Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // Calculation of the total, elastic and inel 26 // Calculation of the total, elastic and inelastic cross-sections 27 // of anti-nucleon and anti-nucleus interacti 27 // of anti-nucleon and anti-nucleus interactions with nuclei 28 // based on Glauber approach and V. Grishine 28 // based on Glauber approach and V. Grishine formulaes for 29 // interpolations (ref. V.M.Grichine, Eur.Phy 29 // interpolations (ref. V.M.Grichine, Eur.Phys.J., C62(2009) 399; 30 // NIM, B267 (2009) 2460) and our parametriza 30 // NIM, B267 (2009) 2460) and our parametrization of hadron-nucleon 31 // cross-sections 31 // cross-sections 32 // 32 // 33 // 33 // 34 // Created by A.Galoyan and V. Uzhinsky, 18. 34 // Created by A.Galoyan and V. Uzhinsky, 18.11.2010 35 35 36 36 37 #include "G4ComponentAntiNuclNuclearXS.hh" 37 #include "G4ComponentAntiNuclNuclearXS.hh" 38 38 39 #include "G4PhysicalConstants.hh" 39 #include "G4PhysicalConstants.hh" 40 #include "G4SystemOfUnits.hh" 40 #include "G4SystemOfUnits.hh" 41 #include "G4ParticleTable.hh" 41 #include "G4ParticleTable.hh" 42 #include "G4IonTable.hh" 42 #include "G4IonTable.hh" 43 #include "G4ParticleDefinition.hh" 43 #include "G4ParticleDefinition.hh" 44 #include "G4HadronicException.hh" << 45 44 46 << 45 /////////////////////////////////////////////////////////////////////////////// 47 ////////////////////////////////////////////// << 48 46 49 G4ComponentAntiNuclNuclearXS::G4ComponentAntiN 47 G4ComponentAntiNuclNuclearXS::G4ComponentAntiNuclNuclearXS() 50 : G4VComponentCrossSection("AntiAGlauber"), 48 : G4VComponentCrossSection("AntiAGlauber"), 51 fRadiusEff(0.0), << 49 // fUpperLimit(10000*GeV), fLowerLimit(10*MeV), >> 50 fRadiusEff(0.0), fRadiusNN2(0.0), 52 fTotalXsc(0.0), fElasticXsc(0.0), fInelastic 51 fTotalXsc(0.0), fElasticXsc(0.0), fInelasticXsc(0.0), 53 fAntiHadronNucleonTotXsc(0.0), fAntiHadronNu 52 fAntiHadronNucleonTotXsc(0.0), fAntiHadronNucleonElXsc(0.0), 54 Elab(0.0), S(0.0), SqrtS(0) 53 Elab(0.0), S(0.0), SqrtS(0) 55 { 54 { 56 theAProton = G4AntiProton::AntiProton(); << 55 theAProton = G4AntiProton::AntiProton(); 57 theANeutron = G4AntiNeutron::AntiNeutron(); << 56 theANeutron = G4AntiNeutron::AntiNeutron(); 58 theADeuteron = G4AntiDeuteron::AntiDeuteron( << 57 theADeuteron = G4AntiDeuteron::AntiDeuteron(); 59 theATriton = G4AntiTriton::AntiTriton(); << 58 theATriton = G4AntiTriton::AntiTriton(); 60 theAAlpha = G4AntiAlpha::AntiAlpha(); << 59 theAAlpha = G4AntiAlpha::AntiAlpha(); 61 theAHe3 = G4AntiHe3::AntiHe3(); << 60 theAHe3 = G4AntiHe3::AntiHe3(); 62 Mn = 0.93827231; // GeV << 61 63 b0 = 11.92; // GeV^(-2) << 62 Mn = 0.93827231; // GeV 64 b2 = 0.3036; // GeV^(-2) << 63 b0 = 11.92; // GeV^(-2) 65 SqrtS0 = 20.74; // GeV << 64 b2 = 0.3036; // GeV^(-2) 66 S0 = 33.0625; // GeV^2 << 65 SqrtS0 = 