Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // 27 // The lust update: M.V. Kossov, CERN/ITEP(Mos 27 // The lust update: M.V. Kossov, CERN/ITEP(Moscow) 17-June-02 28 // 28 // 29 // 29 // 30 // G4 Physics class: G4ChipsProtonInelasticXS 30 // G4 Physics class: G4ChipsProtonInelasticXS for gamma+A cross sections 31 // Created: M.V. Kossov, CERN/ITEP(Moscow), 20 31 // Created: M.V. Kossov, CERN/ITEP(Moscow), 20-Dec-03 32 // The last update: M.V. Kossov, CERN/ITEP (Mo 32 // The last update: M.V. Kossov, CERN/ITEP (Moscow) 15-Feb-04 33 // 33 // 34 // 34 // 35 // ******************************************* 35 // **************************************************************************************** 36 // Short description: Cross-sections extracted 36 // Short description: Cross-sections extracted (by W.Pokorski) from the CHIPS package for 37 // proton-nuclear interactions. Original auth 37 // proton-nuclear interactions. Original author: M. Kossov 38 // ------------------------------------------- 38 // ------------------------------------------------------------------------------------- 39 // 39 // 40 40 41 41 42 #include "G4ChipsProtonInelasticXS.hh" 42 #include "G4ChipsProtonInelasticXS.hh" 43 #include "G4SystemOfUnits.hh" 43 #include "G4SystemOfUnits.hh" 44 #include "G4DynamicParticle.hh" 44 #include "G4DynamicParticle.hh" 45 #include "G4ParticleDefinition.hh" 45 #include "G4ParticleDefinition.hh" 46 #include "G4Proton.hh" 46 #include "G4Proton.hh" 47 #include "G4Log.hh" 47 #include "G4Log.hh" 48 #include "G4Exp.hh" 48 #include "G4Exp.hh" 49 #include "G4Pow.hh" 49 #include "G4Pow.hh" 50 50 51 51 52 // factory 52 // factory 53 #include "G4CrossSectionFactory.hh" 53 #include "G4CrossSectionFactory.hh" 54 // 54 // 55 G4_DECLARE_XS_FACTORY(G4ChipsProtonInelasticXS 55 G4_DECLARE_XS_FACTORY(G4ChipsProtonInelasticXS); 56 56 57 G4ChipsProtonInelasticXS::G4ChipsProtonInelast 57 G4ChipsProtonInelasticXS::G4ChipsProtonInelasticXS():G4VCrossSectionDataSet(Default_Name()) 58 { 58 { 59 // Initialization of the 59 // Initialization of the 60 lastLEN=0; // Pointer to the lastArray of Lo 60 lastLEN=0; // Pointer to the lastArray of LowEn CS 61 lastHEN=0; // Pointer to the lastArray of Hi 61 lastHEN=0; // Pointer to the lastArray of HighEn CS 62 lastN=0; // The last N of calculated nucle 62 lastN=0; // The last N of calculated nucleus 63 lastZ=0; // The last Z of calculated nucle 63 lastZ=0; // The last Z of calculated nucleus 64 lastP=0.; // Last used in cross section Mom 64 lastP=0.; // Last used in cross section Momentum 65 lastTH=0.; // Last threshold momentum 65 lastTH=0.; // Last threshold momentum 66 lastCS=0.; // Last value of the Cross Sectio 66 lastCS=0.; // Last value of the Cross Section 67 lastI=0; // The last position in the DAMDB 67 lastI=0; // The last position in the DAMDB 68 68 69 LEN = new std::vector<G4double*>; 69 LEN = new std::vector<G4double*>; 70 HEN = new std::vector<G4double*>; 70 HEN = new std::vector<G4double*>; 71 } 71 } 72 72 73 G4ChipsProtonInelasticXS::~G4ChipsProtonInelas 73 