Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/cross_sections/src/G4ChipsProtonInelasticXS.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/hadronic/cross_sections/src/G4ChipsProtonInelasticXS.cc (Version 11.3.0) and /processes/hadronic/cross_sections/src/G4ChipsProtonInelasticXS.cc (Version 9.6.p2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 //                                                 26 //
 27 // The lust update: M.V. Kossov, CERN/ITEP(Mos     27 // The lust update: M.V. Kossov, CERN/ITEP(Moscow) 17-June-02
                                                   >>  28 // GEANT4 tag $Name: not supported by cvs2svn $
 28 //                                                 29 //
 29 //                                                 30 //
 30 // G4 Physics class: G4ChipsProtonInelasticXS      31 // G4 Physics class: G4ChipsProtonInelasticXS for gamma+A cross sections
 31 // Created: M.V. Kossov, CERN/ITEP(Moscow), 20     32 // Created: M.V. Kossov, CERN/ITEP(Moscow), 20-Dec-03
 32 // The last update: M.V. Kossov, CERN/ITEP (Mo     33 // The last update: M.V. Kossov, CERN/ITEP (Moscow) 15-Feb-04
 33 //                                                 34 //
 34 //                                                 35 //
 35 // *******************************************     36 // ****************************************************************************************
 36 // Short description: Cross-sections extracted     37 // Short description: Cross-sections extracted (by W.Pokorski) from the CHIPS package for 
 37 // proton-nuclear  interactions. Original auth     38 // proton-nuclear  interactions. Original author: M. Kossov
 38 // -------------------------------------------     39 // -------------------------------------------------------------------------------------
 39 //                                                 40 //
 40                                                    41 
 41                                                    42 
 42 #include "G4ChipsProtonInelasticXS.hh"             43 #include "G4ChipsProtonInelasticXS.hh"
 43 #include "G4SystemOfUnits.hh"                      44 #include "G4SystemOfUnits.hh"
 44 #include "G4DynamicParticle.hh"                    45 #include "G4DynamicParticle.hh"
 45 #include "G4ParticleDefinition.hh"                 46 #include "G4ParticleDefinition.hh"
 46 #include "G4Proton.hh"                             47 #include "G4Proton.hh"
 47 #include "G4Log.hh"                            << 
 48 #include "G4Exp.hh"                            << 
 49 #include "G4Pow.hh"                            << 
 50                                                << 
 51                                                    48 
 52 // factory                                         49 // factory
 53 #include "G4CrossSectionFactory.hh"                50 #include "G4CrossSectionFactory.hh"
 54 //                                                 51 //
 55 G4_DECLARE_XS_FACTORY(G4ChipsProtonInelasticXS     52 G4_DECLARE_XS_FACTORY(G4ChipsProtonInelasticXS);
 56                                                    53 
 57 G4ChipsProtonInelasticXS::G4ChipsProtonInelast     54 G4ChipsProtonInelasticXS::G4ChipsProtonInelasticXS():G4VCrossSectionDataSet(Default_Name())
 58 {                                                  55 {
 59   // Initialization of the                         56   // Initialization of the
 60   lastLEN=0; // Pointer to the lastArray of Lo     57   lastLEN=0; // Pointer to the lastArray of LowEn CS
 61   lastHEN=0; // Pointer to the lastArray of Hi     58   lastHEN=0; // Pointer to the lastArray of HighEn CS
 62   lastN=0;   // The last N of calculated nucle     59   lastN=0;   // The last N of calculated nucleus
 63   lastZ=0;   // The last Z of calculated nucle     60   lastZ=0;   // The last Z of calculated nucleus
 64   lastP=0.;  // Last used in cross section Mom     61   lastP=0.;  // Last used in cross section Momentum
 65   lastTH=0.; // Last threshold momentum            62   lastTH=0.; // Last threshold momentum
 66   lastCS=0.; // Last value of the Cross Sectio     63   lastCS=0.; // Last value of the Cross Section
 67   lastI=0;   // The last position in the DAMDB     64   lastI=0;   // The last position in the DAMDB
 68                                                    65 
 69   LEN = new std::vector<G4double*>;                66   LEN = new std::vector<G4double*>;
 70   HEN = new std::vector<G4double*>;                67   HEN = new std::vector<G4double*>;
 71 }                                                  68 }
 72                                                    69 
 73 G4ChipsProtonInelasticXS::~G4ChipsProtonInelas     70 G4ChipsProtonInelasticXS::~G4ChipsProtonInelasticXS()
 74 {                                                  71 {
 75   std::size_t lens=LEN->size();                <<  72   /*
 76   for(std::size_t i=0; i<lens; ++i) delete[] ( <<  73   G4int lens=LEN->size();
                                                   >>  74   for(G4int i=0; i<lens; ++i) delete[] (*LEN)[i];
 77   delete LEN;                                      75   delete LEN;
 78   std::size_t hens=HEN->size();                <<  76   G4int hens=HEN->size();
