Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/cross_sections/src/G4ComponentAntiNuclNuclearXS.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/hadronic/cross_sections/src/G4ComponentAntiNuclNuclearXS.cc (Version 11.3.0) and /processes/hadronic/cross_sections/src/G4ComponentAntiNuclNuclearXS.cc (Version 11.0)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 //  Calculation of the total, elastic and inel     26 //  Calculation of the total, elastic and inelastic cross-sections
 27 //  of anti-nucleon and anti-nucleus interacti     27 //  of anti-nucleon and anti-nucleus interactions with nuclei
 28 //  based on Glauber approach and V. Grishine      28 //  based on Glauber approach and V. Grishine formulaes for
 29 //  interpolations (ref. V.M.Grichine, Eur.Phy     29 //  interpolations (ref. V.M.Grichine, Eur.Phys.J., C62(2009) 399;
 30 //  NIM, B267 (2009) 2460) and our parametriza     30 //  NIM, B267 (2009) 2460) and our parametrization of hadron-nucleon
 31 //  cross-sections                                 31 //  cross-sections
 32 //                                                 32 // 
 33 //                                                 33 // 
 34 //   Created by A.Galoyan and V. Uzhinsky, 18.     34 //   Created by A.Galoyan and V. Uzhinsky, 18.11.2010
 35                                                    35 
 36                                                    36 
 37 #include "G4ComponentAntiNuclNuclearXS.hh"         37 #include "G4ComponentAntiNuclNuclearXS.hh"
 38                                                    38 
 39 #include "G4PhysicalConstants.hh"                  39 #include "G4PhysicalConstants.hh"
 40 #include "G4SystemOfUnits.hh"                      40 #include "G4SystemOfUnits.hh"
 41 #include "G4ParticleTable.hh"                      41 #include "G4ParticleTable.hh"
 42 #include "G4IonTable.hh"                           42 #include "G4IonTable.hh"
 43 #include "G4ParticleDefinition.hh"                 43 #include "G4ParticleDefinition.hh"
 44 #include "G4HadronicException.hh"              <<  44 #include "G4Pow.hh"
 45                                                    45 
 46                                                    46 
 47 //////////////////////////////////////////////     47 /////////////////////////////////////////////////////////////////////////////
 48                                                    48 
 49 G4ComponentAntiNuclNuclearXS::G4ComponentAntiN     49 G4ComponentAntiNuclNuclearXS::G4ComponentAntiNuclNuclearXS() 
 50 : G4VComponentCrossSection("AntiAGlauber"),        50 : G4VComponentCrossSection("AntiAGlauber"),
 51   fRadiusEff(0.0),                             <<  51   fRadiusEff(0.0), fRadiusNN2(0.0),
 52   fTotalXsc(0.0), fElasticXsc(0.0), fInelastic     52   fTotalXsc(0.0), fElasticXsc(0.0), fInelasticXsc(0.0),
 53   fAntiHadronNucleonTotXsc(0.0), fAntiHadronNu     53   fAntiHadronNucleonTotXsc(0.0), fAntiHadronNucleonElXsc(0.0),
 54   Elab(0.0), S(0.0), SqrtS(0)                      54   Elab(0.0), S(0.0), SqrtS(0) 
 55 {                                                  55 {
 56   theAProton   = G4AntiProton::AntiProton();       56   theAProton   = G4AntiProton::AntiProton();
 57   theANeutron  = G4AntiNeutron::AntiNeutron();     57   theANeutron  = G4AntiNeutron::AntiNeutron();
 58   theADeuteron = G4AntiDeuteron::AntiDeuteron(     58   theADeuteron = G4AntiDeuteron::AntiDeuteron();
 59   theATriton   = G4AntiTriton::AntiTriton();       59   theATriton   = G4AntiTriton::AntiTriton();
 60   theAAlpha    = G4AntiAlpha::AntiAlpha();         60   theAAlpha    = G4AntiAlpha::AntiAlpha();
 61   theAHe3      = G4AntiHe3::AntiHe3();             61   theAHe3      = G4AntiHe3::AntiHe3();