G4ChipsProtonInelasticXS::~G4ChipsProtonInelasticXS() 74 { 74 { 75 std::size_t lens=LEN->size(); << 75 G4int lens=LEN->size(); 76 for(std::size_t i=0; i<lens; ++i) delete[] ( << 76 for(G4int i=0; i<lens; ++i) delete[] (*LEN)[i]; 77 delete LEN; 77 delete LEN; 78 std::size_t hens=HEN->size(); << 78 G4int hens=HEN->size(); 79 for(std::size_t i=0; i<hens; ++i) delete[] ( << 79 for(G4int i=0; i<hens; ++i) delete[] (*HEN)[i]; 80 delete HEN; 80 delete HEN; 81 } 81 } 82 82 83 void 83 void 84 G4ChipsProtonInelasticXS::CrossSectionDescript 84 G4ChipsProtonInelasticXS::CrossSectionDescription(std::ostream& outFile) const 85 { 85 { 86 outFile << "G4ChipsProtonInelasticXS provi 86 outFile << "G4ChipsProtonInelasticXS provides the inelastic cross\n" 87 << "section for proton nucleus sca 87 << "section for proton nucleus scattering as a function of incident\n" 88 << "momentum. The cross section is 88 << "momentum. The cross section is calculated using M. Kossov's\n" 89 << "CHIPS parameterization of cros 89 << "CHIPS parameterization of cross section data.\n"; 90 } 90 } 91 91 92 G4bool G4ChipsProtonInelasticXS::IsIsoApplicab 92 G4bool G4ChipsProtonInelasticXS::IsIsoApplicable(const G4DynamicParticle*, G4int, G4int, 93 const G4Element*, 93 const G4Element*, 94 const G4Material*) 94 const G4Material*) 95 { 95 { 96 return true; 96 return true; 97 } 97 } 98 98 99 99 100 // The main member function giving the collisi 100 // The main member function giving the collision cross section (P is in IU, CS is in mb) 101 // Make pMom in independent units ! (Now it is 101 // Make pMom in independent units ! (Now it is MeV) 102 G4double G4ChipsProtonInelasticXS::GetIsoCross 102 G4double G4ChipsProtonInelasticXS::GetIsoCrossSection(const G4DynamicParticle* Pt, G4int tgZ, G4int A, 103 << 103 const G4Isotope*, 104 << 104 const G4Element*, 105 << 105 const G4Material*) 106 { 106 { 107 G4double pMom=Pt->GetTotalMomentum(); 107 G4double pMom=Pt->GetTotalMomentum(); 108 G4int tgN = A - tgZ; 108 G4int tgN = A - tgZ; 109 109 110 return GetChipsCrossSection(pMom, tgZ, tgN, 110 return GetChipsCrossSection(pMom, tgZ, tgN, 2212); 111 } 111 } 112 112 113 G4double G4ChipsProtonInelasticXS::GetChipsCro 113 G4double G4ChipsProtonInelasticXS::GetChipsCrossSection(G4double pMom, G4int tgZ, G4int tgN, G4int) 114 { 114 { 115 115 116 G4bool in=false; // By d 116 G4bool in=false; // By default the isotope must be found in the AMDB 117 if(tgN!=lastN || tgZ!=lastZ) // The 117 if(tgN!=lastN || tgZ!=lastZ) // The nucleus was not the last used isotope 118 { 118 { 119 in = false; // By d 119 in = false; // By default the isotope haven't been found in AMDB 120 lastP = 0.; // New 120 lastP = 0.; // New momentum history (nothing to compare with) 121 lastN = tgN; // The 121 lastN = tgN; // The last N of the calculated nucleus 122 lastZ = tgZ; // The 122 lastZ = tgZ; // The last Z of the calculated nucleus 123 lastI = (G4int)colN.size(); // Size << 123 lastI = colN.size(); // Size of the Associative Memory DB in the heap 124 j = 0; // A#0f 124 j = 0; // A#0f records found in DB for this projectile 125 