 79   for(std::size_t i=0; i<hens; ++i) delete[] ( <<  77   for(G4int i=0; i<hens; ++i) delete[] (*HEN)[i];
 80   delete HEN;                                      78   delete HEN;
                                                   >>  79   */
 81 }                                                  80 }
 82                                                    81 
 83 void                                           <<  82 G4bool G4ChipsProtonInelasticXS::IsIsoApplicable(const G4DynamicParticle* Pt, G4int, G4int,    
 84 G4ChipsProtonInelasticXS::CrossSectionDescript << 
 85 {                                              << 
 86     outFile << "G4ChipsProtonInelasticXS provi << 
 87             << "section for proton nucleus sca << 
 88             << "momentum. The cross section is << 
 89             << "CHIPS parameterization of cros << 
 90 }                                              << 
 91                                                << 
 92 G4bool G4ChipsProtonInelasticXS::IsIsoApplicab << 
 93          const G4Element*,                         83          const G4Element*,
 94          const G4Material*)                        84          const G4Material*)
 95 {                                                  85 {
 96   return true;                                 <<  86   G4ParticleDefinition* particle = Pt->GetDefinition();
                                                   >>  87   if (particle == G4Proton::Proton()      ) return true;
                                                   >>  88   return false;
 97 }                                                  89 }
 98                                                    90 
 99                                                    91 
100 // The main member function giving the collisi     92 // The main member function giving the collision cross section (P is in IU, CS is in mb)
101 // Make pMom in independent units ! (Now it is     93 // Make pMom in independent units ! (Now it is MeV)
102 G4double G4ChipsProtonInelasticXS::GetIsoCross     94 G4double G4ChipsProtonInelasticXS::GetIsoCrossSection(const G4DynamicParticle* Pt, G4int tgZ, G4int A,  
103                                                <<  95               const G4Isotope*,
104                                                <<  96               const G4Element*,
105                                                <<  97               const G4Material*)
106 {                                                  98 {
107   G4double pMom=Pt->GetTotalMomentum();            99   G4double pMom=Pt->GetTotalMomentum();
108   G4int tgN = A - tgZ;                            100   G4int tgN = A - tgZ;
109                                                   101 
110   return GetChipsCrossSection(pMom, tgZ, tgN,     102   return GetChipsCrossSection(pMom, tgZ, tgN, 2212);
111 }                                                 103 }
112                                                   104 
113 G4double G4ChipsProtonInelasticXS::GetChipsCro    105 G4double G4ChipsProtonInelasticXS::GetChipsCrossSection(G4double pMom, G4int tgZ, G4int tgN, G4int)
114 {                                                 106 {
                                                   >> 107   static G4int j;                      // A#0f Z/N-records already tested in AMDB
                                                   >> 108   static std::vector <G4int>    colN;  // Vector of N for calculated nuclei (isotops)
                                                   >> 109   static std::vector <G4int>    colZ;  // Vector of Z for calculated nuclei (isotops)
                                                   >> 110   static std::vector <G4double> colP;  // Vector of last momenta for the reaction
                                                   >> 111   static std::vector <G4double> colTH; // Vector of energy thresholds for the reaction
                                                   >> 112   static std::vector <G4double> colCS; // Vector of last cross sections for the reaction
                                                   >> 113   // ***---*** End of the mandatory Static Definitions of the Associative Memory ***---***
115                                                   114 
116   G4bool in=false;                     // By d    115   G4bool in=false;                     // By default the isotope must be found in the AMDB
117   if(tgN!=lastN || tgZ!=lastZ)         // The     116   if(tgN!=lastN || tgZ!=lastZ)         // The nucleus was not the last used isotope
118   {                                               117   {
119     in      = false;                   // By d    118     in      = false;                   // By default the isotope haven't been found in AMDB
120     lastP   = 0.;                      // New     119     lastP   = 0.;                      // New momentum history (nothing to compare with)
121     lastN   = tgN;                     // The     120     lastN   = tgN;                     // The last N of the calculated nucleus
122     lastZ   = tgZ;                     // The     121     lastZ   = tgZ;                     // The last Z of the calculated nucleus
