Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // Calculation of the total, elastic and inel 26 // Calculation of the total, elastic and inelastic cross-sections 27 // of anti-nucleon and anti-nucleus interacti 27 // of anti-nucleon and anti-nucleus interactions with nuclei 28 // based on Glauber approach and V. Grishine 28 // based on Glauber approach and V. Grishine formulaes for 29 // interpolations (ref. V.M.Grichine, Eur.Phy 29 // interpolations (ref. V.M.Grichine, Eur.Phys.J., C62(2009) 399; 30 // NIM, B267 (2009) 2460) and our parametriza 30 // NIM, B267 (2009) 2460) and our parametrization of hadron-nucleon 31 // cross-sections 31 // cross-sections 32 // 32 // 33 // 33 // 34 // Created by A.Galoyan and V. Uzhinsky, 18. 34 // Created by A.Galoyan and V. Uzhinsky, 18.11.2010 35 35 36 36 37 #include "G4ComponentAntiNuclNuclearXS.hh" 37 #include "G4ComponentAntiNuclNuclearXS.hh" 38 38 39 #include "G4PhysicalConstants.hh" 39 #include "G4PhysicalConstants.hh" 40 #include "G4SystemOfUnits.hh" 40 #include "G4SystemOfUnits.hh" 41 #include "G4ParticleTable.hh" 41 #include "G4ParticleTable.hh" 42 #include "G4IonTable.hh" 42 #include "G4IonTable.hh" 43 #include "G4ParticleDefinition.hh" 43 #include "G4ParticleDefinition.hh" 44 #include "G4HadronicException.hh" << 44 #include "G4Pow.hh" 45 45 46 46 47 ////////////////////////////////////////////// 47 ///////////////////////////////////////////////////////////////////////////// 48 48 49 G4ComponentAntiNuclNuclearXS::G4ComponentAntiN 49 G4ComponentAntiNuclNuclearXS::G4ComponentAntiNuclNuclearXS() 50 : G4VComponentCrossSection("AntiAGlauber"), 50 : G4VComponentCrossSection("AntiAGlauber"), 51 fRadiusEff(0.0), << 51 fRadiusEff(0.0), fRadiusNN2(0.0), 52 fTotalXsc(0.0), fElasticXsc(0.0), fInelastic 52 fTotalXsc(0.0), fElasticXsc(0.0), fInelasticXsc(0.0), 53 fAntiHadronNucleonTotXsc(0.0), fAntiHadronNu 53 fAntiHadronNucleonTotXsc(0.0), fAntiHadronNucleonElXsc(0.0), 54 Elab(0.0), S(0.0), SqrtS(0) 54 Elab(0.0), S(0.0), SqrtS(0) 55 { 55 { 56 theAProton = G4AntiProton::AntiProton(); 56 theAProton = G4AntiProton::AntiProton(); 57 theANeutron = G4AntiNeutron::AntiNeutron(); 57 theANeutron = G4AntiNeutron::AntiNeutron(); 58 theADeuteron = G4AntiDeuteron::AntiDeuteron( 58 theADeuteron = G4AntiDeuteron::AntiDeuteron(); 59 theATriton = G4AntiTriton::AntiTriton(); 59 theATriton = G4AntiTriton::AntiTriton(); 60 theAAlpha = G4AntiAlpha::AntiAlpha(); 60 theAAlpha = G4AntiAlpha::AntiAlpha(); 61 theAHe3 = G4AntiHe3::AntiHe3(); 61 theAHe3 = G4AntiHe3::AntiHe3(); 62 Mn = 0.93827231; // GeV 62 Mn = 0.93827231; // GeV 63 b0 = 11.92; // GeV^(-2) 63 b0 = 11.92; // GeV^(-2) 64 b2 = 0.3036; // GeV^(-2) 64 b2 = 0.3036; // GeV^(-2) 65 SqrtS0 = 20.74; // GeV 65 SqrtS0 = 20.74; // GeV 66 S0 = 33.0625; // GeV^2 66 S0 = 33.0625; // GeV^2 67 R0 = 1.0; // default va 67 R0 = 1.0; // default value (V.Ivanchenko) 68 } 68 } 69 69 70 70 71 ////////////////////////////////////////////// 71 ///////////////////////////////////////////////////////////////////////////// 72 72 73 G4ComponentAntiNuclNuclearXS::~G4ComponentAnti 73 G4ComponentAntiNuclNuclearXS::~G4ComponentAntiNuclNuclearXS() 74 { 