20.74; // GeV 67 R0 = 1.0; // default va << 66 S0 = 33.0625; // GeV^2 >> 67 R0 = 1.0; // default value (V.Ivanchenko) 68 } 68 } 69 69 70 << 70 /////////////////////////////////////////////////////////////////////////////////////// 71 ////////////////////////////////////////////// << 71 // >> 72 // 72 73 73 G4ComponentAntiNuclNuclearXS::~G4ComponentAnti 74 G4ComponentAntiNuclNuclearXS::~G4ComponentAntiNuclNuclearXS() 74 { 75 { 75 } 76 } 76 77 >> 78 //////////////////////////////////////////////////////////////////////////////// 77 79 78 ////////////////////////////////////////////// << 80 >> 81 >> 82 //////////////////////////////////////////////////////////////////////////////// 79 // 83 // 80 // Calculation of total CrossSection of Anti-N 84 // Calculation of total CrossSection of Anti-Nucleus - Nucleus 81 85 >> 86 82 G4double G4ComponentAntiNuclNuclearXS::GetTota 87 G4double G4ComponentAntiNuclNuclearXS::GetTotalElementCrossSection 83 (const G4ParticleDefinition* aParticle, G4doub 88 (const G4ParticleDefinition* aParticle, G4double kinEnergy, G4int Z, G4double A) 84 { 89 { 85 if ( aParticle == nullptr ) { << 90 G4double xsection, sigmaTotal, sigmaElastic; 86 G4ExceptionDescription ed; << 87 ed << "anti-nucleus with nullptr particle << 88 G4Exception( "G4ComponentAntiNuclNuclearXS << 89 "antiNuclNuclearXS001", JustW << 90 return 0.0; << 91 } << 92 << 93 const G4ParticleDefinition* theParticle = aP << 94 G4double sigmaTotal = GetAntiHadronNucleonTo << 95 91 96 // calculation of squared radius of NN-coll << 92 const G4ParticleDefinition* theParticle = aParticle; 97 G4int i(-1), j(-1); << 93 98 if ( theParticle == theAProton || << 94 sigmaTotal = GetAntiHadronNucleonTotCrSc(theParticle,kinEnergy); 99 theParticle == theANeutron ) { i=0; } << 95 sigmaElastic = GetAntiHadronNucleonElCrSc(theParticle,kinEnergy); 100 else if ( theParticle == theADeuteron ) { i= << 101 else if ( theParticle == theATriton ) { i= << 102 else if ( theParticle == theAHe3 ) { i= << 103 else if ( theParticle == theAAlpha ) { i= << 104 else {}; << 105 << 106 if ( i < 0 && ( ! theParticle->IsAntiHypern << 107 G4ExceptionDescription ed; << 108 ed << "Unknown anti-nucleus : " << thePart << 109 << "Target (Z, A)=(" << Z << "," << A < << 110 G4Exception( "G4ComponentAntiNuclNuclearXS << 111 "antiNuclNuclearXS002", JustW << 112 } << 113 96 114 G4int intA = static_cast<G4int>( A ); << 97 // calculation of squared radius of NN-collision >> 98 fRadiusNN2=sigmaTotal*sigmaTotal*0.1/(8.*sigmaElastic*pi) ; //fm^2 115 99 116 if ( Z == 1 && intA == 1 ) { j=0; } << 100 // calculation of effective nuclear radius for Pbar and Nbar interactions (can be changed) 117 else if ( Z == 1 && intA == 2 ) { j=1; } << 101 118 else if ( Z == 1 && intA == 3 ) { j=2; } << 102 //A.R. 29-Jan-2013 : use antiprotons/antineutrons as the default case, 119 else if ( Z == 2 && intA == 3 ) { j=3; } << 103 // to be used for instance, as first approximation 120 else if ( Z == 2 && intA == 4 ) { j=4; } << 104 // without validation, for anti-hyperons. 