if(lastI) for(G4int i=0; i<lastI; ++i) // << 125 if(lastI) for(G4int i=0; i<lastI; i++) // AMDB exists, try to find the (Z,N) isotope 126 { 126 { 127 if(colN[i]==tgN && colZ[i]==tgZ) // Try 127 if(colN[i]==tgN && colZ[i]==tgZ) // Try the record "i" in the AMDB 128 { 128 { 129 lastI=i; // Reme 129 lastI=i; // Remember the index for future fast/last use 130 lastTH =colTH[i]; // The 130 lastTH =colTH[i]; // The last THreshold (A-dependent) 131 if(pMom<=lastTH) 131 if(pMom<=lastTH) 132 { 132 { 133 return 0.; // Ener 133 return 0.; // Energy is below the Threshold value 134 } 134 } 135 lastP =colP [i]; // Last 135 lastP =colP [i]; // Last Momentum (A-dependent) 136 lastCS =colCS[i]; // Last 136 lastCS =colCS[i]; // Last CrossSect (A-dependent) 137 in = true; // This 137 in = true; // This is the case when the isotop is found in DB 138 // Momentum pMom is in IU ! @@ Units 138 // Momentum pMom is in IU ! @@ Units 139 lastCS=CalculateCrossSection(-1,j,2212 139 lastCS=CalculateCrossSection(-1,j,2212,lastZ,lastN,pMom); // read & update 140 if(lastCS<=0. && pMom>lastTH) // Corr 140 if(lastCS<=0. && pMom>lastTH) // Correct the threshold (@@ No intermediate Zeros) 141 { 141 { 142 lastCS=0.; 142 lastCS=0.; 143 lastTH=pMom; 143 lastTH=pMom; 144 } 144 } 145 break; // Go o 145 break; // Go out of the LOOP 146 } 146 } 147 j++; // Incr 147 j++; // Increment a#0f records found in DB 148 } 148 } 149 if(!in) // This 149 if(!in) // This isotope has not been calculated previously 150 { 150 { 151 //!!The slave functions must provide cro 151 //!!The slave functions must provide cross-sections in millibarns (mb) !! (not in IU) 152 lastCS=CalculateCrossSection(0,j,2212,la 152 lastCS=CalculateCrossSection(0,j,2212,lastZ,lastN,pMom); //calculate & create 153 //if(lastCS>0.) // It 153 //if(lastCS>0.) // It means that the AMBD was initialized 154 //{ 154 //{ 155 155 156 lastTH = 0; //ThresholdEnergy(tgZ, tgN); 156 lastTH = 0; //ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last 157 colN.push_back(tgN); 157 colN.push_back(tgN); 158 colZ.push_back(tgZ); 158 colZ.push_back(tgZ); 159 colP.push_back(pMom); 159 colP.push_back(pMom); 160 colTH.push_back(lastTH); 160 colTH.push_back(lastTH); 161 colCS.push_back(lastCS); 161 colCS.push_back(lastCS); 162 //} // M.K. Presence of H1 with high thresho 162 //} // M.K. Presence of H1 with high threshold breaks the syncronization 163 return lastCS*millibarn; 163 return lastCS*millibarn; 164 } // End of creation of the new set of par 164 } // End of creation of the new set of parameters 165 else 165 else 166 { 166 { 167 colP[lastI]=pMom; 167 colP[lastI]=pMom; 168 colCS[lastI]=lastCS; 168 colCS[lastI]=lastCS; 169 } 169 } 170 } // End of parameters udate 170 } // End of parameters udate 171 else if(pMom<=lastTH) 171 else if(pMom<=lastTH) 172 { 172 { 173 return 0.; // Mome 173 return 0.; // Momentum is below the Threshold Value -> CS=0 174 } 174 } 175 else // It i 175 else // It is the last used -> use the current tables 176 { 176 { 177 lastCS=CalculateCrossSection(1,j,2212,last 177 lastCS=CalculateCrossSection(1,j,2212,lastZ,lastN,pMom); // Only