 62   Mn     = 0.93827231;           // GeV            62   Mn     = 0.93827231;           // GeV
 63   b0     = 11.92;                // GeV^(-2)       63   b0     = 11.92;                // GeV^(-2)
 64   b2     = 0.3036;               // GeV^(-2)       64   b2     = 0.3036;               // GeV^(-2)
 65   SqrtS0 = 20.74;                // GeV            65   SqrtS0 = 20.74;                // GeV
 66   S0     = 33.0625;              // GeV^2          66   S0     = 33.0625;              // GeV^2
 67   R0     = 1.0;                  // default va     67   R0     = 1.0;                  // default value (V.Ivanchenko)
 68 }                                                  68 }
 69                                                    69 
 70                                                    70 
 71 //////////////////////////////////////////////     71 /////////////////////////////////////////////////////////////////////////////
 72                                                    72 
 73 G4ComponentAntiNuclNuclearXS::~G4ComponentAnti     73 G4ComponentAntiNuclNuclearXS::~G4ComponentAntiNuclNuclearXS()
 74 {                                                  74 {
 75 }                                                  75 }
 76                                                    76 
 77                                                    77 
 78 //////////////////////////////////////////////     78 /////////////////////////////////////////////////////////////////////////////
 79 //                                                 79 //
 80 // Calculation of total CrossSection of Anti-N     80 // Calculation of total CrossSection of Anti-Nucleus - Nucleus 
 81                                                    81 
 82 G4double G4ComponentAntiNuclNuclearXS::GetTota     82 G4double G4ComponentAntiNuclNuclearXS::GetTotalElementCrossSection
 83 (const G4ParticleDefinition* aParticle, G4doub     83 (const G4ParticleDefinition* aParticle, G4double kinEnergy, G4int Z, G4double A)
 84 {                                                  84 {
 85   if ( aParticle == nullptr ) {                <<  85   G4double xsection, sigmaTotal, sigmaElastic;
 86     G4ExceptionDescription ed;                 << 
 87     ed << "anti-nucleus with nullptr particle  << 
 88     G4Exception( "G4ComponentAntiNuclNuclearXS << 
 89                  "antiNuclNuclearXS001", JustW << 
 90     return 0.0;                                << 
 91   }                                            << 
 92                                                << 
 93   const G4ParticleDefinition* theParticle = aP     86   const G4ParticleDefinition* theParticle = aParticle;
 94   G4double sigmaTotal = GetAntiHadronNucleonTo <<  87   sigmaTotal   = GetAntiHadronNucleonTotCrSc(theParticle,kinEnergy);
                                                   >>  88   sigmaElastic = GetAntiHadronNucleonElCrSc(theParticle,kinEnergy);
 95                                                    89 
 96   // calculation of squared radius of  NN-coll     90   // calculation of squared radius of  NN-collision
 97   G4int i(-1), j(-1);                          <<  91   fRadiusNN2=sigmaTotal*sigmaTotal*0.1/(8.*sigmaElastic*pi) ;  //fm^2   
 98   if      ( theParticle == theAProton  ||      <<  92 
 99       theParticle == theANeutron )  { i=0; }   <<  93   // calculation of effective nuclear radius for Pbar and Nbar interactions (can be changed)
100   else if ( theParticle == theADeuteron ) { i= <<  94   //A.R. 29-Jan-2013 : use antiprotons/antineutrons as the default case,
101   else if ( theParticle == theATriton   ) { i= <<  95   //                   to be used for instance, as first approximation
102   else if ( theParticle == theAHe3      ) { i= <<  96   //                   without validation, for anti-hyperons. 