74 { 75 } 75 } 76 76 77 77 78 ////////////////////////////////////////////// 78 ///////////////////////////////////////////////////////////////////////////// 79 // 79 // 80 // Calculation of total CrossSection of Anti-N 80 // Calculation of total CrossSection of Anti-Nucleus - Nucleus 81 81 82 G4double G4ComponentAntiNuclNuclearXS::GetTota 82 G4double G4ComponentAntiNuclNuclearXS::GetTotalElementCrossSection 83 (const G4ParticleDefinition* aParticle, G4doub 83 (const G4ParticleDefinition* aParticle, G4double kinEnergy, G4int Z, G4double A) 84 { 84 { 85 if ( aParticle == nullptr ) { << 85 G4double xsection, sigmaTotal, sigmaElastic; 86 G4ExceptionDescription ed; << 87 ed << "anti-nucleus with nullptr particle << 88 G4Exception( "G4ComponentAntiNuclNuclearXS << 89 "antiNuclNuclearXS001", JustW << 90 return 0.0; << 91 } << 92 << 93 const G4ParticleDefinition* theParticle = aP 86 const G4ParticleDefinition* theParticle = aParticle; 94 G4double sigmaTotal = GetAntiHadronNucleonTo << 87 sigmaTotal = GetAntiHadronNucleonTotCrSc(theParticle,kinEnergy); >> 88 sigmaElastic = GetAntiHadronNucleonElCrSc(theParticle,kinEnergy); 95 89 96 // calculation of squared radius of NN-coll 90 // calculation of squared radius of NN-collision 97 G4int i(-1), j(-1); << 91 fRadiusNN2=sigmaTotal*sigmaTotal*0.1/(8.*sigmaElastic*pi) ; //fm^2 98 if ( theParticle == theAProton || << 92 99 theParticle == theANeutron ) { i=0; } << 93 // calculation of effective nuclear radius for Pbar and Nbar interactions (can be changed) 100 else if ( theParticle == theADeuteron ) { i= << 94 //A.R. 29-Jan-2013 : use antiprotons/antineutrons as the default case, 101 else if ( theParticle == theATriton ) { i= << 95 // to be used for instance, as first approximation 102 else if ( theParticle == theAHe3 ) { i= << 96 // without validation, for anti-hyperons. 103 else if ( theParticle == theAAlpha ) { i= << 97 if (A==1) { 104 else {}; << 98 fTotalXsc = sigmaTotal * millibarn; 105 << 99 return fTotalXsc; 106 if ( i < 0 && ( ! theParticle->IsAntiHypern << 100 } 107 G4ExceptionDescription ed; << 101 fRadiusEff = 1.34*G4Pow::GetInstance()->powA(A,0.23)+1.35/G4Pow::GetInstance()->powA(A,1./3.); //fm 108 ed << "Unknown anti-nucleus : " << thePart << 102 if ( (Z==1) && (A==2) ) fRadiusEff = 3.800; //fm 109 << "Target (Z, A)=(" << Z << "," << A < << 103 if ( (Z==1) && (A==3) ) fRadiusEff = 3.300; 110 G4Exception( "G4ComponentAntiNuclNuclearXS << 104 if ( (Z==2) && (A==3) ) fRadiusEff = 3.300; 111 "antiNuclNuclearXS002", JustW << 105 if ( (Z==2) && (A==4) ) fRadiusEff = 2.376; >> 106 >> 107 // calculation of effective nuclear radius for AntiDeuteron interaction (can be changed) >> 108 if (theParticle == theADeuteron) { >> 109 fRadiusEff = 1.46 * G4Pow::GetInstance()->powA(A,0.21) + 1.45 / G4Pow::GetInstance()->powA(A,1./3.); >> 110 if ( (Z==1) && (A==2) ) fRadiusEff = 3.238; //fm >> 111 if ( (Z==1) && (A==3) ) fRadiusEff = 3.144; >> 112 if ( (Z==2) && (A==3) ) fRadiusEff = 3.144; >> 113 if ( (Z==2) && (A==4) ) fRadiusEff = 2.544; 112 } 114 } 113 115 114 G4int intA = static_cast<G4int>( A ); << 116 // calculation of effective nuclear radius for AntiHe3 interaction (can be changed) >> 117 if ( (theParticle ==theAHe3) || (theParticle ==theATriton) ) { >> 118 fRadiusEff = 1.40* G4Pow::GetInstance()->powA(A,0.21)+1.63/G4Pow::GetInstance()->powA(A,1./3.); >> 119 if ( (Z==1) && (A==2) ) fRadiusEff = 3.144; //fm >> 120 if ( (Z==1) && (A==3) ) fRadiusEff = 3.075; >> 121 if ( (Z==2) && (A==3) ) fRadiusEff = 3.075; >> 122 if ( (Z==2) && (A==4) ) fRadiusEff = 2.589; >> 123 } 115 124 116 if ( Z == 1 && intA == 1 ) { j=0; } << 125 // calculation of effective nuclear radius for AntiAlpha interaction (can be changed) 117 else if ( Z == 1 && intA == 2 ) { j=1; } << 126 if (theParticle == theAAlpha) { 118 else if ( Z == 1 && intA == 3 ) { j=2; } << 127 fRadiusEff = 1.35* G4Pow::GetInstance()->powA(A,0.21)+1.1/G4Pow::GetInstance()->powA(A,1./3.); 119 else if ( Z == 2 && intA == 3 ) { j=3; } << 128 if ( (Z==1) && (A==2) ) fRadiusEff = 2.544; //fm 120 else if ( Z == 2 && intA == 4 ) { j=4; } << 129 if ( (Z==1) && (A==3) ) fRadiusEff = 2.589; 121 else {} << 130 if ( (Z==2) && (A==3) ) fRadiusEff = 2.589; 122 << 131 if ( (Z==2) && (A==4) ) fRadiusEff = 2.241; 123 if ( i < 0 && j >= 0 ) { fRadiusEff = Ref << 124 if ( i == 0 && j == 0 ) return sigmaTotal << 125 if ( i >= 0 && j >= 0 ) { fRadiusEff = Ref << 126 << 127 if ( j < 0 ) { << 128 if ( i == 0 ) { fRadiusEff = 1.34 * << 129 + 1.35 / << 130 else if ( i == 1 ) { fRadiusEff = 1.46 * << 131 + 1.45 / << 132 else if ( i == 2 ) { fRadiusEff = 1.40 * << 133 + 1.63 / << 134 else if ( i == 3 ) { fRadiusEff = 1.40 * << 135 + 1.63 / << 136 else if ( i == 4 ) { fRadiusEff = 1.35 * << 137 + 1.10 / << 138 else if ( i < 0 ) { fRadiusEff = 1.35 * << 139 + 1.10 / theG4P << 140 else {} << 141 } 132 } 142 133 143 G4double R2 = fRadiusEff*fRadiusEff; 134 G4double R2 = fRadiusEff*fRadiusEff; >> 135 G4double REf2 = R2+fRadiusNN2; 144 G4double ApAt = std::abs(theParticle->GetBar 136 G4double ApAt = std::abs(theParticle->GetBaryonNumber()) * A; 145 137 146 G4double xsection = millibarn*2.*pi*R2*10.*G << 138 xsection = 2*pi*REf2*10.*G4Log(1+(ApAt*sigmaTotal/(2*pi*REf2*10.))); //mb >> 139 xsection = xsection *millibarn; 147 fTotalXsc = xsection; 140 fTotalXsc = xsection; 148 141 149 return fTotalXsc; 142 return fTotalXsc; 150 } 143 } 151 144 152 145 153 ////////////////////////////////////////////// 146 ///////////////////////////////////////////////////////////////////////////// 154 // 147 // 155 // Calculation of total CrossSection of Anti-N 148 // Calculation of total CrossSection of Anti-Nucleus - Nucleus 156 149 157 G4double G4ComponentAntiNuclNuclearXS::GetTota 150 G4double G4ComponentAntiNuclNuclearXS::GetTotalIsotopeCrossSection 158 (const G4ParticleDefinition* aParticle, G4doub 151 (const G4ParticleDefinition* aParticle, G4double kinEnergy, G4int Z, G4int A ) 159 { 152 { 160 return GetTotalElementCrossSection(aParticle 153 return GetTotalElementCrossSection(aParticle, kinEnergy, Z, (G4double) A); 161 } 154 } 162 155 163 156 164 ////////////////////////////////////////////// 157 ///////////////////////////////////////////////////////////////////////////// 165 // Calculation of inelastic CrossSection of An 158 // Calculation of inelastic