read and UpdateDB 178 lastP=pMom; 178 lastP=pMom; 179 } 179 } 180 return lastCS*millibarn; 180 return lastCS*millibarn; 181 } 181 } 182 182 183 // The main member function giving the gamma-A 183 // The main member function giving the gamma-A cross section (E in GeV, CS in mb) 184 G4double G4ChipsProtonInelasticXS::CalculateCr 184 G4double G4ChipsProtonInelasticXS::CalculateCrossSection(G4int F, G4int I, 185 G4int, 185 G4int, G4int targZ, G4int targN, G4double Momentum) 186 { 186 { 187 static const G4double THmin=27.; // defa 187 static const G4double THmin=27.; // default minimum Momentum (MeV/c) Threshold 188 static const G4double THmiG=THmin*.001; // m 188 static const G4double THmiG=THmin*.001; // minimum Momentum (GeV/c) Threshold 189 static const G4double dP=10.; // step 189 static const G4double dP=10.; // step for the LEN (Low ENergy) table MeV/c 190 static const G4double dPG=dP*.001; // step 190 static const G4double dPG=dP*.001; // step for the LEN (Low ENergy) table GeV/c 191 static const G4int nL=105; // A#of 191 static const G4int nL=105; // A#of LEN points in E (step 10 MeV/c) 192 static const G4double Pmin=THmin+(nL-1)*dP; 192 static const G4double Pmin=THmin+(nL-1)*dP; // minP for the HighE part with safety 193 static const G4double Pmax=227000.; // maxP 193 static const G4double Pmax=227000.; // maxP for the HEN (High ENergy) part 227 GeV 194 static const G4int nH=224; // A#of 194 static const G4int nH=224; // A#of HEN points in lnE 195 static const G4double milP=G4Log(Pmin);// Lo 195 static const G4double milP=G4Log(Pmin);// Low logarithm energy for the HEN part 196 static const G4double malP=G4Log(Pmax);// Hi 196 static const G4double malP=G4Log(Pmax);// High logarithm energy (each 2.75 percent) 197 static const G4double dlP=(malP-milP)/(nH-1) 197 static const G4double dlP=(malP-milP)/(nH-1); // Step in log energy in the HEN part 198 static const G4double milPG=G4Log(.001*Pmin) 198 static const G4double milPG=G4Log(.001*Pmin);// Low logarithmEnergy for HEN part GeV/c >> 199 G4double sigma=0.; >> 200 if(F&&I) sigma=0.; // @@ *!* Fake line *!* to use F & I !!!Temporary!!! >> 201 //G4double A=targN+targZ; // A of the target 199 if(F<=0) // This 202 if(F<=0) // This isotope was not the last used isotop 200 { 203 { 201 if(F<0) // This 204 if(F<0) // This isotope was found in DAMDB =-----=> RETRIEVE 202 { 205 { 203 G4int sync=(G4int)LEN->size(); << 206 G4int sync=LEN->size(); 204 if(sync<=I) G4cout<<"*!*G4QProtonNuclCS: 207 if(sync<=I) G4cout<<"*!*G4QProtonNuclCS::CalcCrossSect:Sync="<<sync<<"<="<<I<<G4endl; 205 lastLEN=(*LEN)[I]; // Poin 208 lastLEN=(*LEN)[I]; // Pointer to prepared LowEnergy cross sections 206 lastHEN=(*HEN)[I]; // Poin 209 lastHEN=(*HEN)[I]; // Pointer to prepared High Energy cross sections 207 } 210 } 208 else // This 211 else // This isotope wasn't calculated before => CREATE 209 { 212 { 210 lastLEN = new G4double[nL]; // Allo 213 lastLEN = new G4double[nL]; // Allocate memory for the new LEN cross sections 211 lastHEN = new G4double[nH]; // Allo 214 