103   else if ( theParticle == theAAlpha    ) { i= <<  97   if (A==1) { 
104   else {};                                     <<  98     fTotalXsc = sigmaTotal * millibarn;
105                                                <<  99     return fTotalXsc;
106   if ( i < 0  && ( ! theParticle->IsAntiHypern << 100   }
107     G4ExceptionDescription ed;                 << 101   fRadiusEff = 1.34*G4Pow::GetInstance()->powA(A,0.23)+1.35/G4Pow::GetInstance()->powA(A,1./3.);   //fm 
108     ed << "Unknown anti-nucleus : " << thePart << 102   if ( (Z==1) && (A==2) ) fRadiusEff = 3.800;     //fm
109        << "Target (Z, A)=(" << Z << "," << A < << 103   if ( (Z==1) && (A==3) ) fRadiusEff = 3.300;  
110     G4Exception( "G4ComponentAntiNuclNuclearXS << 104   if ( (Z==2) && (A==3) ) fRadiusEff = 3.300;  
111                  "antiNuclNuclearXS002", JustW << 105   if ( (Z==2) && (A==4) ) fRadiusEff = 2.376;     
                                                   >> 106     
                                                   >> 107   // calculation of effective nuclear radius for AntiDeuteron interaction (can be changed)
                                                   >> 108   if (theParticle == theADeuteron) { 
                                                   >> 109     fRadiusEff = 1.46 * G4Pow::GetInstance()->powA(A,0.21) + 1.45 / G4Pow::GetInstance()->powA(A,1./3.);
                                                   >> 110     if ( (Z==1) && (A==2) ) fRadiusEff = 3.238;     //fm
                                                   >> 111     if ( (Z==1) && (A==3) ) fRadiusEff = 3.144;     
                                                   >> 112     if ( (Z==2) && (A==3) ) fRadiusEff = 3.144;      
                                                   >> 113     if ( (Z==2) && (A==4) ) fRadiusEff = 2.544;     
112   }                                               114   }
113                                                   115 
114   G4int intA = static_cast<G4int>( A );        << 116   // calculation of effective nuclear radius for AntiHe3 interaction (can be changed)
                                                   >> 117   if ( (theParticle ==theAHe3) || (theParticle ==theATriton) ) { 
                                                   >> 118     fRadiusEff = 1.40* G4Pow::GetInstance()->powA(A,0.21)+1.63/G4Pow::GetInstance()->powA(A,1./3.);
                                                   >> 119     if ( (Z==1) && (A==2) ) fRadiusEff = 3.144;     //fm
                                                   >> 120     if ( (Z==1) && (A==3) ) fRadiusEff = 3.075;  
                                                   >> 121     if ( (Z==2) && (A==3) ) fRadiusEff = 3.075;  
                                                   >> 122     if ( (Z==2) && (A==4) ) fRadiusEff = 2.589;  
                                                   >> 123   }
115                                                   124 
116   if      ( Z == 1  &&  intA == 1 ) { j=0; }   << 125   // calculation of effective nuclear radius for AntiAlpha interaction (can be changed)
117   else if ( Z == 1  &&  intA == 2 ) { j=1; }   << 126   if (theParticle == theAAlpha) {
118   else if ( Z == 1  &&  intA == 3 ) { j=2; }   << 127     fRadiusEff = 1.35* G4Pow::GetInstance()->powA(A,0.21)+1.1/G4Pow::GetInstance()->powA(A,1./3.);
119   else if ( Z == 2  &&  intA == 3 ) { j=3; }   << 128     if ( (Z==1) && (A==2) ) fRadiusEff = 2.544;     //fm
120   else if ( Z == 2  &&  intA == 4 ) { j=4; }   << 129     if ( (Z==1) && (A==3) ) fRadiusEff = 2.589;   
121   else {}                                      << 130     if ( (Z==2) && (A==3) ) fRadiusEff = 2.589;   
122                                                << 131     if ( (Z==2) && (A==4) ) fRadiusEff = 2.241;    
123   if ( i <  0  &&  j >= 0 ) { fRadiusEff = Ref << 
124   if ( i == 0  &&  j == 0 ) return sigmaTotal  << 
125   if ( i >= 0  &&  j >= 0 ) { fRadiusEff = Ref << 
126                                                << 
127   if ( j < 0 ) {                               << 
128     if      ( i  == 0 ) { fRadiusEff = 1.34 *  << 
129                                      + 1.35 /  << 
130     else if ( i  == 1 ) { fRadiusEff = 1.46 *  << 
131                                      + 1.45 /  << 
132     else if ( i  == 2 ) { fRadiusEff = 1.40 *  << 
133                                      + 1.63 /  << 
134     else if ( i  == 3 ) { fRadiusEff = 1.40 *  << 
135                                      + 1.63 /  << 
136     else if ( i  == 4 ) { fRadiusEff = 1.35 *  << 
137                                      + 1.10 /  << 
138     else if ( i  <  0 ) { fRadiusEff = 1.35 *  << 