123     lastI   = (G4int)colN.size();      // Size << 122     lastI   = colN.size();             // Size of the Associative Memory DB in the heap
124     j  = 0;                            // A#0f    123     j  = 0;                            // A#0f records found in DB for this projectile
125     if(lastI) for(G4int i=0; i<lastI; ++i) //  << 124     if(lastI) for(G4int i=0; i<lastI; i++) // AMDB exists, try to find the (Z,N) isotope
126     {                                             125     {
127       if(colN[i]==tgN && colZ[i]==tgZ) // Try     126       if(colN[i]==tgN && colZ[i]==tgZ) // Try the record "i" in the AMDB
128       {                                           127       {
129         lastI=i;                       // Reme    128         lastI=i;                       // Remember the index for future fast/last use
130         lastTH =colTH[i];              // The     129         lastTH =colTH[i];              // The last THreshold (A-dependent)
131         if(pMom<=lastTH)                          130         if(pMom<=lastTH)
132         {                                         131         {
133           return 0.;                   // Ener    132           return 0.;                   // Energy is below the Threshold value
134         }                                         133         }
135         lastP  =colP [i];              // Last    134         lastP  =colP [i];              // Last Momentum  (A-dependent)
136         lastCS =colCS[i];              // Last    135         lastCS =colCS[i];              // Last CrossSect (A-dependent)
137         in = true;                     // This    136         in = true;                     // This is the case when the isotop is found in DB
138         // Momentum pMom is in IU ! @@ Units      137         // Momentum pMom is in IU ! @@ Units
139         lastCS=CalculateCrossSection(-1,j,2212    138         lastCS=CalculateCrossSection(-1,j,2212,lastZ,lastN,pMom); // read & update
140         if(lastCS<=0. && pMom>lastTH)  // Corr    139         if(lastCS<=0. && pMom>lastTH)  // Correct the threshold (@@ No intermediate Zeros)
141         {                                         140         {
142           lastCS=0.;                              141           lastCS=0.;
143           lastTH=pMom;                            142           lastTH=pMom;
144         }                                         143         }
145         break;                         // Go o    144         break;                         // Go out of the LOOP
146       }                                           145       }
147       j++;                             // Incr    146       j++;                             // Increment a#0f records found in DB
148     }                                             147     }
149     if(!in)                            // This    148     if(!in)                            // This isotope has not been calculated previously
150     {                                             149     {
151       //!!The slave functions must provide cro    150       //!!The slave functions must provide cross-sections in millibarns (mb) !! (not in IU)
152       lastCS=CalculateCrossSection(0,j,2212,la    151       lastCS=CalculateCrossSection(0,j,2212,lastZ,lastN,pMom); //calculate & create
153       //if(lastCS>0.)                   // It     152       //if(lastCS>0.)                   // It means that the AMBD was initialized
154       //{                                         153       //{
155                                                   154 
156       lastTH = 0; //ThresholdEnergy(tgZ, tgN);    155       lastTH = 0; //ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last
157         colN.push_back(tgN);                      156         colN.push_back(tgN);
158         colZ.push_back(tgZ);                      157         colZ.push_back(tgZ);
159         colP.push_back(pMom);                     158         colP.push_back(pMom);
160         colTH.push_back(lastTH);                  159         colTH.push_back(lastTH);
161         colCS.push_back(lastCS);                  160         colCS.push_back(lastCS);
162   //} // M.K. Presence of H1 with high thresho    161   //} // M.K. Presence of H1 with high threshold breaks the syncronization
163       return lastCS*millibarn;                    162       return lastCS*millibarn;
164     } // End of creation of the new set of par    163     } // End of creation of the new set of parameters
165     else                                          164     else
166     {                                             165     {
167       colP[lastI]=pMom;                           166       colP[lastI]=pMom;
168       colCS[lastI]=lastCS;                        167       colCS[lastI]=lastCS;
169     }                                             168     }
170   } // End of parameters udate                    169   } // End of parameters udate
171   else if(pMom<=lastTH)                           170   else if(pMom<=lastTH)
172   {                                               171   {
173     return 0.;                         // Mome    172     return 0.;                         // Momentum is below the Threshold Value -> CS=0