121 else {} << 105 //if ( (theParticle == theAProton) || (theParticle == theANeutron) ) { 122 << 106 if(A==1) 123 if ( i < 0 && j >= 0 ) { fRadiusEff = Ref << 107 { fTotalXsc = sigmaTotal * millibarn; 124 if ( i == 0 && j == 0 ) return sigmaTotal << 108 return fTotalXsc; } 125 if ( i >= 0 && j >= 0 ) { fRadiusEff = Ref << 109 126 << 110 fRadiusEff = 1.34*std::pow(A,0.23)+1.35/std::pow(A,1./3.); //fm 127 if ( j < 0 ) { << 111 128 if ( i == 0 ) { fRadiusEff = 1.34 * << 112 if( (Z==1) && (A==2) ) fRadiusEff = 3.800; //fm 129 + 1.35 / << 113 if( (Z==1) && (A==3) ) fRadiusEff = 3.300; 130 else if ( i == 1 ) { fRadiusEff = 1.46 * << 114 if( (Z==2) && (A==3) ) fRadiusEff = 3.300; 131 + 1.45 / << 115 if( (Z==2) && (A==4) ) fRadiusEff = 2.376; 132 else if ( i == 2 ) { fRadiusEff = 1.40 * << 116 //} 133 + 1.63 / << 117 134 else if ( i == 3 ) { fRadiusEff = 1.40 * << 118 //calculation of effective nuclear radius for AntiDeuteron interaction (can be changed) 135 + 1.63 / << 119 if (theParticle == theADeuteron) 136 else if ( i == 4 ) { fRadiusEff = 1.35 * << 120 { fRadiusEff = 1.46 * std::pow(A,0.21) + 1.45 / std::pow(A,1./3.); 137 + 1.10 / << 121 138 else if ( i < 0 ) { fRadiusEff = 1.35 * << 122 if( (Z==1) && (A==2) ) fRadiusEff = 3.238; //fm 139 + 1.10 / theG4P << 123 if( (Z==1) && (A==3) ) fRadiusEff = 3.144; 140 else {} << 124 if( (Z==2) && (A==3) ) fRadiusEff = 3.144; >> 125 if( (Z==2) && (A==4) ) fRadiusEff = 2.544; >> 126 } >> 127 // calculation of effective nuclear radius for AntiHe3 interaction (can be changed) >> 128 >> 129 if( (theParticle ==theAHe3) || (theParticle ==theATriton) ) >> 130 { fRadiusEff = 1.40* std::pow(A,0.21)+1.63/std::pow(A,1./3.); >> 131 >> 132 if( (Z==1) && (A==2) ) fRadiusEff = 3.144; //fm >> 133 if( (Z==1) && (A==3) ) fRadiusEff = 3.075; >> 134 if( (Z==2) && (A==3) ) fRadiusEff = 3.075; >> 135 if( (Z==2) && (A==4) ) fRadiusEff = 2.589; 141 } 136 } 142 137 143 G4double R2 = fRadiusEff*fRadiusEff; << 138 //calculation of effective nuclear radius for AntiAlpha interaction (can be changed) 144 G4double ApAt = std::abs(theParticle->GetBar << 139 >> 140 if (theParticle == theAAlpha) >> 141 { >> 142 fRadiusEff = 1.35* std::pow(A,0.21)+1.1/std::pow(A,1./3.); >> 143 >> 144 if( (Z==1) && (A==2) ) fRadiusEff = 2.544; //fm >> 145 if( (Z==1) && (A==3) ) fRadiusEff = 2.589; >> 146 if( (Z==2) && (A==3) ) fRadiusEff = 2.589; >> 147 if( (Z==2) && (A==4) ) fRadiusEff = 2.241; >> 148 >> 149 } 145 150 146 G4double xsection = millibarn*2.*pi*R2*10.*G << 151 G4double R2 = fRadiusEff*fRadiusEff; 147 fTotalXsc = xsection; << 152 G4double REf2 = R2+fRadiusNN2; >> 153 G4double ApAt = std::abs(theParticle->GetBaryonNumber()) * A; >> 154 >> 155 xsection = 2*pi*REf2*10.