139                                + 1.10 / theG4P << 
140     else {}                                    << 
141   }                                               132   }
142                                                   133 
143   G4double R2   = fRadiusEff*fRadiusEff;          134   G4double R2   = fRadiusEff*fRadiusEff;
                                                   >> 135   G4double REf2 = R2+fRadiusNN2;
144   G4double ApAt = std::abs(theParticle->GetBar    136   G4double ApAt = std::abs(theParticle->GetBaryonNumber()) * A;
145                                                   137 
146   G4double xsection = millibarn*2.*pi*R2*10.*G << 138   xsection  = 2*pi*REf2*10.*G4Log(1+(ApAt*sigmaTotal/(2*pi*REf2*10.)));  //mb
                                                   >> 139   xsection  = xsection *millibarn; 
147   fTotalXsc = xsection;                           140   fTotalXsc = xsection;
148                                                   141 
149   return fTotalXsc;                               142   return fTotalXsc; 
150 }                                                 143 }
151                                                   144 
152                                                   145 
153 //////////////////////////////////////////////    146 /////////////////////////////////////////////////////////////////////////////
154 //                                                147 // 
155 // Calculation of total CrossSection of Anti-N    148 // Calculation of total CrossSection of Anti-Nucleus - Nucleus 
156                                                   149 
157 G4double G4ComponentAntiNuclNuclearXS::GetTota    150 G4double G4ComponentAntiNuclNuclearXS::GetTotalIsotopeCrossSection
158 (const G4ParticleDefinition* aParticle, G4doub    151 (const G4ParticleDefinition* aParticle, G4double kinEnergy, G4int Z, G4int A )
159 {                                                 152 { 
160   return GetTotalElementCrossSection(aParticle    153   return GetTotalElementCrossSection(aParticle, kinEnergy, Z, (G4double) A);
161 }                                                 154 }
162                                                   155 
163                                                   156 
164 //////////////////////////////////////////////    157 /////////////////////////////////////////////////////////////////////////////
165 // Calculation of inelastic CrossSection of An    158 // Calculation of inelastic CrossSection of Anti-Nucleus - Nucleus
166                                                   159 
167 G4double G4ComponentAntiNuclNuclearXS::GetInel    160 G4double G4ComponentAntiNuclNuclearXS::GetInelasticElementCrossSection
168 (const G4ParticleDefinition* aParticle, G4doub    161 (const G4ParticleDefinition* aParticle, G4double kinEnergy, G4int Z, G4double A)
169 {                                                 162 {
170   if ( aParticle == nullptr ) {                << 163   G4double  inelxsection,  sigmaTotal, sigmaElastic;
171     G4ExceptionDescription ed;                 << 
172     ed << "anti-nucleus with nullptr particle  << 
173     G4Exception( "G4ComponentAntiNuclNuclearXS << 
174                  "antiNuclNuclearXS003", JustW << 
175     return 0.0;                                << 
176   }                                            << 
177                                                << 
178   const G4ParticleDefinition* theParticle = aP    164   const G4ParticleDefinition* theParticle = aParticle;
179   G4double sigmaTotal   = GetAntiHadronNucleon << 165   sigmaTotal   = GetAntiHadronNucleonTotCrSc(theParticle,kinEnergy);
180   G4double sigmaElastic = GetAntiHadronNucleon << 166   sigmaElastic = GetAntiHadronNucleonElCrSc(theParticle,kinEnergy);
181                                                   167   
182   // calculation of sqr of radius NN-collision    168   // calculation of sqr of radius NN-collision
183   G4int i(-1), j(-1);                          << 169   fRadiusNN2=sigmaTotal*sigmaTotal*0.1/(8.*sigmaElastic*pi);   // fm^2   
184   if      ( theParticle == theAProton  ||      << 170 
185       theParticle == theANeutron )  { i=0; }   << 171   // calculation of effective nuclear radius for Pbar and Nbar interaction (can be changed)
186   else if ( theParticle == theADeuteron ) { i= << 172   //A.R. 29-Jan-2013 : use antiprotons/antineutrons as the default case,
187   else if ( theParticle == theATriton   ) { i= << 173   //                   to be used for instance, as first approximation
188   else if ( theParticle == theAHe3      ) { i= << 174   //                   without validation, for anti-hyperons. 
