B);    313   R0       = std::sqrt(0.40874044*SigAss - B);                   //GeV^(-2)
                                                   >> 314  
296   C        = 13.55;                               315   C        = 13.55;
297   d1       = -4.47;                               316   d1       = -4.47;
298   d2       = 12.38;                               317   d2       = 12.38;
299   d3       = -12.43;                              318   d3       = -12.43;
                                                   >> 319   xsection = SigAss*(1 + 1./(std::sqrt(S-4.*Mn*Mn)) / (std::pow(R0, 3.))
                                                   >> 320   *C* (1+d1/SqrtS+d2/(std::pow(SqrtS,2.))+d3/(std::pow(SqrtS,3.)) ));  
300                                                   321 
301   xsection = SigAss * ( 1 + 1./(std::sqrt(S-4. << 322 //  xsection *= millibarn;
302                         * C * ( 1 + d1/SqrtS + << 
303                                 + d3/(theG4Pow << 
304                                                   323 
305   //xsection *= millibarn;                     << 
306   fAntiHadronNucleonTotXsc = xsection;            324   fAntiHadronNucleonTotXsc = xsection;
307                                                << 
308   return fAntiHadronNucleonTotXsc;                325   return fAntiHadronNucleonTotXsc;
309 }                                                 326 }
310                                                   327 
311                                                   328 
312 // /////////////////////////////////////////// << 329 //
                                                   >> 330 // /////////////////////////////////////////////////////////////////////////////////
313 // Calculation of  Antihadron - hadron Elastic    331 // Calculation of  Antihadron - hadron Elastic Cross-section  
314                                                   332 
315 G4double G4ComponentAntiNuclNuclearXS ::          333 G4double G4ComponentAntiNuclNuclearXS :: 
316 GetAntiHadronNucleonElCrSc(const G4ParticleDef    334 GetAntiHadronNucleonElCrSc(const G4ParticleDefinition* aParticle, G4double kinEnergy)
317 {                                                 335 {
318   G4double xsection;                           << 336  G4double xsection;
319   G4double   SigAss;                           << 
320   G4double   C, d1, d2, d3;                    << 
321   GetAntiHadronNucleonTotCrSc(aParticle,kinEne << 
322   SigAss   = 4.5 + 0.101*G4Log(S/S0)*G4Log(S/S << 
323   C        = 59.27;                            << 
324   d1       = -6.95;                            << 
325   d2       = 23.54;                            << 
326   d3       = -25.34;                           << 
327                                                << 
328   xsection = SigAss * ( 1 + 1. / (std::sqrt(S- << 
329                         * C * ( 1 + d1/SqrtS + << 
330                                 + d3/(theG4Pow << 
331                                                   337 
332   //xsection *= millibarn;                     << 338  G4double   SigAss;
333   fAntiHadronNucleonElXsc = xsection;          << 339  G4double   C, d1, d2, d3  ;
334                                                   340 
335   return fAntiHadronNucleonElXsc;              << 341  GetAntiHadronNucleonTotCrSc(aParticle,kinEnergy);
336 }                                              << 
337                                                   342 
                                                   >> 343  SigAss   = 4.5 + 0.101*std::log(S/S0)*std::log(S/S0);            //mb
                                                   >> 344   
                                                   >> 345  C        = 59.27;
                                                   >> 346  d1       = -6.95;
                                                   >> 347  d2       = 23.54;
                                                   >> 348  d3       = -25.34;
338                                                   349 
339 ////////////////////////////////////////////// << 350  xsection = SigAss* (1 + 1. / (std::sqrt(S-4.*Mn*Mn)) / (std::pow(R0, 3.))
                                                   >> 351   *C* ( 1+d1/SqrtS+d2/(std::pow(SqrtS,2.))+d3/(std::pow(SqrtS,3.)) ));  
340                                                   352 
341 void G4ComponentAntiNuclNuclearXS::CrossSectio << 353 //  xsection *= millibarn;
342 {                                              << 
343   outFile << "The G4ComponentAntiNuclNuclearXS << 
344           << "inelastic, elastic cross section << 
345           << "anti-nucleus interactions with n << 
346           << "It uses parametrizations of anti << 
347           << "cross sections and Wood-Saxon di << 
348           << "See details in Phys.Lett. B705 ( << 
349 }                                              << 
350                                                   354 
                                                   >> 355  fAntiHadronNucleonElXsc = xsection;
                                                   >> 356  return fAntiHadronNucleonElXsc;
                                                   >> 357 }
351                                                   358