*std::log(1+(ApAt*sigmaTotal/(2*pi*REf2*10.))); //mb >> 156 xsection =xsection *millibarn; >> 157 fTotalXsc = xsection; 148 158 149 return fTotalXsc; 159 return fTotalXsc; 150 } 160 } 151 161 152 162 153 ////////////////////////////////////////////// << 163 //////////////////////////////////////////////////////////////////////////////// 154 // 164 // 155 // Calculation of total CrossSection of Anti-N 165 // Calculation of total CrossSection of Anti-Nucleus - Nucleus 156 << 166 ////////////////////////////////////////////////////////////////////////////// 157 G4double G4ComponentAntiNuclNuclearXS::GetTota 167 G4double G4ComponentAntiNuclNuclearXS::GetTotalIsotopeCrossSection 158 (const G4ParticleDefinition* aParticle, G4doub 168 (const G4ParticleDefinition* aParticle, G4double kinEnergy, G4int Z, G4int A ) 159 { << 169 { return GetTotalElementCrossSection(aParticle, kinEnergy, Z, (G4double) A); } 160 return GetTotalElementCrossSection(aParticle << 161 } << 162 << 163 170 164 ////////////////////////////////////////////// << 171 //////////////////////////////////////////////////////////////// 165 // Calculation of inelastic CrossSection of An 172 // Calculation of inelastic CrossSection of Anti-Nucleus - Nucleus >> 173 //////////////////////////////////////////////////////////////// 166 174 167 G4double G4ComponentAntiNuclNuclearXS::GetInel 175 G4double G4ComponentAntiNuclNuclearXS::GetInelasticElementCrossSection 168 (const G4ParticleDefinition* aParticle, G4doub 176 (const G4ParticleDefinition* aParticle, G4double kinEnergy, G4int Z, G4double A) 169 { 177 { 170 if ( aParticle == nullptr ) { << 178 G4double inelxsection, sigmaTotal, sigmaElastic; 171 G4ExceptionDescription ed; << 179 172 ed << "anti-nucleus with nullptr particle << 173 G4Exception( "G4ComponentAntiNuclNuclearXS << 174 "antiNuclNuclearXS003", JustW << 175 return 0.0; << 176 } << 177 << 178 const G4ParticleDefinition* theParticle = aP 180 const G4ParticleDefinition* theParticle = aParticle; 179 G4double sigmaTotal = GetAntiHadronNucleon << 181 180 G4double sigmaElastic = GetAntiHadronNucleon << 182 sigmaTotal = GetAntiHadronNucleonTotCrSc(theParticle,kinEnergy); >> 183 sigmaElastic = GetAntiHadronNucleonElCrSc(theParticle,kinEnergy); 181 184 182 // calculation of sqr of radius NN-collision << 185 // calculation of sqr of radius NN-collision 183 G4int i(-1), j(-1); << 186 fRadiusNN2=sigmaTotal*sigmaTotal*0.1/(8.