lastHEN = new G4double[nH]; // Allocate memory for the new HEN cross sections 212 // --- Instead of making a separate func 215 // --- Instead of making a separate function --- 213 G4double P=THmiG; // Tabl 216 G4double P=THmiG; // Table threshold in GeV/c 214 for(G4int k=0; k<nL; ++k) << 217 for(G4int k=0; k<nL; k++) 215 { 218 { 216 lastLEN[k] = CrossSectionLin(targZ, ta 219 lastLEN[k] = CrossSectionLin(targZ, targN, P); 217 P+=dPG; 220 P+=dPG; 218 } 221 } 219 G4double lP=milPG; 222 G4double lP=milPG; 220 for(G4int n=0; n<nH; ++n) << 223 for(G4int n=0; n<nH; n++) 221 { 224 { 222 lastHEN[n] = CrossSectionLog(targZ, ta 225 lastHEN[n] = CrossSectionLog(targZ, targN, lP); 223 lP+=dlP; 226 lP+=dlP; 224 } 227 } 225 // --- End of possible separate function 228 // --- End of possible separate function 226 // *** The synchronization check *** 229 // *** The synchronization check *** 227 G4int sync=(G4int)LEN->size(); << 230 G4int sync=LEN->size(); 228 if(sync!=I) 231 if(sync!=I) 229 { 232 { 230 G4cout<<"***G4ChipsProtonNuclCS::CalcC 233 G4cout<<"***G4ChipsProtonNuclCS::CalcCrossSect: Sinc="<<sync<<"#"<<I<<", Z=" <<targZ 231 <<", N="<<targN<<", F="<<F<<G4en 234 <<", N="<<targN<<", F="<<F<<G4endl; 232 //G4Exception("G4ProtonNuclearCS::Calc 235 //G4Exception("G4ProtonNuclearCS::CalculateCS:","39",FatalException,"overflow DB"); 233 } 236 } 234 LEN->push_back(lastLEN); // rem 237 LEN->push_back(lastLEN); // remember the Low Energy Table 235 HEN->push_back(lastHEN); // rem 238 HEN->push_back(lastHEN); // remember the High Energy Table 236 } // End of creation of the new set of par 239 } // End of creation of the new set of parameters 237 } // End of parameters udate 240 } // End of parameters udate 238 // =------------------= NOW the Magic Formul 241 // =------------------= NOW the Magic Formula =-----------------------= 239 G4double sigma; << 240 if (Momentum<lastTH) return 0.; // It m 242 if (Momentum<lastTH) return 0.; // It must be already checked in the interface class 241 else if (Momentum<Pmin) // High 243 else if (Momentum<Pmin) // High Energy region 242 { 244 { 243 sigma=EquLinearFit(Momentum,nL,THmin,dP,la 245 sigma=EquLinearFit(Momentum,nL,THmin,dP,lastLEN); 244 } 246 } 245 else if (Momentum<Pmax) // High 247 else if (Momentum<Pmax) // High Energy region 246 { 248 { 247 G4double lP=G4Log(Momentum); 249 G4double lP=G4Log(Momentum); 248 sigma=EquLinearFit(lP,nH,milP,dlP,lastHEN) 250 sigma=EquLinearFit(lP,nH,milP,dlP,lastHEN); 249 } 251 } 250 else // UHE 252 else // UHE region (calculation, not frequent) 251 { 253 { 252 G4double P=0.001*Momentum; // Appr 254 G4double P=0.001*Momentum; // Approximation formula is for P in GeV/c 253 sigma=CrossSectionFormula(targZ, targN, P, 255 sigma=CrossSectionFormula(targZ, targN, P, G4Log(P)); 254 } 256 } 255 if(sigma<0.) return 0.; 257 if(sigma<0.) return 0.; 256 return sigma; 258 return sigma; 257 } 259 } 258 260 259 // Electromagnetic momentum-threshold (in MeV/ 261 // Electromagnetic momentum-threshold (in MeV/c) 260 G4double G4ChipsProtonInelasticXS::ThresholdMo 262 G4double