174   }                                               173   }
175   else                                 // It i    174   else                                 // It is the last used -> use the current tables
176   {                                               175   {
177     lastCS=CalculateCrossSection(1,j,2212,last    176     lastCS=CalculateCrossSection(1,j,2212,lastZ,lastN,pMom); // Only read and UpdateDB
178     lastP=pMom;                                   177     lastP=pMom;
179   }                                               178   }
180   return lastCS*millibarn;                        179   return lastCS*millibarn;
181 }                                                 180 }
182                                                   181 
183 // The main member function giving the gamma-A    182 // The main member function giving the gamma-A cross section (E in GeV, CS in mb)
184 G4double G4ChipsProtonInelasticXS::CalculateCr    183 G4double G4ChipsProtonInelasticXS::CalculateCrossSection(G4int F, G4int I,
185                                         G4int,    184                                         G4int, G4int targZ, G4int targN, G4double Momentum)
186 {                                                 185 {
187   static const G4double THmin=27.;     // defa    186   static const G4double THmin=27.;     // default minimum Momentum (MeV/c) Threshold
188   static const G4double THmiG=THmin*.001; // m    187   static const G4double THmiG=THmin*.001; // minimum Momentum (GeV/c) Threshold
189   static const G4double dP=10.;        // step    188   static const G4double dP=10.;        // step for the LEN (Low ENergy) table MeV/c
190   static const G4double dPG=dP*.001;   // step    189   static const G4double dPG=dP*.001;   // step for the LEN (Low ENergy) table GeV/c
191   static const G4int    nL=105;        // A#of    190   static const G4int    nL=105;        // A#of LEN points in E (step 10 MeV/c)
192   static const G4double Pmin=THmin+(nL-1)*dP;     191   static const G4double Pmin=THmin+(nL-1)*dP; // minP for the HighE part with safety
193   static const G4double Pmax=227000.;  // maxP    192   static const G4double Pmax=227000.;  // maxP for the HEN (High ENergy) part 227 GeV
194   static const G4int    nH=224;        // A#of    193   static const G4int    nH=224;        // A#of HEN points in lnE
195   static const G4double milP=G4Log(Pmin);// Lo << 194   static const G4double milP=std::log(Pmin);// Low logarithm energy for the HEN part
196   static const G4double malP=G4Log(Pmax);// Hi << 195   static const G4double malP=std::log(Pmax);// High logarithm energy (each 2.75 percent)
197   static const G4double dlP=(malP-milP)/(nH-1)    196   static const G4double dlP=(malP-milP)/(nH-1); // Step in log energy in the HEN part
198   static const G4double milPG=G4Log(.001*Pmin) << 197   static const G4double milPG=std::log(.001*Pmin);// Low logarithmEnergy for HEN part GeV/c
                                                   >> 198   G4double sigma=0.;
                                                   >> 199   if(F&&I) sigma=0.;                   // @@ *!* Fake line *!* to use F & I !!!Temporary!!!
                                                   >> 200   //G4double A=targN+targZ;              // A of the target
199   if(F<=0)                             // This    201   if(F<=0)                             // This isotope was not the last used isotop
200   {                                               202   {
201     if(F<0)                            // This    203     if(F<0)                            // This isotope was found in DAMDB =-----=> RETRIEVE
202     {                                             204     {
203       G4int sync=(G4int)LEN->size();           << 205       G4int sync=LEN->size();
204       if(sync<=I) G4cout<<"*!*G4QProtonNuclCS:    206       if(sync<=I) G4cout<<"*!*G4QProtonNuclCS::CalcCrossSect:Sync="<<sync<<"<="<<I<<G4endl;
205       lastLEN=(*LEN)[I];               // Poin    207       lastLEN=(*LEN)[I];               // Pointer to prepared LowEnergy cross sections
206       lastHEN=(*HEN)[I];               // Poin    208       lastHEN=(*HEN)[I];               // Pointer to prepared High Energy cross sections
207     }                                             209     }
208     else                               // This    210     else                               // This isotope wasn't calculated before => CREATE
209     {                                             211     {
210       lastLEN = new G4double[nL];      // Allo    212       lastLEN = new G4double[nL];      // Allocate memory for the new LEN cross sections
211       lastHEN = new G4double[nH];      // Allo    213       lastHEN = new G4double[nH];      // Allocate memory for the new HEN cross sections
212       // --- Instead of making a separate func    214       // --- Instead of making a separate function ---
213       G4double P=THmiG;                // Tabl    215       G4double P=THmiG;                // Table threshold in GeV/c
214       for(G4int k=0; k<nL; ++k)                << 216       for(G4int k=0; k<nL; k++)
215       {                                           217       {