*sigmaElastic*pi); // fm^2 184 if ( theParticle == theAProton || << 185 theParticle == theANeutron ) { i=0; } << 186 else if ( theParticle == theADeuteron ) { i= << 187 else if ( theParticle == theATriton ) { i= << 188 else if ( theParticle == theAHe3 ) { i= << 189 else if ( theParticle == theAAlpha ) { i= << 190 else {}; << 191 << 192 if ( i < 0 && ( ! theParticle->IsAntiHypern << 193 G4ExceptionDescription ed; << 194 ed << "Unknown anti-nucleus : " << thePart << 195 << "Target (Z, A)=(" << Z << "," << A < << 196 G4Exception( "G4ComponentAntiNuclNuclearXS << 197 "antiNuclNuclearXS004", JustW << 198 } << 199 187 200 G4int intA = static_cast<G4int>( A ); << 201 188 202 if ( Z == 1 && intA == 1 ) { j=0; } << 189 // calculation of effective nuclear radius for Pbar and Nbar interaction (can be changed) 203 else if ( Z == 1 && intA == 2 ) { j=1; } << 204 else if ( Z == 1 && intA == 3 ) { j=2; } << 205 else if ( Z == 2 && intA == 3 ) { j=3; } << 206 else if ( Z == 2 && intA == 4 ) { j=4; } << 207 else {} << 208 << 209 if ( i < 0 && j >= 0 ) { fRadiusEff = Ref << 210 if ( i == 0 && j == 0 ) return (sigmaTotal << 211 if ( i >= 0 && j >= 0 ) { fRadiusEff = Ref << 212 << 213 if ( j < 0) { << 214 if ( i == 0 ) { fRadiusEff = 1.31*th << 215 + 0.90/th << 216 else if ( i == 1 ) { fRadiusEff = 1.38*th << 217 + 1.55/th << 218 else if ( i == 2 ) { fRadiusEff = 1.34*th << 219 + 1.51/th << 220 else if ( i == 3 ) { fRadiusEff = 1.34*th << 221 + 1.51/th << 222 else if ( i == 4 ) { fRadiusEff = 1.30*th << 223 + 1.05/th << 224 else if ( i < 0 ) { fRadiusEff = 1.30*th << 225 + 1.05/th << 226 else {} << 227 } << 228 190 229 G4double R2 = fRadiusEff*fRadiusEff; << 191 //A.R. 29-Jan-2013 : use antiprotons/antineutrons as the default case, 230 G4double ApAt = std::abs(theParticle->GetBar << 192 // to be used for instance, as first approximation >> 193 // without validation, for anti-hyperons. >> 194 //if ( (theParticle == theAProton) || (theParticle == theANeutron) ) { >> 195 if (A==1) >> 196 { fInelasticXsc = (sigmaTotal - sigmaElastic) * millibarn; >> 197 return fInelasticXsc; >> 198 } >> 199 fRadiusEff = 1.31*std::pow(A, 0.22)+0.9/std::pow(A, 1./3.); //fm >> 200 >> 201 if( (Z==1) && (A==2) ) fRadiusEff = 3.582; //fm >> 202 if( (Z==1) && (A==3) ) fRadiusEff = 3.105; >> 203 if( (Z==2) && (A==3) ) fRadiusEff = 3.105; >> 204 if( (Z==2) && (A==4) ) fRadiusEff = 2.209; >> 205 //} 231 206 232 G4double inelxsection = millibarn*pi*R2*10.* << 207 //calculation of effective nuclear radius for AntiDeuteron interaction (can be changed) 233 fInelasticXsc = inelxsection; << 234 208 235 return fInelasticXsc; << 209 if (theParticle ==theADeuteron) 236 } << 210 { >> 211 fRadiusEff = 1.38*std::pow(A, 0.21)+1.55/std::pow(A, 1./3.); >> 212 >> 213 if( (Z==1) && (A==2) ) fRadiusEff = 3.169; //fm >> 214 if( (Z==1) && (A==3) ) fRadiusEff = 3.066; >> 215 if( (Z==2) && (A==3) ) fRadiusEff = 3.066; >> 216 if( (Z==2) && (A==4) ) fRadiusEff = 2.498; >> 217 } >> 218 >> 219 //calculation of effective nuclear radius for AntiHe3 interaction (can be changed) >> 220 >> 221 if( (theParticle ==theAHe3) || (theParticle ==theATriton) ) >> 222 { >> 223 fRadiusEff = 1.34 * std::pow(A, 0.21)+1.51/std::pow(A, 