G4ChipsProtonInelasticXS::ThresholdMomentum(G4int tZ, G4int tN) 261 { 263 { 262 static const G4double third=1./3.; 264 static const G4double third=1./3.; 263 static const G4double pM = G4Proton::Proton( 265 static const G4double pM = G4Proton::Proton()->Definition()->GetPDGMass(); // Projectile mass in MeV 264 static const G4double tpM= pM+pM; // D 266 static const G4double tpM= pM+pM; // Doubled projectile mass (MeV) 265 267 266 G4double tA=tZ+tN; 268 G4double tA=tZ+tN; 267 if(tZ<.99 || tN<0.) return 0.; 269 if(tZ<.99 || tN<0.) return 0.; 268 else if(tZ==1 && tN==0) return 800.; // A 270 else if(tZ==1 && tN==0) return 800.; // A threshold on the free proton 269 //G4double dE=1.263*tZ/(1.+G4Pow::GetInstanc 271 //G4double dE=1.263*tZ/(1.+G4Pow::GetInstance()->powA(tA,third)); 270 G4double dE=tZ/(1.+G4Pow::GetInstance()->pow 272 G4double dE=tZ/(1.+G4Pow::GetInstance()->powA(tA,third)); // Safety for diffused edge of the nucleus (QE) 271 G4double tM=931.5*tA; 273 G4double tM=931.5*tA; 272 G4double T=dE+dE*(dE/2+pM)/tM; 274 G4double T=dE+dE*(dE/2+pM)/tM; 273 return std::sqrt(T*(tpM+T)); 275 return std::sqrt(T*(tpM+T)); 274 } 276 } 275 277 276 // Calculation formula for proton-nuclear inel 278 // Calculation formula for proton-nuclear inelastic cross-section (mb) (P in GeV/c) 277 G4double G4ChipsProtonInelasticXS::CrossSectio 279 G4double G4ChipsProtonInelasticXS::CrossSectionLin(G4int tZ, G4int tN, G4double P) 278 { 280 { 279 G4double sigma=0.; 281 G4double sigma=0.; 280 if(P<ThresholdMomentum(tZ,tN)*.001) return s 282 if(P<ThresholdMomentum(tZ,tN)*.001) return sigma; 281 G4double lP=G4Log(P); 283 G4double lP=G4Log(P); 282 if(tZ==1&&!tN){if(P>.35) sigma=CrossSectionF 284 if(tZ==1&&!tN){if(P>.35) sigma=CrossSectionFormula(tZ,tN,P,lP);}// s(pp)=0 below 350Mev/c 283 else if(tZ<97 && tN<152) // G 285 else if(tZ<97 && tN<152) // General solution 284 { 286 { 285 G4double pex=0.; 287 G4double pex=0.; 286 G4double pos=0.; 288 G4double pos=0.; 287 G4double wid=1.; 289 G4double wid=1.; 288 if(tZ==13 && tN==14) // E 290 if(tZ==13 && tN==14) // Excited metastable states 289 { 291 { 290 pex=230.; 292 pex=230.; 291 pos=.13; 293 pos=.13; 292 wid=8.e-5; 294 wid=8.e-5; 293 } 295 } 294 else if(tZ<7) 296 else if(tZ<7) 295 { 297 { 296 if(tZ==6 && tN==6) 298 if(tZ==6 && tN==6) 297 { 299 { 298 pex=320.; 300 pex=320.; 299 pos=.14; 301 pos=.14; 300 wid=7.e-6; 302 wid=7.e-6; 301 } 303 } 302 else if(tZ==5 && tN==6) 304 else if(tZ==5 && tN==6) 303 { 305 { 304 pex=270.; 306 pex=270.; 305 pos=.17; 307 pos=.17; 306 wid=.002; 308 wid=.002; 307 } 309 } 308 else if(tZ==4 && tN==5) 310 else if(tZ==4 && tN==5) 309 { 311 { 310 pex=600.; 312 pex=600.; 311 pos=.132; 313 pos=.132; 312 wid=.005; 314 wid=.005; 313 } 315 } 314 else if(tZ==3 && tN==4) 316 else if(tZ==3 && tN==4) 315 { 317 { 316 pex=280.; 318 pex=280.; 317 pos=.19; 319 pos=.19; 318 wid=.0025; 320 wid=.0025; 319 } 321 } 320 else if(tZ==3 && tN==3) 322 else if(tZ==3 && tN==3) 321 { 323 { 322 pex=370.; 324 pex=370.; 323 pos=.171; 325 pos=.171; 324 wid=.006; 326 wid=.006; 325 } 327 } 326 else if(tZ==2 && tN==1) 328 else if(tZ==2 && tN==1) 327 { 329 { 328 pex=30.; 330 pex=30.; 329 pos=.22; 331 pos=.22; 330 wid=.0005; 332 wid=.0005; 331 } 333 } 332 } 334 } 333 sigma=CrossSectionFormula(tZ,tN,P,lP); 335 sigma=CrossSectionFormula(tZ,tN,P,lP); 334 if(pex>0.) 