CrossSection of Anti-Nucleus - Nucleus 166 159 167 G4double G4ComponentAntiNuclNuclearXS::GetInel 160 G4double G4ComponentAntiNuclNuclearXS::GetInelasticElementCrossSection 168 (const G4ParticleDefinition* aParticle, G4doub 161 (const G4ParticleDefinition* aParticle, G4double kinEnergy, G4int Z, G4double A) 169 { 162 { 170 if ( aParticle == nullptr ) { << 163 G4double inelxsection, sigmaTotal, sigmaElastic; 171 G4ExceptionDescription ed; << 172 ed << "anti-nucleus with nullptr particle << 173 G4Exception( "G4ComponentAntiNuclNuclearXS << 174 "antiNuclNuclearXS003", JustW << 175 return 0.0; << 176 } << 177 << 178 const G4ParticleDefinition* theParticle = aP 164 const G4ParticleDefinition* theParticle = aParticle; 179 G4double sigmaTotal = GetAntiHadronNucleon << 165 sigmaTotal = GetAntiHadronNucleonTotCrSc(theParticle,kinEnergy); 180 G4double sigmaElastic = GetAntiHadronNucleon << 166 sigmaElastic = GetAntiHadronNucleonElCrSc(theParticle,kinEnergy); 181 167 182 // calculation of sqr of radius NN-collision 168 // calculation of sqr of radius NN-collision 183 G4int i(-1), j(-1); << 169 fRadiusNN2=sigmaTotal*sigmaTotal*0.1/(8.*sigmaElastic*pi); // fm^2 184 if ( theParticle == theAProton || << 170 185 theParticle == theANeutron ) { i=0; } << 171 // calculation of effective nuclear radius for Pbar and Nbar interaction (can be changed) 186 else if ( theParticle == theADeuteron ) { i= << 172 //A.R. 29-Jan-2013 : use antiprotons/antineutrons as the default case, 187 else if ( theParticle == theATriton ) { i= << 173 // to be used for instance, as first approximation 188 else if ( theParticle == theAHe3 ) { i= << 174 // without validation, for anti-hyperons. 189 else if ( theParticle == theAAlpha ) { i= << 175 if (A==1) { 190 else {}; << 176 fInelasticXsc = (sigmaTotal - sigmaElastic) * millibarn; 191 << 177 return fInelasticXsc; 192 if ( i < 0 && ( ! theParticle->IsAntiHypern << 178 } 193 G4ExceptionDescription ed; << 179 fRadiusEff = 1.31*G4Pow::GetInstance()->powA(A, 0.22)+0.9/G4Pow::GetInstance()->powA(A, 1./3.); //fm 194 ed << "Unknown anti-nucleus : " << thePart << 180 if ( (Z==1) && (A==2) ) fRadiusEff = 3.582; //fm 195 << "Target (Z, A)=(" << Z << "," << A < << 181 if ( (Z==1) && (A==3) ) fRadiusEff = 3.105; 196 G4Exception( "G4ComponentAntiNuclNuclearXS << 182 if ( (Z==2) && (A==3) ) fRadiusEff = 3.105; 197 "antiNuclNuclearXS004", JustW << 183 if ( (Z==2) && (A==4) ) fRadiusEff = 2.209; >> 184 >> 185 // calculation of effective nuclear radius for AntiDeuteron interaction (can be changed) >> 186 if (theParticle ==theADeuteron) { >> 187 fRadiusEff = 1.38*G4Pow::GetInstance()->powA(A, 0.21)+1.55/G4Pow::GetInstance()->powA(A, 1./3.); >> 188 if ( (Z==1) && (A==2) ) fRadiusEff = 3.169; //fm >> 189 if ( (Z==1) && (A==3) ) fRadiusEff = 3.066; >> 190 if ( (Z==2) && (A==3) ) fRadiusEff = 3.066; >> 191 if ( (Z==2) && (A==4) ) fRadiusEff = 2.498; 198 } 192 } 199 193 200 G4int intA = static_cast<G4int>( A ); << 194 // calculation of effective nuclear radius for AntiHe3 interaction (can be changed) >> 195 if ( (theParticle ==theAHe3) || (theParticle ==theATriton) ) { >> 196 fRadiusEff = 1.34 * G4Pow::GetInstance()->powA(A, 