1./3.); >> 224 >> 225 if( (Z==1) && (A==2) ) fRadiusEff = 3.066; //fm >> 226 if( (Z==1) && (A==3) ) fRadiusEff = 2.973; >> 227 if( (Z==2) && (A==3) ) fRadiusEff = 2.973; >> 228 if( (Z==2) && (A==4) ) fRadiusEff = 2.508; >> 229 >> 230 } >> 231 >> 232 //calculation of effective nuclear radius for AntiAlpha interaction (can be changed) 237 233 >> 234 if (theParticle == theAAlpha) >> 235 { >> 236 fRadiusEff = 1.3*std::pow(A, 0.21)+1.05/std::pow(A, 1./3.); >> 237 >> 238 if( (Z==1) && (A==2) ) fRadiusEff = 2.498; //fm >> 239 if( (Z==1) && (A==3) ) fRadiusEff = 2.508; >> 240 if( (Z==2) && (A==3) ) fRadiusEff = 2.508; >> 241 if( (Z==2) && (A==4) ) fRadiusEff = 2.158; >> 242 } >> 243 G4double R2 = fRadiusEff*fRadiusEff; >> 244 G4double REf2 = R2+fRadiusNN2; >> 245 G4double ApAt= std::abs(theParticle->GetBaryonNumber()) * A; >> 246 >> 247 inelxsection = pi*REf2 *10* std::log(1+(ApAt*sigmaTotal/(pi*REf2*10.))); //mb >> 248 inelxsection = inelxsection * millibarn; >> 249 fInelasticXsc = inelxsection; >> 250 return fInelasticXsc; >> 251 } 238 252 239 ////////////////////////////////////////////// << 253 /////////////////////////////////////////////////////////////////////////////// 240 // 254 // 241 // Calculates Inelastic Anti-nucleus-Nucleus c 255 // Calculates Inelastic Anti-nucleus-Nucleus cross-section 242 << 256 // 243 G4double G4ComponentAntiNuclNuclearXS::GetInel 257 G4double G4ComponentAntiNuclNuclearXS::GetInelasticIsotopeCrossSection 244 (const G4ParticleDefinition* aParticle, G4doub 258 (const G4ParticleDefinition* aParticle, G4double kinEnergy, G4int Z, G4int A) 245 { << 259 {return GetInelasticElementCrossSection(aParticle, kinEnergy, Z, (G4double) A); } 246 return GetInelasticElementCrossSection(aPart << 260 247 } << 248 261 249 262 250 ////////////////////////////////////////////// << 263 /////////////////////////////////////////////////////////////////////////////// 251 // 264 // 252 // Calculates elastic Anti-nucleus-Nucleus cro 265 // Calculates elastic Anti-nucleus-Nucleus cross-section as Total - Inelastic 253 << 266 // 254 G4double G4ComponentAntiNuclNuclearXS::GetElas 267 G4double G4ComponentAntiNuclNuclearXS::GetElasticElementCrossSection 255 (const G4ParticleDefinition* aParticle, G4doub 268 (const G4ParticleDefinition* aParticle, G4double kinEnergy, G4int Z, G4double A) 256 { 269 { 257 fElasticXsc = GetTotalElementCrossSection(aP << 270 fElasticXsc = GetTotalElementCrossSection(aParticle, kinEnergy, Z, A)- 258 GetInelasticElementCrossSectio << 271 GetInelasticElementCrossSection(aParticle, kinEnergy, Z, A); 259 if (fElasticXsc < 0.) fElasticXsc = 0.; << 272 260 return fElasticXsc; << 273 if (fElasticXsc < 0.) fElasticXsc = 0.; 261 } << 262 274 >> 275 return fElasticXsc; >> 276 } 263 277 264 ////////////////////////////////////////////// << 278 /////////////////////////////////////////////////////////////////////////////// 265 // 279 // 266 // Calculates elastic Anti-nucleus-Nucleus cro 280 // Calculates elastic Anti-nucleus-Nucleus cross-section 267 << 281 // 268 G4double G4ComponentAntiNuclNuclearXS::GetElas 282 G4double G4ComponentAntiNuclNuclearXS::GetElasticIsotopeCrossSection 269 (const G4ParticleDefinition* aParticle, G4doub 283 (const G4ParticleDefinition* aParticle, G4double kinEnergy, G4int Z, G4int A) 270 { << 284 { return GetElasticElementCrossSection(aParticle, kinEnergy, Z, (G4double) A); } 271 return GetElasticElementCrossSection(aPartic << 272 } << 273 285 274 286 275 ////////////////////////////////////////////// << 287 /////////////////////////////////////////////////////////////////////////////////// 276 // Calculation of Antihadron - hadron Total C 288 // Calculation of Antihadron - hadron Total Cross-section 277 289 278 G4double G4ComponentAntiNuclNuclearXS::GetAnti 290 G4double G4ComponentAntiNuclNuclearXS::GetAntiHadronNucleonTotCrSc 279 (const G4ParticleDefinition* aParticle, G4doub 291 (const G4ParticleDefinition* aParticle, G4double kinEnergy) 280 { 292 { 281 G4double xsection, Pmass, Energy, momentum; 293 G4double xsection, Pmass, Energy, momentum; 282 const G4ParticleDefinition* theParticle = aP 294 const G4ParticleDefinition* theParticle = aParticle; 283 Pmass=theParticle->GetPDGMass(); 295 Pmass=theParticle->GetPDGMass(); 284 Energy=Pmass+kinEnergy; 296 Energy=Pmass+kinEnergy; 285 momentum=std::sqrt(Energy*Energy-Pmass*Pmass 297 momentum=std::sqrt(Energy*Energy-Pmass*Pmass)/std::abs(theParticle->GetBaryonNumber()); 286 G4double Plab = momentum / GeV; 298 G4double Plab = momentum / GeV; 287 299 288 G4double B, SigAss; << 300 G4double B, SigAss; 289 G4double C, d1, d2, d3; << 301 G4double C, d1, d2, d3 ; 290 Elab = std::sqrt(Mn*Mn + Plab*Plab); / << 291 S = 2.*Mn*Mn + 2. *Mn*Elab; / << 292 SqrtS = std::sqrt(S); / << 293 B = b0+b2*G4Log(SqrtS/SqrtS0)*G4Log(S << 294 SigAss = 36.04 +0.304*G4Log(S/S0)*G4Log(S/ << 295 R0 = std::sqrt(0.40874044*SigAss - B); << 296 C = 13.55; << 297 d1 = -4.47; << 298 d2 = 12.38; << 299 d3 = -12.43; << 300 << 301 xsection = SigAss * ( 1 + 1./(std::sqrt(S-4. << 302 * C * ( 1 + d1/SqrtS + << 303 + d3/(theG4Pow << 304 302 305 //xsection *= millibarn; << 303 Elab = std::sqrt(Mn*Mn + Plab*Plab); // GeV 306 fAntiHadronNucleonTotXsc = xsection; << 304 S = 2.*Mn*Mn + 2. *Mn*Elab; // GeV^2 >> 305 SqrtS = std::sqrt(S); // GeV >> 306 >> 307 B = b0+b2*std::log(SqrtS/SqrtS0)*std::log(SqrtS/SqrtS0); //GeV^(-2) >> 308 SigAss = 36.04 +0.304*std::log(S/S0)*std::log(S/S0); //mb >> 309 R0 = std::sqrt(0.40874044*SigAss - B); //GeV^(-2) >> 310 >> 311 C = 13.55; >> 312 d1 = -4.47; >> 313 d2 = 12.38; >> 314 d3 = -12.43; >> 315 xsection = SigAss*(1 + 1./(std::sqrt(S-4.*Mn*Mn)) / (std::pow(R0, 3.)) >> 316 *C* (1+d1/SqrtS+d2/(std::pow(SqrtS,2.))