216         lastLEN[k] = CrossSectionLin(targZ, ta    218         lastLEN[k] = CrossSectionLin(targZ, targN, P);
217         P+=dPG;                                   219         P+=dPG;
218       }                                           220       }
219       G4double lP=milPG;                          221       G4double lP=milPG;
220       for(G4int n=0; n<nH; ++n)                << 222       for(G4int n=0; n<nH; n++)
221       {                                           223       {
222         lastHEN[n] = CrossSectionLog(targZ, ta    224         lastHEN[n] = CrossSectionLog(targZ, targN, lP);
223         lP+=dlP;                                  225         lP+=dlP;
224       }                                           226       }
225       // --- End of possible separate function    227       // --- End of possible separate function
226       // *** The synchronization check ***        228       // *** The synchronization check ***
227       G4int sync=(G4int)LEN->size();           << 229       G4int sync=LEN->size();
228       if(sync!=I)                                 230       if(sync!=I)
229       {                                           231       {
230         G4cout<<"***G4ChipsProtonNuclCS::CalcC    232         G4cout<<"***G4ChipsProtonNuclCS::CalcCrossSect: Sinc="<<sync<<"#"<<I<<", Z=" <<targZ
231               <<", N="<<targN<<", F="<<F<<G4en    233               <<", N="<<targN<<", F="<<F<<G4endl;
232         //G4Exception("G4ProtonNuclearCS::Calc    234         //G4Exception("G4ProtonNuclearCS::CalculateCS:","39",FatalException,"overflow DB");
233       }                                           235       }
234       LEN->push_back(lastLEN);          // rem    236       LEN->push_back(lastLEN);          // remember the Low Energy Table
235       HEN->push_back(lastHEN);          // rem    237       HEN->push_back(lastHEN);          // remember the High Energy Table
236     } // End of creation of the new set of par    238     } // End of creation of the new set of parameters
237   } // End of parameters udate                    239   } // End of parameters udate
238   // =------------------= NOW the Magic Formul    240   // =------------------= NOW the Magic Formula =-----------------------=
239   G4double sigma;                              << 
240   if (Momentum<lastTH) return 0.;      // It m    241   if (Momentum<lastTH) return 0.;      // It must be already checked in the interface class
241   else if (Momentum<Pmin)              // High    242   else if (Momentum<Pmin)              // High Energy region
242   {                                               243   {
243     sigma=EquLinearFit(Momentum,nL,THmin,dP,la    244     sigma=EquLinearFit(Momentum,nL,THmin,dP,lastLEN);
244   }                                               245   }
245   else if (Momentum<Pmax)              // High    246   else if (Momentum<Pmax)              // High Energy region
246   {                                               247   {
247     G4double lP=G4Log(Momentum);               << 248     G4double lP=std::log(Momentum);
248     sigma=EquLinearFit(lP,nH,milP,dlP,lastHEN)    249     sigma=EquLinearFit(lP,nH,milP,dlP,lastHEN);
249   }                                               250   }
250   else                                 // UHE     251   else                                 // UHE region (calculation, not frequent)
251   {                                               252   {
252     G4double P=0.001*Momentum;         // Appr    253     G4double P=0.001*Momentum;         // Approximation formula is for P in GeV/c
253     sigma=CrossSectionFormula(targZ, targN, P, << 254     sigma=CrossSectionFormula(targZ, targN, P, std::log(P));
254   }                                               255   }
255   if(sigma<0.) return 0.;                         256   if(sigma<0.) return 0.;
256   return sigma;                                   257   return sigma;
257 }                                                 258 }
258                                                   259 
259 // Electromagnetic momentum-threshold (in MeV/    260 // Electromagnetic momentum-threshold (in MeV/c) 
260 G4double G4ChipsProtonInelasticXS::ThresholdMo    261 G4double G4ChipsProtonInelasticXS::ThresholdMomentum(G4int tZ, G4int tN)
261 {                                                 262 {
262   static const G4double third=1./3.;              263   static const G4double third=1./3.;
263   static const G4double pM = G4Proton::Proton(    264   static const G4double pM = G4Proton::Proton()->Definition()->GetPDGMass(); // Projectile mass in MeV
264   static const G4double tpM= pM+pM;       // D    265   static const G4double tpM= pM+pM;       // Doubled projectile mass (MeV)
265                                                   266 
266   G4double tA=tZ+tN;                              267   G4double tA=tZ+tN;
267   if(tZ<.99 || tN<0.) return 0.;                  268   if(tZ<.99 || tN<0.) return 0.;
268   else if(tZ==1 && tN==0) return 800.;    // A    269   else if(tZ==1 && tN==0) return 800.;    // A threshold on the free proton
269   //G4double dE=1.263*tZ/(1.+G4Pow::GetInstanc << 270   //G4double dE=1.263*tZ/(1.+std::pow(tA,third));