336 if(pex>0.) 335 { 337 { 336 G4double dp=P-pos; 338 G4double dp=P-pos; 337 sigma+=pex*G4Exp(-dp*dp/wid); 339 sigma+=pex*G4Exp(-dp*dp/wid); 338 } 340 } 339 } 341 } 340 else 342 else 341 { 343 { 342 G4cerr<<"-Warning-G4ChipsProtonNuclearXS:: 344 G4cerr<<"-Warning-G4ChipsProtonNuclearXS::CSLin:*Bad A* Z="<<tZ<<", N="<<tN<<G4endl; 343 sigma=0.; 345 sigma=0.; 344 } 346 } 345 if(sigma<0.) return 0.; 347 if(sigma<0.) return 0.; 346 return sigma; 348 return sigma; 347 } 349 } 348 350 349 // Calculation formula for proton-nuclear inel 351 // Calculation formula for proton-nuclear inelastic cross-section (mb) log(P in GeV/c) 350 G4double G4ChipsProtonInelasticXS::CrossSectio 352 G4double G4ChipsProtonInelasticXS::CrossSectionLog(G4int tZ, G4int tN, G4double lP) 351 { 353 { 352 G4double P=G4Exp(lP); 354 G4double P=G4Exp(lP); 353 return CrossSectionFormula(tZ, tN, P, lP); 355 return CrossSectionFormula(tZ, tN, P, lP); 354 } 356 } 355 // Calculation formula for proton-nuclear inel 357 // Calculation formula for proton-nuclear inelastic cross-section (mb) log(P in GeV/c) 356 G4double G4ChipsProtonInelasticXS::CrossSectio 358 G4double G4ChipsProtonInelasticXS::CrossSectionFormula(G4int tZ, G4int tN, 357 359 G4double P, G4double lP) 358 { 360 { 359 G4double sigma=0.; 361 G4double sigma=0.; 360 if(tZ==1 && !tN) // p 362 if(tZ==1 && !tN) // pp interaction (from G4QuasiElasticRatios) 361 { 363 { 362 G4double El(0.),To(0.); // U 364 G4double El(0.),To(0.); // Uzhi 363 if(P<0.1) // C 365 if(P<0.1) // Copied from G4QuasiElasticRatios Uzhi / start 364 { 366 { 365 G4double p2=P*P; 367 G4double p2=P*P; 366 El=1./(0.00012+p2*0.2); 368 El=1./(0.00012+p2*0.2); 367 To=El; 369 To=El; 368 } 370 } 369 else if(P>1000.) 371 else if(P>1000.) 370 { 372 { 371 G4double lp=G4Log(P)-3.5; 373 G4double lp=G4Log(P)-3.5; 372 G4double lp2=lp*lp; 374 G4double lp2=lp*lp; 373 El=0.0557*lp2+6.72; 375 El=0.0557*lp2+6.72; 374 To=0.3*lp2+38.2; 376 To=0.3*lp2+38.2; 375 } 377 } 376 else 378 else 377 { 379 { 378 G4double p2=P*P; 380 G4double p2=P*P; 379 G4double LE=1./(0.00012+p2*0.2); 381 G4double LE=1./(0.00012+p2*0.2); 380 G4double lp=G4Log(P)-3.5; 382 G4double lp=G4Log(P)-3.5; 381 G4double lp2=lp*lp; 383 G4double lp2=lp*lp; 382 G4double rp2=1./p2; 384 G4double rp2=1./p2; 383 El=LE+(0.0557*lp2+6.72+32.6/P)/(1.+rp2/P 385 El=LE+(0.0557*lp2+6.72+32.6/P)/(1.+rp2/P); 384 To=LE+(0.3 *lp2+38.2+52.7*rp2)/(1.+2.7 386 To=LE+(0.3 *lp2+38.2+52.7*rp2)/(1.+2.72*rp2*rp2); 385 } // Cop 387 } // Copied from G4QuasiElasticRatios Uzhi / end 386 388 387 /* 389 /* // Uzhi 4.03.2013 388 G4double p2=P*P; 390 G4double p2=P*P; 389 G4double lp=lP-3.5; 391 G4double lp=lP-3.5; 390 G4double lp2=lp*lp; 392 G4double lp2=lp*lp; 391 G4double rp2=1./p2; 393 G4double rp2=1./p2; 392 G4double El=(.0557*lp2+6.72+30./P)/(1.+.49 394 G4double El=(.0557*lp2+6.72+30./P)/(1.