+d3/(std::pow(SqrtS,3.)) )); >> 317 >> 318 // xsection *= millibarn; 307 319 >> 320 fAntiHadronNucleonTotXsc = xsection; 308 return fAntiHadronNucleonTotXsc; 321 return fAntiHadronNucleonTotXsc; 309 } 322 } 310 323 311 324 312 // /////////////////////////////////////////// << 325 // >> 326 // ///////////////////////////////////////////////////////////////////////////////// 313 // Calculation of Antihadron - hadron Elastic 327 // Calculation of Antihadron - hadron Elastic Cross-section 314 328 315 G4double G4ComponentAntiNuclNuclearXS :: 329 G4double G4ComponentAntiNuclNuclearXS :: 316 GetAntiHadronNucleonElCrSc(const G4ParticleDef 330 GetAntiHadronNucleonElCrSc(const G4ParticleDefinition* aParticle, G4double kinEnergy) 317 { 331 { 318 G4double xsection; << 332 G4double xsection; 319 G4double SigAss; << 320 G4double C, d1, d2, d3; << 321 GetAntiHadronNucleonTotCrSc(aParticle,kinEne << 322 SigAss = 4.5 + 0.101*G4Log(S/S0)*G4Log(S/S << 323 C = 59.27; << 324 d1 = -6.95; << 325 d2 = 23.54; << 326 d3 = -25.34; << 327 << 328 xsection = SigAss * ( 1 + 1. / (std::sqrt(S- << 329 * C * ( 1 + d1/SqrtS + << 330 + d3/(theG4Pow << 331 333 332 //xsection *= millibarn; << 334 G4double SigAss; 333 fAntiHadronNucleonElXsc = xsection; << 335 G4double C, d1, d2, d3 ; 334 336 335 return fAntiHadronNucleonElXsc; << 337 GetAntiHadronNucleonTotCrSc(aParticle,kinEnergy); 336 } << 338 >> 339 SigAss = 4.5 + 0.101*std::log(S/S0)*std::log(S/S0); //mb >> 340 >> 341 C = 59.27; >> 342 d1 = -6.95; >> 343 d2 = 23.54; >> 344 d3 = -25.34; >> 345 >> 346 xsection = SigAss* (1 + 1. / (std::sqrt(S-4.*Mn*Mn)) / (std::pow(R0, 3.)) >> 347 *C* ( 1+d1/SqrtS+d2/(std::pow(SqrtS,2.))+d3/(std::pow(SqrtS,3.)) )); 337 348 >> 349 // xsection *= millibarn; 338 350 339 ////////////////////////////////////////////// << 351 fAntiHadronNucleonElXsc = xsection; >> 352 return fAntiHadronNucleonElXsc; >> 353 } 340 354 341 void G4ComponentAntiNuclNuclearXS::CrossSectio 355 void G4ComponentAntiNuclNuclearXS::CrossSectionDescription(std::ostream& outFile) const 342 { 356 { 343 outFile << "The G4ComponentAntiNuclNuclearXS 357 outFile << "The G4ComponentAntiNuclNuclearXS calculates total,\n" 344 << "inelastic, elastic cross section 358 << "inelastic, elastic cross sections of anti-nucleons and light \n" 345 << "anti-nucleus interactions with n << 359 << "anti-nucleus interactions with nuclei using Glauber's approach.\n" 346 << "It uses parametrizations of anti 360 << "It uses parametrizations of antiproton-proton total and elastic \n" 347 << "cross sections and Wood-Saxon di << 361 << "cross sections and Wood-Saxon distribution of nuclear density.\n" >> 362 << "The lower limit is 10 MeV, the upper limit is 10 TeV. \n" 348 << "See details in Phys.Lett. B705 ( 363 << "See details in Phys.Lett. B705 (2011) 235. \n"; 349 } 364 } 350 << 351 365