270   G4double dE=tZ/(1.+G4Pow::GetInstance()->pow << 271   G4double dE=tZ/(1.+std::pow(tA,third)); // Safety for diffused edge of the nucleus (QE)
271   G4double tM=931.5*tA;                           272   G4double tM=931.5*tA;
272   G4double T=dE+dE*(dE/2+pM)/tM;                  273   G4double T=dE+dE*(dE/2+pM)/tM;
273   return std::sqrt(T*(tpM+T));                    274   return std::sqrt(T*(tpM+T));
274 }                                                 275 }
275                                                   276 
276 // Calculation formula for proton-nuclear inel    277 // Calculation formula for proton-nuclear inelastic cross-section (mb) (P in GeV/c)
277 G4double G4ChipsProtonInelasticXS::CrossSectio    278 G4double G4ChipsProtonInelasticXS::CrossSectionLin(G4int tZ, G4int tN, G4double P)
278 {                                                 279 {
279   G4double sigma=0.;                              280   G4double sigma=0.;
280   if(P<ThresholdMomentum(tZ,tN)*.001) return s    281   if(P<ThresholdMomentum(tZ,tN)*.001) return sigma;
281   G4double lP=G4Log(P);                        << 282   G4double lP=std::log(P);
282   if(tZ==1&&!tN){if(P>.35) sigma=CrossSectionF    283   if(tZ==1&&!tN){if(P>.35) sigma=CrossSectionFormula(tZ,tN,P,lP);}// s(pp)=0 below 350Mev/c
283   else if(tZ<97 && tN<152)                // G    284   else if(tZ<97 && tN<152)                // General solution
284   {                                               285   {
285     G4double pex=0.;                              286     G4double pex=0.;
286     G4double pos=0.;                              287     G4double pos=0.;
287     G4double wid=1.;                              288     G4double wid=1.;
288     if(tZ==13 && tN==14)                  // E    289     if(tZ==13 && tN==14)                  // Excited metastable states
289     {                                             290     {
290       pex=230.;                                   291       pex=230.;
291       pos=.13;                                    292       pos=.13;
292       wid=8.e-5;                                  293       wid=8.e-5;
293     }                                             294     }
294     else if(tZ<7)                                 295     else if(tZ<7)
295     {                                             296     {
296       if(tZ==6 && tN==6)                          297       if(tZ==6 && tN==6)
297       {                                           298       {
298         pex=320.;                                 299         pex=320.;
299         pos=.14;                                  300         pos=.14;
300         wid=7.e-6;                                301         wid=7.e-6;
301       }                                           302       }
302       else if(tZ==5 && tN==6)                     303       else if(tZ==5 && tN==6)
303       {                                           304       {
304         pex=270.;                                 305         pex=270.;
305         pos=.17;                                  306         pos=.17;
306         wid=.002;                                 307         wid=.002;
307       }                                           308       }
308       else if(tZ==4 && tN==5)                     309       else if(tZ==4 && tN==5)
309       {                                           310       {
310         pex=600.;                                 311         pex=600.;
311         pos=.132;                                 312         pos=.132;
312         wid=.005;                                 313         wid=.005;
313       }                                           314       }
314       else if(tZ==3 && tN==4)                     315       else if(tZ==3 && tN==4)
315       {                                           316       {
316         pex=280.;                                 317         pex=280.;
317         pos=.19;                                  318         pos=.19;
318         wid=.0025;                                319         wid=.0025;
319       }                                           320       }
320       else if(tZ==3 && tN==3)                     321       else if(tZ==3 && tN==3)
321       {                                           322       {
322         pex=370.;                                 323         pex=370.;
323         pos=.171;                                 324         pos=.171;
324         wid=.006;                                 325         wid=.006;
325       }                                           326       }
326       else if(tZ==2 && tN==1)                     327       else if(tZ==2 && tN==1)
327       {                                           328       {
328         pex=30.;                                  329         pex=30.;
329         pos=.22;                                  330         pos=.22;
330         wid=.0005;                                331         wid=.0005;
331       }                                           332       }
332     }                                             333     }
333     sigma=CrossSectionFormula(tZ,tN,P,lP);        334     sigma=CrossSectionFormula(tZ,tN,P,lP);
334     if(pex>0.)                                    335     if(pex>0.)