189   else if ( theParticle == theAAlpha    ) { i= << 175   if (A==1) { 
190   else {};                                     << 176     fInelasticXsc = (sigmaTotal - sigmaElastic) * millibarn;
191                                                << 177     return fInelasticXsc;  
192   if ( i < 0  && ( ! theParticle->IsAntiHypern << 178   } 
193     G4ExceptionDescription ed;                 << 179   fRadiusEff = 1.31*G4Pow::GetInstance()->powA(A, 0.22)+0.9/G4Pow::GetInstance()->powA(A, 1./3.);  //fm  
194     ed << "Unknown anti-nucleus : " << thePart << 180   if ( (Z==1) && (A==2) ) fRadiusEff = 3.582;               //fm
195        << "Target (Z, A)=(" << Z << "," << A < << 181   if ( (Z==1) && (A==3) ) fRadiusEff = 3.105;               
196     G4Exception( "G4ComponentAntiNuclNuclearXS << 182   if ( (Z==2) && (A==3) ) fRadiusEff = 3.105;
197                  "antiNuclNuclearXS004", JustW << 183   if ( (Z==2) && (A==4) ) fRadiusEff = 2.209;
                                                   >> 184 
                                                   >> 185   // calculation of effective nuclear radius for AntiDeuteron interaction (can be changed)
                                                   >> 186   if (theParticle ==theADeuteron) { 
                                                   >> 187     fRadiusEff = 1.38*G4Pow::GetInstance()->powA(A, 0.21)+1.55/G4Pow::GetInstance()->powA(A, 1./3.);
                                                   >> 188     if ( (Z==1) && (A==2) ) fRadiusEff = 3.169;            //fm
                                                   >> 189     if ( (Z==1) && (A==3) ) fRadiusEff = 3.066;
                                                   >> 190     if ( (Z==2) && (A==3) ) fRadiusEff = 3.066;
                                                   >> 191     if ( (Z==2) && (A==4) ) fRadiusEff = 2.498;
198   }                                               192   }
199                                                   193 
200   G4int intA = static_cast<G4int>( A );        << 194   // calculation of effective nuclear radius for AntiHe3 interaction (can be changed)
                                                   >> 195   if ( (theParticle ==theAHe3) || (theParticle ==theATriton) ) {
                                                   >> 196     fRadiusEff = 1.34 * G4Pow::GetInstance()->powA(A, 0.21)+1.51/G4Pow::GetInstance()->powA(A, 1./3.);
                                                   >> 197     if ( (Z==1) && (A==2) ) fRadiusEff = 3.066;           //fm
                                                   >> 198     if ( (Z==1) && (A==3) ) fRadiusEff = 2.973;
                                                   >> 199     if ( (Z==2) && (A==3) ) fRadiusEff = 2.973;
                                                   >> 200     if ( (Z==2) && (A==4) ) fRadiusEff = 2.508;
                                                   >> 201   }
201                                                   202 
202   if      ( Z == 1  &&  intA == 1 ) { j=0; }   << 203   // calculation of effective nuclear radius for AntiAlpha interaction (can be changed)
203   else if ( Z == 1  &&  intA == 2 ) { j=1; }   << 204   if (theParticle == theAAlpha) {
204   else if ( Z == 1  &&  intA == 3 ) { j=2; }   << 205     fRadiusEff = 1.3*G4Pow::GetInstance()->powA(A, 0.21)+1.05/G4Pow::GetInstance()->powA(A, 1./3.);
205   else if ( Z == 2  &&  intA == 3 ) { j=3; }   << 206     if ( (Z==1) && (A==2) ) fRadiusEff = 2.498;            //fm
206   else if ( Z == 2  &&  intA == 4 ) { j=4; }   << 207     if ( (Z==1) && (A==3) ) fRadiusEff = 2.508;
207   else {}                                      << 208     if ( (Z==2) && (A==3) ) fRadiusEff = 2.508;
208                                                << 209     if ( (Z==2) && (A==4) ) fRadiusEff = 2.158;
209   if ( i <  0  &&  j >= 0 ) { fRadiusEff = Ref << 
210   if ( i == 0  &&  j == 0 ) return (sigmaTotal << 
211   if ( i >= 0  &&  j >= 0 ) { fRadiusEff = Ref << 
212                                                << 
213   if ( j < 0) {                                << 