+.49*rp2/P); 393 G4double To=(.3*lp2+38.2)/(1.+.54*rp2*rp2) 395 G4double To=(.3*lp2+38.2)/(1.+.54*rp2*rp2); 394 */ 396 */ // Uzhi 4.03.2013 395 397 396 sigma=To-El; 398 sigma=To-El; 397 } 399 } 398 else if(tZ<97 && tN<152) // G 400 else if(tZ<97 && tN<152) // General solution 399 { 401 { 400 //G4double lP=G4Log(P); // Alre 402 //G4double lP=G4Log(P); // Already calculated 401 G4double d=lP-4.2; 403 G4double d=lP-4.2; 402 G4double p2=P*P; 404 G4double p2=P*P; 403 G4double p4=p2*p2; 405 G4double p4=p2*p2; 404 G4double a=tN+tZ; // 406 G4double a=tN+tZ; // A of the target 405 G4double al=G4Log(a); 407 G4double al=G4Log(a); 406 G4double sa=std::sqrt(a); 408 G4double sa=std::sqrt(a); 407 G4double a2=a*a; 409 G4double a2=a*a; 408 G4double a2s=a2*sa; 410 G4double a2s=a2*sa; 409 G4double a4=a2*a2; 411 G4double a4=a2*a2; 410 G4double a8=a4*a4; 412 G4double a8=a4*a4; 411 G4double a12=a8*a4; 413 G4double a12=a8*a4; 412 G4double a16=a8*a8; 414 G4double a16=a8*a8; 413 G4double c=(170.+3600./a2s)/(1.+65./a2s); 415 G4double c=(170.+3600./a2s)/(1.+65./a2s); 414 G4double dl=al-3.; 416 G4double dl=al-3.; 415 G4double dl2=dl*dl; 417 G4double dl2=dl*dl; 416 G4double r=.21+.62*dl2/(1.+.5*dl2); 418 G4double r=.21+.62*dl2/(1.+.5*dl2); 417 G4double gg=40.*G4Exp(al*0.712)/(1.+12.2/a 419 G4double gg=40.*G4Exp(al*0.712)/(1.+12.2/a)/(1.+34./a2); 418 G4double e=318.+a4/(1.+.0015*a4/G4Exp(al*0 420 G4double e=318.+a4/(1.+.0015*a4/G4Exp(al*0.09))/(1.+4.e-28*a12)+ 419 8.e-18/(1./a16+1.3e-20)/(1.+1.e 421 8.e-18/(1./a16+1.3e-20)/(1.+1.e-21*a12); 420 G4double ss=3.57+.009*a2/(1.+.0001*a2*a); 422 G4double ss=3.57+.009*a2/(1.+.0001*a2*a); 421 G4double h=(.01/a4+2.5e-6/a)*(1.+6.e-6*a2* 423 G4double h=(.01/a4+2.5e-6/a)*(1.+6.e-6*a2*a)/(1.+6.e7/a12/a2); 422 sigma=(c+d*d)/(1.+r/p4)+(gg+e*G4Exp(-ss*P) 424 sigma=(c+d*d)/(1.+r/p4)+(gg+e*G4Exp(-ss*P))/(1.+h/p4/p4); 423 } 425 } 424 else 426 else 425 { 427 { 426 G4cerr<<"-Warning-G4QProtonNuclearCroSect: 428 G4cerr<<"-Warning-G4QProtonNuclearCroSect::CSForm:*Bad A* Z="<<tZ<<", N="<<tN<<G4endl; 427 sigma=0.; 429 sigma=0.; 428 } 430 } 429 if(sigma<0.) return 0.; 431 if(sigma<0.) return 0.; 430 return sigma; 432 return sigma; 431 } 433 } 432 434 433 G4double G4ChipsProtonInelasticXS::EquLinearFi 435 G4double G4ChipsProtonInelasticXS::EquLinearFit(G4double X, G4int N, G4double X0, G4double DX, G4double* Y) 434 { 436 { 435 if(DX<=0. || N<2) 437 if(DX<=0. || N<2) 436 { 438 { 437 G4cerr<<"***G4ChipsProtonInelasticXS::Eq 439 G4cerr<<"***G4ChipsProtonInelasticXS::EquLinearFit: DX="<<DX<<", N="<<N<<G4endl; 438 return Y[0]; 440 return Y[0]; 439 } 441 } 440 442 441 G4int N2=N-2; 443 G4int N2=N-2; 442 G4double d=(X-X0)/DX; 444 G4double d=(X-X0)/DX; 443 G4int jj=static_cast<int>(d); 445 G4int jj=static_cast<int>(d); 444 if (jj<0) jj=0; 446 if (jj<0) jj=0; 445 else if(jj>N2) jj=N2; 447 else if(jj>N2) jj=N2; 446 d-=jj; // excess 448 d-=jj; // excess 447 G4double yi=Y[jj]; 449 G4double yi=Y[jj]; 448 G4double sigma=yi+(Y[jj+1]-yi)*d; 450 G4double sigma=yi+(Y[jj+1]-yi)*d; 449 451 450 return sigma; 452 return sigma; 451 } 453 } 452 454