335     {                                             336     {
336       G4double dp=P-pos;                          337       G4double dp=P-pos;
337       sigma+=pex*G4Exp(-dp*dp/wid);            << 338       sigma+=pex*std::exp(-dp*dp/wid);
338     }                                             339     }
339   }                                               340   }
340   else                                            341   else
341   {                                               342   {
342     G4cerr<<"-Warning-G4ChipsProtonNuclearXS::    343     G4cerr<<"-Warning-G4ChipsProtonNuclearXS::CSLin:*Bad A* Z="<<tZ<<", N="<<tN<<G4endl;
343     sigma=0.;                                     344     sigma=0.;
344   }                                               345   }
345   if(sigma<0.) return 0.;                         346   if(sigma<0.) return 0.;
346   return sigma;                                   347   return sigma;  
347 }                                                 348 }
348                                                   349 
349 // Calculation formula for proton-nuclear inel    350 // Calculation formula for proton-nuclear inelastic cross-section (mb) log(P in GeV/c)
350 G4double G4ChipsProtonInelasticXS::CrossSectio    351 G4double G4ChipsProtonInelasticXS::CrossSectionLog(G4int tZ, G4int tN, G4double lP)
351 {                                                 352 {
352   G4double P=G4Exp(lP);                        << 353   G4double P=std::exp(lP);
353   return CrossSectionFormula(tZ, tN, P, lP);      354   return CrossSectionFormula(tZ, tN, P, lP);
354 }                                                 355 }
355 // Calculation formula for proton-nuclear inel    356 // Calculation formula for proton-nuclear inelastic cross-section (mb) log(P in GeV/c)
356 G4double G4ChipsProtonInelasticXS::CrossSectio    357 G4double G4ChipsProtonInelasticXS::CrossSectionFormula(G4int tZ, G4int tN,
357                                                   358                                                            G4double P, G4double lP)
358 {                                                 359 {
359   G4double sigma=0.;                              360   G4double sigma=0.;
360   if(tZ==1 && !tN)                        // p    361   if(tZ==1 && !tN)                        // pp interaction (from G4QuasiElasticRatios)
361   {                                               362   {
362     G4double El(0.),To(0.);               // U << 
363     if(P<0.1)                             // C << 
364     {                                          << 
365       G4double p2=P*P;                         << 
366       El=1./(0.00012+p2*0.2);                  << 
367       To=El;                                   << 
368     }                                          << 
369     else if(P>1000.)                           << 
370     {                                          << 
371       G4double lp=G4Log(P)-3.5;                << 
372       G4double lp2=lp*lp;                      << 
373       El=0.0557*lp2+6.72;                      << 
374       To=0.3*lp2+38.2;                         << 
375     }                                          << 
376     else                                       << 
377     {                                          << 
378       G4double p2=P*P;                         << 
379       G4double LE=1./(0.00012+p2*0.2);         << 
380       G4double lp=G4Log(P)-3.5;                << 
381       G4double lp2=lp*lp;                      << 
382       G4double rp2=1./p2;                      << 
383       El=LE+(0.0557*lp2+6.72+32.6/P)/(1.+rp2/P << 
384       To=LE+(0.3   *lp2+38.2+52.7*rp2)/(1.+2.7 << 
385     }                                   // Cop << 
386                                                << 
387 /*                                             << 
388     G4double p2=P*P;                              363     G4double p2=P*P;
389     G4double lp=lP-3.5;                           364     G4double lp=lP-3.5;
390     G4double lp2=lp*lp;                           365     G4double lp2=lp*lp;
391     G4double rp2=1./p2;                           366     G4double rp2=1./p2;
392     G4double El=(.0557*lp2+6.72+30./P)/(1.+.49    367     G4double El=(.0557*lp2+6.72+30./P)/(1.+.49*rp2/P);
393     G4double To=(.3*lp2+38.2)/(1.+.54*rp2*rp2)    368     G4double To=(.3*lp2+38.2)/(1.+.54*rp2*rp2);
394 */                                             << 
395                                                << 
396     sigma=To-El;                                  369     sigma=To-El;
397   }                                               370   }
398   else if(tZ<97 && tN<152)                // G    371   else if(tZ<97 && tN<152)                // General solution