214     if      ( i  == 0 ) { fRadiusEff = 1.31*th << 
215                                      + 0.90/th << 
216     else if ( i  == 1 ) { fRadiusEff = 1.38*th << 
217                                      + 1.55/th << 
218     else if ( i  == 2 ) { fRadiusEff = 1.34*th << 
219                                      + 1.51/th << 
220     else if ( i  == 3 ) { fRadiusEff = 1.34*th << 
221                                      + 1.51/th << 
222     else if ( i  == 4 ) { fRadiusEff = 1.30*th << 
223                                      + 1.05/th << 
224     else if ( i  <  0 ) { fRadiusEff = 1.30*th << 
225                                      + 1.05/th << 
226     else {}                                    << 
227   }                                               210   }
228                                                   211 
229   G4double R2   = fRadiusEff*fRadiusEff;          212   G4double R2   = fRadiusEff*fRadiusEff;
                                                   >> 213   G4double REf2 = R2+fRadiusNN2;
230   G4double ApAt = std::abs(theParticle->GetBar    214   G4double ApAt = std::abs(theParticle->GetBaryonNumber()) * A;
231                                                   215 
232   G4double inelxsection = millibarn*pi*R2*10.* << 216   inelxsection  = pi*REf2 *10* G4Log(1+(ApAt*sigmaTotal/(pi*REf2*10.))); //mb
                                                   >> 217   inelxsection  = inelxsection * millibarn;  
233   fInelasticXsc = inelxsection;                   218   fInelasticXsc = inelxsection; 
234                                                   219 
235   return fInelasticXsc;                           220   return fInelasticXsc;
236 }                                                 221 }
237                                                   222 
238                                                   223 
239 //////////////////////////////////////////////    224 /////////////////////////////////////////////////////////////////////////////
240 //                                                225 //
241 // Calculates Inelastic Anti-nucleus-Nucleus c    226 // Calculates Inelastic Anti-nucleus-Nucleus cross-section   
242                                                   227 
243 G4double G4ComponentAntiNuclNuclearXS::GetInel    228 G4double G4ComponentAntiNuclNuclearXS::GetInelasticIsotopeCrossSection
244 (const G4ParticleDefinition* aParticle, G4doub    229 (const G4ParticleDefinition* aParticle, G4double kinEnergy, G4int Z, G4int A)
245 {                                                 230 {
246   return GetInelasticElementCrossSection(aPart    231   return GetInelasticElementCrossSection(aParticle, kinEnergy, Z, (G4double) A);
247 }                                                 232 }
248                                                   233 
249                                                   234 
250 //////////////////////////////////////////////    235 /////////////////////////////////////////////////////////////////////////////
251 //                                                236 //
252 // Calculates elastic Anti-nucleus-Nucleus cro    237 // Calculates elastic Anti-nucleus-Nucleus cross-section  as Total - Inelastic 
253                                                   238 
254 G4double G4ComponentAntiNuclNuclearXS::GetElas    239 G4double G4ComponentAntiNuclNuclearXS::GetElasticElementCrossSection
255 (const G4ParticleDefinition* aParticle, G4doub    240 (const G4ParticleDefinition* aParticle, G4double kinEnergy, G4int Z, G4double A)
256 {                                                 241 {
257   fElasticXsc = GetTotalElementCrossSection(aP    242   fElasticXsc = GetTotalElementCrossSection(aParticle, kinEnergy, Z, A)-
258                 GetInelasticElementCrossSectio    243                 GetInelasticElementCrossSection(aParticle, kinEnergy, Z, A);
259   if (fElasticXsc < 0.) fElasticXsc = 0.;         244   if (fElasticXsc < 0.) fElasticXsc = 0.;
260   return fElasticXsc;                             245   return fElasticXsc;