0.21)+1.51/G4Pow::GetInstance()->powA(A, 1./3.); >> 197 if ( (Z==1) && (A==2) ) fRadiusEff = 3.066; //fm >> 198 if ( (Z==1) && (A==3) ) fRadiusEff = 2.973; >> 199 if ( (Z==2) && (A==3) ) fRadiusEff = 2.973; >> 200 if ( (Z==2) && (A==4) ) fRadiusEff = 2.508; >> 201 } 201 202 202 if ( Z == 1 && intA == 1 ) { j=0; } << 203 // calculation of effective nuclear radius for AntiAlpha interaction (can be changed) 203 else if ( Z == 1 && intA == 2 ) { j=1; } << 204 if (theParticle == theAAlpha) { 204 else if ( Z == 1 && intA == 3 ) { j=2; } << 205 fRadiusEff = 1.3*G4Pow::GetInstance()->powA(A, 0.21)+1.05/G4Pow::GetInstance()->powA(A, 1./3.); 205 else if ( Z == 2 && intA == 3 ) { j=3; } << 206 if ( (Z==1) && (A==2) ) fRadiusEff = 2.498; //fm 206 else if ( Z == 2 && intA == 4 ) { j=4; } << 207 if ( (Z==1) && (A==3) ) fRadiusEff = 2.508; 207 else {} << 208 if ( (Z==2) && (A==3) ) fRadiusEff = 2.508; 208 << 209 if ( (Z==2) && (A==4) ) fRadiusEff = 2.158; 209 if ( i < 0 && j >= 0 ) { fRadiusEff = Ref << 210 if ( i == 0 && j == 0 ) return (sigmaTotal << 211 if ( i >= 0 && j >= 0 ) { fRadiusEff = Ref << 212 << 213 if ( j < 0) { << 214 if ( i == 0 ) { fRadiusEff = 1.31*th << 215 + 0.90/th << 216 else if ( i == 1 ) { fRadiusEff = 1.38*th << 217 + 1.55/th << 218 else if ( i == 2 ) { fRadiusEff = 1.34*th << 219 + 1.51/th << 220 else if ( i == 3 ) { fRadiusEff = 1.34*th << 221 + 1.51/th << 222 else if ( i == 4 ) { fRadiusEff = 1.30*th << 223 + 1.05/th << 224 else if ( i < 0 ) { fRadiusEff = 1.30*th << 225 + 1.05/th << 226 else {} << 227 } 210 } 228 211 229 G4double R2 = fRadiusEff*fRadiusEff; 212 G4double R2 = fRadiusEff*fRadiusEff; >> 213 G4double REf2 = R2+fRadiusNN2; 230 G4double ApAt = std::abs(theParticle->GetBar 214 G4double ApAt = std::abs(theParticle->GetBaryonNumber()) * A; 231 215 232 G4double inelxsection = millibarn*pi*R2*10.* << 216 inelxsection = pi*REf2 *10* G4Log(1+(ApAt*sigmaTotal/(pi*REf2*10.))); //mb >> 217 inelxsection = inelxsection * millibarn; 233 fInelasticXsc = inelxsection; 218 fInelasticXsc = inelxsection; 234 219 235 return fInelasticXsc; 220 return fInelasticXsc; 236 } 221 } 237 222 238 223 239 ////////////////////////////////////////////// 224 ///////////////////////////////////////////////////////////////////////////// 240 // 225 // 241 // Calculates Inelastic Anti-nucleus-Nucleus c 226 // Calculates Inelastic Anti-nucleus-Nucleus cross-section 242 227 243 G4double G4ComponentAntiNuclNuclearXS::GetInel 228 G4double G4ComponentAntiNuclNuclearXS::GetInelasticIsotopeCrossSection 244 (const G4ParticleDefinition* aParticle, G4doub 229 (const G4ParticleDefinition* aParticle, G4double kinEnergy, G4int Z, G4int A) 245 { 230 { 246 return GetInelasticElementCrossSection(aPart 231 return GetInelasticElementCrossSection(aParticle, kinEnergy, Z, (G4double) A); 247 } 232 } 248 233 249 234 250 ////////////////////////////////////////////// 235 ///////////////////////////////////////////////////////////////////////////// 251 // 236 // 252 // Calculates elastic Anti-nucleus-Nucleus cro 237 // Calculates elastic Anti-nucleus-Nucleus cross-section as Total - Inelastic 253 238 254 G4double