399   {                                               372   {
400     //G4double lP=G4Log(P);            // Alre << 373     //G4double lP=std::log(P);            // Already calculated
401     G4double d=lP-4.2;                            374     G4double d=lP-4.2;
402     G4double p2=P*P;                              375     G4double p2=P*P;
403     G4double p4=p2*p2;                            376     G4double p4=p2*p2;
404     G4double a=tN+tZ;                       //    377     G4double a=tN+tZ;                       // A of the target
405     G4double al=G4Log(a);                      << 378     G4double al=std::log(a);
406     G4double sa=std::sqrt(a);                     379     G4double sa=std::sqrt(a);
407     G4double a2=a*a;                              380     G4double a2=a*a;
408     G4double a2s=a2*sa;                           381     G4double a2s=a2*sa;
409     G4double a4=a2*a2;                            382     G4double a4=a2*a2;
410     G4double a8=a4*a4;                            383     G4double a8=a4*a4;
411     G4double a12=a8*a4;                           384     G4double a12=a8*a4;
412     G4double a16=a8*a8;                           385     G4double a16=a8*a8;
413     G4double c=(170.+3600./a2s)/(1.+65./a2s);     386     G4double c=(170.+3600./a2s)/(1.+65./a2s);
414     G4double dl=al-3.;                            387     G4double dl=al-3.;
415     G4double dl2=dl*dl;                           388     G4double dl2=dl*dl;
416     G4double r=.21+.62*dl2/(1.+.5*dl2);           389     G4double r=.21+.62*dl2/(1.+.5*dl2);
417     G4double gg=40.*G4Exp(al*0.712)/(1.+12.2/a << 390     G4double gg=40.*std::exp(al*0.712)/(1.+12.2/a)/(1.+34./a2);
418     G4double e=318.+a4/(1.+.0015*a4/G4Exp(al*0 << 391     G4double e=318.+a4/(1.+.0015*a4/std::exp(al*0.09))/(1.+4.e-28*a12)+
419                8.e-18/(1./a16+1.3e-20)/(1.+1.e    392                8.e-18/(1./a16+1.3e-20)/(1.+1.e-21*a12);
420     G4double ss=3.57+.009*a2/(1.+.0001*a2*a);     393     G4double ss=3.57+.009*a2/(1.+.0001*a2*a);
421     G4double h=(.01/a4+2.5e-6/a)*(1.+6.e-6*a2*    394     G4double h=(.01/a4+2.5e-6/a)*(1.+6.e-6*a2*a)/(1.+6.e7/a12/a2);
422     sigma=(c+d*d)/(1.+r/p4)+(gg+e*G4Exp(-ss*P) << 395     sigma=(c+d*d)/(1.+r/p4)+(gg+e*std::exp(-ss*P))/(1.+h/p4/p4);
423   }                                               396   }
424   else                                            397   else
425   {                                               398   {
426     G4cerr<<"-Warning-G4QProtonNuclearCroSect:    399     G4cerr<<"-Warning-G4QProtonNuclearCroSect::CSForm:*Bad A* Z="<<tZ<<", N="<<tN<<G4endl;
427     sigma=0.;                                     400     sigma=0.;
428   }                                               401   }
429   if(sigma<0.) return 0.;                         402   if(sigma<0.) return 0.;
430   return sigma;                                   403   return sigma;  
431 }                                                 404 }
432                                                   405 
433 G4double G4ChipsProtonInelasticXS::EquLinearFi    406 G4double G4ChipsProtonInelasticXS::EquLinearFit(G4double X, G4int N, G4double X0, G4double DX, G4double* Y)
434 {                                                 407 {
435   if(DX<=0. || N<2)                               408   if(DX<=0. || N<2)
436     {                                             409     {
437       G4cerr<<"***G4ChipsProtonInelasticXS::Eq    410       G4cerr<<"***G4ChipsProtonInelasticXS::EquLinearFit: DX="<<DX<<", N="<<N<<G4endl;
438       return Y[0];                                411       return Y[0];
439     }                                             412     }
440                                                   413   
441   G4int    N2=N-2;                                414   G4int    N2=N-2;
442   G4double d=(X-X0)/DX;                           415   G4double d=(X-X0)/DX;
443   G4int         jj=static_cast<int>(d);        << 416   G4int         j=static_cast<int>(d);
444   if     (jj<0)  jj=0;                         << 417   if     (j<0)  j=0;
445   else if(jj>N2) jj=N2;                        << 418   else if(j>N2) j=N2;
446   d-=jj; // excess                             << 419   d-=j; // excess
447   G4double yi=Y[jj];                           << 420   G4double yi=Y[j];
448   G4double sigma=yi+(Y[jj+1]-yi)*d;            << 421   G4double sigma=yi+(Y[j+1]-yi)*d;
449                                                   422   
450   return sigma;                                   423   return sigma;
451 }                                                 424 }
452                                                   425