261 }                                                 246 }
262                                                   247 
263                                                   248  
264 //////////////////////////////////////////////    249 /////////////////////////////////////////////////////////////////////////////
265 //                                                250 //
266 // Calculates elastic Anti-nucleus-Nucleus cro    251 // Calculates elastic Anti-nucleus-Nucleus cross-section   
267                                                   252 
268 G4double G4ComponentAntiNuclNuclearXS::GetElas    253 G4double G4ComponentAntiNuclNuclearXS::GetElasticIsotopeCrossSection
269 (const G4ParticleDefinition* aParticle, G4doub    254 (const G4ParticleDefinition* aParticle, G4double kinEnergy, G4int Z, G4int A)
270 {                                                 255 { 
271   return GetElasticElementCrossSection(aPartic    256   return GetElasticElementCrossSection(aParticle, kinEnergy, Z, (G4double) A);
272 }                                                 257 }
273                                                   258 
274                                                   259 
275 //////////////////////////////////////////////    260 /////////////////////////////////////////////////////////////////////////////
276 // Calculation of  Antihadron - hadron Total C    261 // Calculation of  Antihadron - hadron Total Cross-section  
277                                                   262 
278 G4double G4ComponentAntiNuclNuclearXS::GetAnti    263 G4double G4ComponentAntiNuclNuclearXS::GetAntiHadronNucleonTotCrSc
279 (const G4ParticleDefinition* aParticle, G4doub    264 (const G4ParticleDefinition* aParticle, G4double kinEnergy)
280 {                                                 265 {
281   G4double xsection, Pmass, Energy, momentum;     266   G4double xsection, Pmass, Energy, momentum;
282   const G4ParticleDefinition* theParticle = aP    267   const G4ParticleDefinition* theParticle = aParticle;
283   Pmass=theParticle->GetPDGMass();                268   Pmass=theParticle->GetPDGMass();
284   Energy=Pmass+kinEnergy;                         269   Energy=Pmass+kinEnergy;
285   momentum=std::sqrt(Energy*Energy-Pmass*Pmass    270   momentum=std::sqrt(Energy*Energy-Pmass*Pmass)/std::abs(theParticle->GetBaryonNumber());
286   G4double Plab = momentum / GeV;                 271   G4double Plab = momentum / GeV;
287                                                   272 
288   G4double   B, SigAss;                           273   G4double   B, SigAss;
289   G4double   C, d1, d2, d3;                       274   G4double   C, d1, d2, d3;
290   Elab     = std::sqrt(Mn*Mn + Plab*Plab);   /    275   Elab     = std::sqrt(Mn*Mn + Plab*Plab);   // GeV
291   S        = 2.*Mn*Mn + 2. *Mn*Elab;         /    276   S        = 2.*Mn*Mn + 2. *Mn*Elab;         // GeV^2
292   SqrtS    = std::sqrt(S);                   /    277   SqrtS    = std::sqrt(S);                   // GeV 
293   B        = b0+b2*G4Log(SqrtS/SqrtS0)*G4Log(S    278   B        = b0+b2*G4Log(SqrtS/SqrtS0)*G4Log(SqrtS/SqrtS0); //GeV^(-2)
294   SigAss   = 36.04 +0.304*G4Log(S/S0)*G4Log(S/    279   SigAss   = 36.04 +0.304*G4Log(S/S0)*G4Log(S/S0);          //mb 
295   R0       = std::sqrt(0.40874044*SigAss - B);    280   R0       = std::sqrt(0.40874044*SigAss - B);                   //GeV^(-2)
296   C        = 13.55;                               281   C        = 13.55;
297   d1       = -4.47;                               282   d1       = -4.47;
298   d2       = 12.38;                               283   d2       = 12.38;
299   d3       = -12.43;                              284   d3       = -12.43;
300                                                   285 
301   xsection = SigAss * ( 1 + 1./(std::sqrt(S-4. << 286   xsection = SigAss * ( 1 + 1./(std::sqrt(S-4.*Mn*Mn)) / (G4Pow::GetInstance()->powA(R0, 3.))
302                         * C * ( 1 + d1/SqrtS + << 287                         * C * ( 1 + d1/SqrtS + d2/(G4Pow::GetInstance()->powA(SqrtS,2.))