G4ComponentAntiNuclNuclearXS::GetElas 239 G4double G4ComponentAntiNuclNuclearXS::GetElasticElementCrossSection 255 (const G4ParticleDefinition* aParticle, G4doub 240 (const G4ParticleDefinition* aParticle, G4double kinEnergy, G4int Z, G4double A) 256 { 241 { 257 fElasticXsc = GetTotalElementCrossSection(aP 242 fElasticXsc = GetTotalElementCrossSection(aParticle, kinEnergy, Z, A)- 258 GetInelasticElementCrossSectio 243 GetInelasticElementCrossSection(aParticle, kinEnergy, Z, A); 259 if (fElasticXsc < 0.) fElasticXsc = 0.; 244 if (fElasticXsc < 0.) fElasticXsc = 0.; 260 return fElasticXsc; 245 return fElasticXsc; 261 } 246 } 262 247 263 248 264 ////////////////////////////////////////////// 249 ///////////////////////////////////////////////////////////////////////////// 265 // 250 // 266 // Calculates elastic Anti-nucleus-Nucleus cro 251 // Calculates elastic Anti-nucleus-Nucleus cross-section 267 252 268 G4double G4ComponentAntiNuclNuclearXS::GetElas 253 G4double G4ComponentAntiNuclNuclearXS::GetElasticIsotopeCrossSection 269 (const G4ParticleDefinition* aParticle, G4doub 254 (const G4ParticleDefinition* aParticle, G4double kinEnergy, G4int Z, G4int A) 270 { 255 { 271 return GetElasticElementCrossSection(aPartic 256 return GetElasticElementCrossSection(aParticle, kinEnergy, Z, (G4double) A); 272 } 257 } 273 258 274 259 275 ////////////////////////////////////////////// 260 ///////////////////////////////////////////////////////////////////////////// 276 // Calculation of Antihadron - hadron Total C 261 // Calculation of Antihadron - hadron Total Cross-section 277 262 278 G4double G4ComponentAntiNuclNuclearXS::GetAnti 263 G4double G4ComponentAntiNuclNuclearXS::GetAntiHadronNucleonTotCrSc 279 (const G4ParticleDefinition* aParticle, G4doub 264 (const G4ParticleDefinition* aParticle, G4double kinEnergy) 280 { 265 { 281 G4double xsection, Pmass, Energy, momentum; 266 G4double xsection, Pmass, Energy, momentum; 282 const G4ParticleDefinition* theParticle = aP 267 const G4ParticleDefinition* theParticle = aParticle; 283 Pmass=theParticle->GetPDGMass(); 268 Pmass=theParticle->GetPDGMass(); 284 Energy=Pmass+kinEnergy; 269 Energy=Pmass+kinEnergy; 285 momentum=std::sqrt(Energy*Energy-Pmass*Pmass 270 momentum=std::sqrt(Energy*Energy-Pmass*Pmass)/std::abs(theParticle->GetBaryonNumber()); 286 G4double Plab = momentum / GeV; 271 G4double Plab = momentum / GeV; 287 272 288 G4double B, SigAss; 273 G4double B, SigAss; 289 G4double C, d1, d2, d3; 274 G4double C, d1, d2, d3; 290 Elab = std::sqrt(Mn*Mn + Plab*Plab); / 275 Elab = std::sqrt(Mn*Mn + Plab*Plab); // GeV 291 S = 2.*Mn*Mn + 2. *Mn*Elab; / 276 S = 2.*Mn*Mn + 2. *Mn*Elab; // GeV^2 292 SqrtS = std::sqrt(S); / 277 SqrtS = std::sqrt(S); // GeV 293 B = b0+b2*G4Log(SqrtS/SqrtS0)*G4Log(S 278 B = b0+b2*G4Log(SqrtS/SqrtS0)*G4Log(SqrtS/SqrtS0); //GeV^(-2) 294 SigAss = 36.04 +0.304*G4Log(S/S0)*G4Log(S/ 279 SigAss = 36.04 +0.304*G4Log(S/S0)*G4Log(S/S0); //mb 295 R0 = std::sqrt(0.40874044*SigAss - B); 280 R0 = std::sqrt(0.40874044*SigAss - B); //GeV^(-2) 296 C = 13.55; 281 C = 13.55; 297 d1 = -4.47; 282 d1 = -4.47; 298 d2 = 12.38; 283 d2 = 12.38; 299 d3 = -12.43; 284 d3 = -12.43; 300 285 301 xsection = SigAss * ( 1 + 1./(std::sqrt(S-4. << 286 xsection = SigAss * ( 1 + 1./(std::sqrt(S-4.