303                                 + d3/(theG4Pow << 288                                 + d3/(G4Pow::GetInstance()->powA(SqrtS,3.)) ) );
304                                                   289 
305   //xsection *= millibarn;                        290   //xsection *= millibarn;
306   fAntiHadronNucleonTotXsc = xsection;            291   fAntiHadronNucleonTotXsc = xsection;
307                                                   292 
308   return fAntiHadronNucleonTotXsc;                293   return fAntiHadronNucleonTotXsc;
309 }                                                 294 }
310                                                   295 
311                                                   296 
312 // ///////////////////////////////////////////    297 // //////////////////////////////////////////////////////////////////////////
313 // Calculation of  Antihadron - hadron Elastic    298 // Calculation of  Antihadron - hadron Elastic Cross-section  
314                                                   299 
315 G4double G4ComponentAntiNuclNuclearXS ::          300 G4double G4ComponentAntiNuclNuclearXS :: 
316 GetAntiHadronNucleonElCrSc(const G4ParticleDef    301 GetAntiHadronNucleonElCrSc(const G4ParticleDefinition* aParticle, G4double kinEnergy)
317 {                                                 302 {
318   G4double xsection;                              303   G4double xsection;
319   G4double   SigAss;                              304   G4double   SigAss;
320   G4double   C, d1, d2, d3;                       305   G4double   C, d1, d2, d3;
321   GetAntiHadronNucleonTotCrSc(aParticle,kinEne    306   GetAntiHadronNucleonTotCrSc(aParticle,kinEnergy);
322   SigAss   = 4.5 + 0.101*G4Log(S/S0)*G4Log(S/S    307   SigAss   = 4.5 + 0.101*G4Log(S/S0)*G4Log(S/S0);            //mb
323   C        = 59.27;                               308   C        = 59.27;
324   d1       = -6.95;                               309   d1       = -6.95;
325   d2       = 23.54;                               310   d2       = 23.54;
326   d3       = -25.34;                              311   d3       = -25.34;
327                                                   312 
328   xsection = SigAss * ( 1 + 1. / (std::sqrt(S- << 313   xsection = SigAss * ( 1 + 1. / (std::sqrt(S-4.*Mn*Mn)) / (G4Pow::GetInstance()->powA(R0, 3.))
329                         * C * ( 1 + d1/SqrtS + << 314                         * C * ( 1 + d1/SqrtS + d2/(G4Pow::GetInstance()->powA(SqrtS,2.))
330                                 + d3/(theG4Pow << 315                                 + d3/(G4Pow::GetInstance()->powA(SqrtS,3.)) ) );  
331                                                   316 
332   //xsection *= millibarn;                        317   //xsection *= millibarn;
333   fAntiHadronNucleonElXsc = xsection;             318   fAntiHadronNucleonElXsc = xsection;
334                                                   319 
335   return fAntiHadronNucleonElXsc;                 320   return fAntiHadronNucleonElXsc;
336 }                                                 321 }
337                                                   322 
338                                                   323 
339 //////////////////////////////////////////////    324 /////////////////////////////////////////////////////////////////////////////
340                                                   325 
341 void G4ComponentAntiNuclNuclearXS::CrossSectio    326 void G4ComponentAntiNuclNuclearXS::CrossSectionDescription(std::ostream& outFile) const
342 {                                                 327 {
343   outFile << "The G4ComponentAntiNuclNuclearXS    328   outFile << "The G4ComponentAntiNuclNuclearXS calculates total,\n"
344           << "inelastic, elastic cross section    329           << "inelastic, elastic cross sections  of anti-nucleons and light \n"
345           << "anti-nucleus interactions with n    330           << "anti-nucleus interactions with nuclei using Glauber's approach.\n" 
346           << "It uses parametrizations of anti    331           << "It uses parametrizations of antiproton-proton total and elastic \n"
347           << "cross sections and Wood-Saxon di    332           << "cross sections and Wood-Saxon distribution of nuclear density.\n"
348           << "See details in Phys.Lett. B705 (    333           << "See details in Phys.Lett. B705 (2011) 235. \n";
349 }                                                 334 }
350                                                   335 
351                                                   336