*Mn*Mn)) / (G4Pow::GetInstance()->powA(R0, 3.)) 302 * C * ( 1 + d1/SqrtS + << 287 * C * ( 1 + d1/SqrtS + d2/(G4Pow::GetInstance()->powA(SqrtS,2.)) 303 + d3/(theG4Pow << 288 + d3/(G4Pow::GetInstance()->powA(SqrtS,3.)) ) ); 304 289 305 //xsection *= millibarn; 290 //xsection *= millibarn; 306 fAntiHadronNucleonTotXsc = xsection; 291 fAntiHadronNucleonTotXsc = xsection; 307 292 308 return fAntiHadronNucleonTotXsc; 293 return fAntiHadronNucleonTotXsc; 309 } 294 } 310 295 311 296 312 // /////////////////////////////////////////// 297 // ////////////////////////////////////////////////////////////////////////// 313 // Calculation of Antihadron - hadron Elastic 298 // Calculation of Antihadron - hadron Elastic Cross-section 314 299 315 G4double G4ComponentAntiNuclNuclearXS :: 300 G4double G4ComponentAntiNuclNuclearXS :: 316 GetAntiHadronNucleonElCrSc(const G4ParticleDef 301 GetAntiHadronNucleonElCrSc(const G4ParticleDefinition* aParticle, G4double kinEnergy) 317 { 302 { 318 G4double xsection; 303 G4double xsection; 319 G4double SigAss; 304 G4double SigAss; 320 G4double C, d1, d2, d3; 305 G4double C, d1, d2, d3; 321 GetAntiHadronNucleonTotCrSc(aParticle,kinEne 306 GetAntiHadronNucleonTotCrSc(aParticle,kinEnergy); 322 SigAss = 4.5 + 0.101*G4Log(S/S0)*G4Log(S/S 307 SigAss = 4.5 + 0.101*G4Log(S/S0)*G4Log(S/S0); //mb 323 C = 59.27; 308 C = 59.27; 324 d1 = -6.95; 309 d1 = -6.95; 325 d2 = 23.54; 310 d2 = 23.54; 326 d3 = -25.34; 311 d3 = -25.34; 327 312 328 xsection = SigAss * ( 1 + 1. / (std::sqrt(S- << 313 xsection = SigAss * ( 1 + 1. / (std::sqrt(S-4.*Mn*Mn)) / (G4Pow::GetInstance()->powA(R0, 3.)) 329 * C * ( 1 + d1/SqrtS + << 314 * C * ( 1 + d1/SqrtS + d2/(G4Pow::GetInstance()->powA(SqrtS,2.)) 330 + d3/(theG4Pow << 315 + d3/(G4Pow::GetInstance()->powA(SqrtS,3.)) ) ); 331 316 332 //xsection *= millibarn; 317 //xsection *= millibarn; 333 fAntiHadronNucleonElXsc = xsection; 318 fAntiHadronNucleonElXsc = xsection; 334 319 335 return fAntiHadronNucleonElXsc; 320 return fAntiHadronNucleonElXsc; 336 } 321 } 337 322 338 323 339 ////////////////////////////////////////////// 324 ///////////////////////////////////////////////////////////////////////////// 340 325 341 void G4ComponentAntiNuclNuclearXS::CrossSectio 326 void G4ComponentAntiNuclNuclearXS::CrossSectionDescription(std::ostream& outFile) const 342 { 327 { 343 outFile << "The G4ComponentAntiNuclNuclearXS 328 outFile << "The G4ComponentAntiNuclNuclearXS calculates total,\n" 344 << "inelastic, elastic cross section 329 << "inelastic, elastic cross sections of anti-nucleons and light \n" 345 << "anti-nucleus interactions with n 330 << "anti-nucleus interactions with nuclei using Glauber's approach.\n" 346 << "It uses parametrizations of anti 331 << "It uses parametrizations of antiproton-proton total and elastic \n" 347 << "cross sections and Wood-Saxon di 332 << "cross sections and Wood-Saxon distribution of nuclear density.\n" 348 << "See details in Phys.Lett. B705 ( 333 << "See details in Phys.Lett. B705 (2011) 235. \n"; 349 } 334 } 350 335 351 336